R20 III B.TECH II SEM REGULAR & SUPPLEMENTARY EXAMINATIONS APRIL 2025

III B.Tech II Semester Regular/Supple. Examinations, APRIL-2025

Sub Code: R20CC32MC1 ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE

Time: 3 hours

(ECE, EEE, ME, AIML, CS, DS)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

	Questions		KL	CO	<u>M</u>
Q.No		Unit-I			
	a Discuss the role of inclusiveness.	Indian festivals in promoting cultural harmony and	K2	1	14M
1	inclusiveness.	OR			
_	b Analyze how the co- cultural identity of Inc	ncept of "Unity in Diversity" shapes the social and	K4	1	14M
		Unit-II			
	a Examine the major today.	hemes of the Ramayana and explain their relevance	K4	2	14M
2		OR			,
	b Analyze the Harappa	an script and compare it with other ancient writing	K4	2	14M
·	Systems:	Unit-III			
	- Evaluate the impact of	f modern theatre and Indian cinema on society.	K4	3	14M
	a Evaluate the impact of	OR			
3	b the culture and art o importance.	ral styles of Qutub Minar and Humayun's Tomb reflect f their time? Compare their designs and explain their	K4	-3_	14M
	,	Unit-IV			
4	How did Indian tra a Southeast Asia? Com	ders and missionaries help spread Indian culture in pare their impact with that of teachers and emissaries.	K4	4	14M
	OR				
	b Explain the causes are other civilizations.	d significance of cultural exchanges between India and	K4	4	14M
-		Unit-V		· ·	
	a Analyze the develop	ment of education in Ancient, Medieval, and Modern	K5	5	14M
5		OR OR			
	b Evaluate the contrib	utions of Indian scientists from ancient times to the	K5	5	14M
_	Intodotti otas	To Co Co Contract Ma Montra			

III B.Tech II Semester Regular/ Supplementary Examinations - APRIL-2025 Sub Code: R20CC32MC2 PROFESSIONAL ETICS AND HUMAN VALUES

Time: 3 hours

(CSE, IT, AI)

Max. Marks: 70

Note Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No		Questions	KL	СО	М	
		Unit-I		•		
	а	Explain the concept of work ethics and discuss the challenges that must be overcome to maintain them.	K5	1	14M	
1		OR	·			
-	b	Explain the following concepts: A) Commitment B) Living Peacefully C) Self Confidence D) Value of time	K2	1	14M	
		Unit-II	.!	<u> </u>	-	
	а	Define Engineering Ethics and explain the uses of Ethical Theories.	K2	2	14M	
2		OR .				
	b	Discuss the roles of engineers as managers, consultants, and leaders. Explain the key characteristics of engineering professionals.	K4	2	14M	
3	Unit-III					
	а	Describe the Professional role & responsibilities of Engineers.	K2	3	14M	
3		OR	·			
	b	Explain the Cross Cultural Issues 8 Occupational Crimes.	K2	3	14M	
		Unit-IV	· l=			
. 4	а	Explain the legal tasks in Intellectual Property Law.	K5	4	14M	
		OR				
	b	Discuss the Innovations & Inventions in trade related IPR.	K.5	4	14M	
		Unit-V		<u> </u>		
5	а	Discuss the types of Intellectual Property Rights.	K5	5	14M	
		OR				
	b	Explain the registration process of Patents.	K5	5	14M	

70

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CC2OE01	REMOTE SENSING AND GIS	
Time: 3 hours	(CE)	Max. Marks:

		Note: Answer All FIVE Questions)			
Q.No	_	Questions	KL	CO	M	
		Unit-I			<u> </u>	
		i) Explain Stefan-Boltzmann's law for the study of radiation and its applications in remote sensing.	K2	1	5M	
] a	ii) Discuss the different types of electromagnetic waves used in remote sensing.	K2	1	5M	
1		iii) What are the advantages of along-track scanners?	K1	$\frac{1}{1}$	4M	
		OR	1		, ,,,,	
	Г	i) Explain the spectral reflectance curves with a neat diagram.	K2	1	5M	
	b	The state of the s	K1	1	5M	
		iii) What are the major differences between Mie and Rayleigh scattering?	K2	1	4M	
		Unit-II	<u></u>			
		i) What are the various elements of visual image interpretation?	K2	2	5M	
	a	ii) Discuss about three most frequently used supervised classification techniques of	K2	2	6M	
	"	satellite image classification with suitable illustrations.				
2		iii) Briefly present the concept of FCC in digital remote sensing.	K3	2	3M	
		OR	·!		<u></u>	
	ь	i) What is the difference between raster and vector overlay operations?	K2	2	5M	
		ii) Why do we need pre-processing in digital image interpretation? Explain the types	K3	2	6M	
		of pre-processing techniques.				
	<u> </u>	iii) Write a short note on Histogram Equalization in digital image processing.	K2	2	3M	
3	<u> </u>	Unit-III				
	a	i) Explain the concept of visual variables and their application in mapping quantitative data.	K2	3	8M	
		ii) Mention the techniques for estimating scale of a map.	K3	3	6M	
		OR			OIVI	
	Ъ	i) Describe different types of coordinate systems.	K2	3	8M	
		ii) Describe spaghetti, vertex dictionary and DIME.	K2	3	6M	
Unit-IV Unit-IV						
		i) Discuss different types of geo-databases used in GIS with example and their	K3	4	5M	
	a	importance.			2112	
		ii) Explain run length encoding method.	K4	4	5M	
4		iii) Briefly discuss about different surface models.	K2	4	4M	
	ъ	i) Describe the key elements of an ER diagram used in GIS. Provide an example	K3	4	5M.	
		ii) Explain block encoding and quadtree data model.	K4	4	5M	
		iii) What is TIN? How are they constructed?	K2	4	4M	
ļ		Unit-V				
]	_	i) Discuss the importance of Datum Projection in GIS and provide examples.	K3	5.	7M	
	a	ii) Explain non-topological GIS file formats, citing examples, advantages, and	K4	5	7M	
5		limitations.		_		
-		OR				
	,	i) Discuss the integration of GPS data with GIS, highlighting its importance,	K2	5 ·	7M	
	b	challenges, and key applications.				
		ii) Why is topology important in the geospatial data process?	K2	5	7M	
		1				

III B.Tech II Semester Regular & Supple. Examinations, April-2025 le: R20CC2OE03 HYBRID ELECTRIC VEHICLES

R20

Sub Code: R20CC2OE03

(EEE)

Max. Marks: 70

Time: 3 hours

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No	T	Questions Questions Questions	KL	CO	M
Q.140	 	Unit-I		<u> </u>	
	a	With the help of block diagram explain the major components of an electric vehicle.	K2	1	14M
1	<u> </u>	OR			
1		i) Explain about Dynamics of vehicle motion	K2	1	7M
	ь	ii) Draw the roadway on the fixed co-ordinate system and explain the	K2	1	7M
		importance of roadway fundamentals.			
	1	Unit-II			•
		i) Define the terms charge Capacity, Discharge rate, State of charge, state of	K1	2	7M
	a	Discharge and Depth of Discharge			
2		ii) Discuss about types of batteries with merits and demerits	K2	2	7M
~		OR			
		i) Calculate the number of cells needed, battery energy and capacity in	K2	2	7M
	b	battery pack design.			
		ii) Explain the Properties of Batteries.	K1	2	7M
3		Unit-III			
	a	Elaborate with neat sketch the configuration and control of induction motor	K3	3	14M
		OR			
	Ъ	Explain the working principle, construction of a permanent magnet DC motor	K 3	3	14M
4		Unit-IV	"		
		i) With neat sketch explain front wheel and rear wheel drive system	K3	4	7M
	a	ii) What is gear mechanism? And explain the four principle types of gears	K2	4	7M
		OR			
	L	i)Explain power transmission components used in electric vehicle drivetrain	K2	4	7M
	b	ii)Explain the importance of clutches EVs	K2	4	7M
		Unit-V			
	а	With a neat sketch, explain the configuration of parallel hybrid electric drive train.	К3	5	14M
5		OR			
		i) Analyze the Design procedure of Hybrid Electric Vehicle with basic	K2	5	7M
	b	requirements and considerations. ii) Explain the scenario of HEV in Indian market.	K1	5	7M
 	<u> </u>	avonomy Knowledge Level CO: Course Outcome M:Marks	^^^		7.474

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CC2OE10

OOPS THROUGH JAVA

Time: 3 hours

(ECE)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No	T	Questions Questions	KL	co	M			
Quito	+	Unit-I	1 100	1 00	141			
	-	i) Differentiate functional programming and object oriented programming	3	T 4	1			
	a			1	7M			
1	L	ii) Explain the basic concepts of object oriented programming.	2	1	7M			
1		OR						
	b	i) Define a class and object. Write syntax to create class and object with an Example	2	1	7M			
		ii) Explain any four features of Java programming.	2	1	7M			
		Unit-II	-1	·				
		i) What are the primitive data types in Java? Write about type conversions.	2	2	7M			
	a	ii) Write a java program to display all the odd numbers between 1 to 30	3	2				
2		using for loop & if statement			7M			
		OR		<u> </u>				
		i) What is garbage collection in Java? Explain finalize method in Java.	2	2	7M			
,	b	ii) Write a Java program to add a set of numbers passed from the command line.	3	2	7M			
		Unit-III	<u> </u>	!				
	a	i) What is inheritance? Explain different forms of inheritance with suitable program segments.	3	3	14M			
3		OR	·	I				
		i) Explain how interface is used to achieve multiple Inheritances in Java.	2	3	7M			
	b	ii) What is exception? Write a program to accept a password from the user and throw "Authentication Failure" exception if the password is incorrect	3	3	7M			
Unit-IV								
		i) Write a program that includes a try block and a catch clause which	3	4				
	_	processes the arithmetic exception generated by division-by-zero error.	ادا	4	7M			
_	а	ii) Write a program that creates a thread forces preemptive scheduling for	3	4	7M			
4	نـــــــــــــــــــــــــــــــــــــ	lower priority threads		1				
		OR						
	, l	i) Describe the need of thread synchronization. How is it achieved in Java?	2	4	7M			
	b	ii) Write a program to illustrate the use of multiple catch blocks for a try block	3	4	7M			
		Unit-V						
	a	i) Write an applet to display the mouse cursor position in that applet window	2	5	7M			
		ii) What is an adapter class? What is their role in event handling?	2	5	7M			
5		OR						
	b	i) Write a Java program to create AWT radio buttons using check box group.	2	5	7M			
	ມ	ii) What is the significance of layout managers? Discuss briefly various layout managers.	2	5	7M			
W. Die-	T	exonomy Knowledge Level CO: Course Outcome M:Marks***						

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CC2OE13

DIGITAL MARKETING

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.s

Qinestions Questions KL CO M a i) Outline the concept of Digital Marketing. Explain the various 4 CO 1 7M ii) Examine the merits of various Digital Marketing Platforms. 4 CO 1 7M iii) Examine the merits of various Digital Marketing Platforms. 4 CO 1 7M iii) Distinguish between Search Engine Optimization and Search Engine 4 CO 1 7M iii) Critically narrate the key challenges in Digital Marketing in India. 4 CO 1 7M iii) Critically narrate the key challenges in Digital Marketing in India. 4 CO 1 7M iii) Present the merits and demerits of Online Advertising. 2 CO 2 7M iii) Present the merits and demerits of Online Advertising. 3 CO 2 7M iii) Outline the notable trends in Social Media Marketing. 2 CO 2 7M iii) Outline the notable trends in Social Media Marketing. 4 CO 2 7M iii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M iii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M iii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M b i) Write about the Pay Per Click and Cost Per Click. 3 CO 3 7M iii) Suggest the suitable strategies (o) SMS Marketing. 2 CO 4 7M iii) Discussible the characteristics of Search Engine Marketing. 2 CO 4 7M iii) Discussible the characteristics of Search Engine Marketing. 2 CO 4 7M
i) Outline the concept of Digital Marketing. Explain the various components of Digital Marketing! ii) Examine the merits of various Digital Marketing Platforms. OR
a components of Digital Marketing. ii) Examine the merits of various Digital Marketing Platforms. OR ii) Distinguish between Search Engine Optimization and Search Engine 4 CO 1 7M Marketing. ii) Critically narrate the key challenges in Digital Marketing in India. 4 CO 1 7M Unit-II i) Describe the key elements in Website Marketing. 2 CO 2 7M ii) Present the merits and demerits of Online Advertising. 3 CO 2 7M DR b i) Explain the key features of Interactive Marketing. a ii) Outline the notable trends in Social Media Marketing. 4 CO 2 7M Unit-III a ii) Illustrate the nœed and importance of Digital Marketing Plan. a ii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M ii) Orr b ii) Write about the Pay Per Click and Cost Per Click. iii) Suggest the suitable strategies to SMS Marketing. Unit-IV 2 CO 4 7M
ii) Examine the merits of various Digital Marketing Platforms. OR
i) Distinguish between Search Engine Optimization and Search Engine 4 CO 1 7M Marketing. ii) Critically narrate the key challenges in Digital Marketing in India. 4 CO 1 7M Unit-II i) Describe the key elements in Website Marketing. 2 CO 2 7M ii) Present the merits and demerits of Online Advertising. 3 CO 2 7M OR b i) Explain the key features of Interactive Marketing. 2 CO 2 7M Unit-III a ii) Outline the notable trends in Social Media Marketing. 4 CO 2 7M Unit-III a ii) Illustrate the need and importance of Digital Marketing Plan. 3 CO 3 7M iii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M OR b ii) Write about the Pay Per Click and Cost Per Click. 3 CO 3 7M iii) Suggest the suitable strategies to SMS Marketing. 2 CO 4 7M Unit-IV a i) Describe the characteristics of Search Engine Marketing. 2 CO 4 7M
b Marketing. ii) Critically narrate the key challenges in Digital Marketing in India. 4 CO 1 7M Unit-II i) Describe the key elements in Website Marketing. ii) Present the merits and demerits of Online Advertising. 5 OR b i) Explain the key features of Interactive Marketing. ii) Outline the notable trends in Social Media Marketing. 4 CO 2 7M OR Unit-III a ii) Illustrate the need and importance of Digital Marketing Plan. ii) Discuss the goals and objectives of Digital Marketing Plan. ii) OR b ii) Write about the Pay Per Click and Cost Per Click. ii) Suggest the suitable strategies to SMS Marketing. 2 CO 2 7M Unit-III 3 CO 3 7M OR Unit-IV a li) Describe the characteristics of Search Engine Marketing.
b Marketing. ii) Critically narrate the key challenges in Digital Marketing in India. 4 CO 1 7M Unit-II i) Describe the key elements in Website Marketing. ii) Present the merits and demerits of Online Advertising. 5 OR b i) Explain the key features of Interactive Marketing. ii) Outline the notable trends in Social Media Marketing. 4 CO 2 7M OR Unit-III a ii) Illustrate the need and importance of Digital Marketing Plan. ii) Discuss the goals and objectives of Digital Marketing Plan. ii) OR b ii) Write about the Pay Per Click and Cost Per Click. ii) Suggest the suitable strategies to SMS Marketing. 2 CO 2 7M Unit-III 3 CO 3 7M OR Unit-IV a li) Describe the characteristics of Search Engine Marketing.
i) Describe the key elements in Website Marketing. 2 CO 2 7M ii) Present the merits and demerits of Online Advertising. 3 CO 2 7M OR b i) Explain the key features of Interactive Marketing. 2 CO 2 7M Unit-III a i) Illustrate the notable trends in Social Media Marketing. 4 CO 2 7M Unit-III a ii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M OR b i) Write about the Pay Per Click and Cost Per Click. 3 CO 3 7M ii) Suggest the suitable strategies to SMS Marketing. 2 CO 2 7M Unit-IV 1 Unit-IV 1 Unit-IV
i) Describe the key elements in Website Marketing. 2 CO 2 7M ii) Present the merits and demerits of Online Advertising. 3 CO 2 7M OR b i) Explain the key features of Interactive Marketing. 2 CO 2 7M Unit-III a i) Illustrate the notable trends in Social Media Marketing. 4 CO 2 7M Unit-III a ii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M OR b i) Write about the Pay Per Click and Cost Per Click. 3 CO 3 7M ii) Suggest the suitable strategies to SMS Marketing. 2 CO 2 7M Unit-IV 1 Unit-IV 1 Unit-IV
2 ii) Present the merits and demerits of Online Advertising. OR b i) Explain the key features of Interactive Marketing. ii) Outline the notable trends in Social Media Marketing. Unit-II a i) Illustrate the need and importance of Digital Marketing Plan. ii) Discuss the goals and objectives of Digital Marketing Plan. OR b i) Write about the Pay Per Click and Cost Per Click. ii) Suggest the suitable strategies to SMS Marketing. 2 CO 3 7M OR b ii) Unit-IV a i) Describe the characteristics of Search Engine Marketing.
2 ii) Present the merits and demerits of Online Advertising. OR b i) Explain the key features of Interactive Marketing. ii) Outline the notable trends in Social Media Marketing. Unit-II a i) Illustrate the need and importance of Digital Marketing Plan. ii) Discuss the goals and objectives of Digital Marketing Plan. OR b i) Write about the Pay Per Click and Cost Per Click. ii) Suggest the suitable strategies to SMS Marketing. 2 CO 3 7M OR b ii) Unit-IV a i) Describe the characteristics of Search Engine Marketing.
OR i) Explain the key features of Interactive Marketing. 2 CO 2 7M
OR i) Explain the key features of Interactive Marketing. 2 CO 2 7M ii) Outline the notable trends in Social Media Marketing. 4 CO 2 7M Unit-III
b i) Explain the key features of Interactive Marketing. ii) Outline the notable trends in Social Media Marketing. Unit-III a i) Illustrate the need and importance of Digital Marketing Plan. ii) Discuss the goals and objectives of Digital Marketing Plan. OR b i) Write about the Pay Per Click and Cost Per Click. ii) Suggest the suitable strategies to SMS Marketing. 2 CO 2 7M CO 3 7M OR b ii) Write about the Pay Per Click and Cost Per Click. 3 CO 3 7M Unit-IV 1 Unit-IV
ii) Outline the notable trends in Social Media Marketing. Unit-III
3 i) Illustrate the need and importance of Digital Marketing Plan. 3 CO 3 7M ii) Discuss the goals and objectives of Digital Marketing Plan. 3 CO 3 7M OR b i) Write about the Pay Per Click and Cost Per Click. 3 CO 3 7M ii) Suggest the suitable strategies to SMS Marketing. 2 CO 3 7M Unit-IV a i) Describe the characteristics of Search Engine Marketing. 2 CO 4 7M
a i) Illustrate the need and importance of Digital Marketing Plan. 3 CO 3 7M ii) Discuss the goals and objectives of Digital Marketing Plan. 5 OR 6 i) Write about the Pay Per Click and Cost Per Click. 6 ii) Suggest the suitable strategies to SMS Marketing. 7 CO 3 7M 1 OR 2 CO 3 7M 2 CO 3 7M 2 CO 3 7M 3 CO 3 7M 4 OR 4 III Describe the characteristics of Search Engine Marketing. 8 CO 3 7M 1 OR 1 OR 2 CO 3 7M 2 OR 3 CO 3 7M 4 OR 4 OR 4 OR 4 OR 5 OR 6 OR 6 OR 7 OR 7 OR 7 OR 7 OR 8 OR 8 OR 9
3 ii) Discuss the goals and objectives of Digital Marketing Plan. OR i) Write about the Pay Per Click and Cost Per Click. ii) Suggest the suitable strategies to SMS Marketing. Unit-IV i) Describe the characteristics of Search Engine Marketing. 2 CO 4 7M
b i) Write about the Pay Per Click and Cost Per Click. ii) Suggest the suitable strategies to SMS Marketing. 2 CO 3 7M Unit-IV 3 Describe the characteristics of Search Engine Marketing. 2 CO 4 7M
ii) Suggest the suitable strategies to SMS Marketing. Unit-IV i) Describe the characteristics of Search Engine Marketing. 2 CO 4 7M
ii) Suggest the suitable strategies to SMS Marketing. Unit-IV i) Describe the characteristics of Search Engine Marketing. 2 CO 4 7M
i) Describe the characteristics of Search Engine Marketing.
a i) Describe the characteristics of Search Engine Marketing. 2 CO 4 7M
4 ii) Outline the various payment methods of Online Advertising. 4 CO 4 7M
OR
b i) List out the merits and demerits of Display Ad.
ii) Elucidate the precautions in searching the words in Web. 2 CO 4 7M CO 4 7M
Unit-V
a i) Explain the Sharable Content. Comment on Sharable Content. 2 CO 5 7M
5 ii) Explain the Customer Relationship Management Plan. 2 CO 5 7M
OR
b i) Explain the various ways to Analyzing the Website Performance. 2 CO 5 7M
ii) Distinguish between Digital Media and Traditional Media. 4 CO 5 7M

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CC2OE16

CLOUD COMPUTING

Time: 3 hours

(IT, CSE & AI)

Max. Marks: 70

Note: Answer All FIVE Questions.

		All Questions Carry Equal Marks (5 X 14 = 70M)		T	
Q.No		Questions	KL	CO	M
<u></u>		Unit-I			
		i)Explain the essentials of cloud computing	2	1	7M
4	a	ii) Explain the characteristics of cloud computing	2	1	7M
1		│			
		i) How to develop a cloud infrastructure. Explain	2	1	7M
	b	ii)Discuss about vendors of cloud computing	_2	1	7M
		Unit-II			
		Explain about storage virtualization, server virtualization and network	2	1	14M
	a	virtualization			141/1
		OR		•	
2		i)Explain the Cloud Computing architecture on the basis of Hypervisor	2	2	73.4
		Installed, Migration and Cloud Balancing		<u> </u>	7M
	b	ii)Explain the Similarities and Differences Between Grid and Cloud	2	2	73.4
]	Computing,			7M
	1	Unit-III			*
		i)Explain the importance of IaaS in cloud computing	2	2	7M
	a	ii) Explain the Platform as a Service (PaaS) in detail	2	2	7M
3	 	OR	~ <i>-</i>		
		i) Compare and Contrast the Traditional IT Services and Cloud Services	4	2	7M
	b	ii) Compare and Contrast the public cloud and private cloud with example	4	2	7M
	T	Unit-IV			
		i) Discuss about Cloud management products	2	3	7M
	a	ii) Explain the need of web applications in Cloud Computing	2	3	7M
4		OR		·	
		i)Discuss about RTO and RPO	2	3	7M
	b	ii)Explain the the disasters in the Cloud	2	3	7M
5	1	Unit-V	*	, t	•
	-	i) Compare and contrast the traditional IT model with the Azure cloud	4	4	
		model, highlighting the key differences and advantages			7M
	a	ii) Discuss the storage and content delivery network (CDN) services	2	4	
		provided by Amazon Web Services			7M
		OR	•		·
		i) Discuss the potential disadvantages or challenges of utilizing AWS as a	2	4	
		cloud platform.	i		7M
	b	ii) Summarize the key differences and similarities between Microsoft Azure	2	4	77.6
	1	and AWS, highlighting their respective strengths and weaknesses.			7M
	1 .		 		

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20CCMN34

SOFTWARE ENGINEERING

Time: 3 hours

(ECE,EEE)

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

		An Questions carry Equal Marks (5 X 14 - 70M)					
Q.No		Questions	KL	CO	M		
		Unit-I					
	а	i) How a software will develop using Spiral model? Explain in detail.	3	1	7M		
		ii) Differentiate between Functional and non-functional requirements.	3	1	7M		
1	<u> </u>	OR					
		i) Discuss in detail about Evolution and impact of software engineering,	2	1	7M		
	b	ii) Illustrate the processes of Requirement gathering, analysis and specification.	3	1	7M		
		Unit-II					
		i)Illustrate the process of SRS documentation.	3	2	7M		
2	a	ii) Draw the class and object diagram for ATM application.	2	2	7M		
2		OR					
	ь	i) Explain about workflow analysis in detail.	2	2	7M		
	U	ii) Draw the interaction diagram for Library application	3	2	7M		
		Unit-III					
ı	a	i) Draw an Activity diagram for two party phone calls with sender, receiver, switch and conversation objects.	3	3	7M		
3		ii) Discuss in detail about Component Diagrams terms and concepts.	2	3	7M		
J		OR					
	b	i) Explain about terms and concepts for state machine in detail	2	3	7M		
		ii) Elaborate Deployment Diagrams terms and concepts with an example.	2	3	7M		
		Unit-IV					
4		i) Explain in detail about common modeling techniques for the forward and	3	4	73.6		
	a	reverse engineering.			7M		
		ii) How can domain model be used in software engineering? Describe.	3	4	7M		
	OR						
		i) Explain in detail about various types of analysis patterns.	2	4	7M		
	b	ii) Discuss about the common modeling techniques of activity diagram.	2	4	7M		
	Unit-V						
		i)Elaborate the concept of System Design Architecture with a neat sketch.	2	5	7M		
_	a	ii) Illustrate the importance of Black box testing techniques with a case study.	3	5	7M		
5	<u> </u>	OR		<u></u> 1			
	ь	i)Differentiate between Dynamic Object Modeling, and Static Object Modeling	3	5	7M		
	U	ii) Elaborate the concept of White box testing techniques.	2	5	7M		
		Toyonomy Knowledge Level CO: Edures Outcome MiMarks					

III B.Tech II Semester Regular Examinations, April-2025

MATRIX METHODS OF STRUCTURAL ANALYSIS Sub Code: R20CEHN05

Time: 3 hours (CE)

Max. Marks: 70

Note: Answer All **FIVE** Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

0.37	1	All Questions Carry Equal Marks (5 X 14 = 70M)	T ===	1	T = -	
Q.No		Questions	KL	CO	M	
	Unit-I					
	a	i) What is meant by degree of static indeterminacy and degree of kinematic indeterminacy of structure? Explain them through examples.	K2	COI	7M	
1		ii) Compare and contrast the flexibility and stiffness method?	K2	CO1	7M	
1		OR OR				
	ь	i) Explain the static and kinematic indeterminacy of various structural components.	К3	COI	7M	
		ii) Write the properties of flexibility matrix.	K2	CO1	7M	
		Unit-II	•			
		i) Analyze the continuous beam shown Figure 1. Assume that the supports are unyielding. Assume that EI is constant for all members, using Flexibility Method.	K2	CO2	14M	
2	a	A DOWN 2 KN/m C + + + + + + + + + + + + + + + + + +				
		Figure 1.				
		11	K2	CO2	 -	
	ь	i) Explain the salient features of flexibility method of analysis.		CO2	7M	
		ii) How are the basic equations of stiffness matrix obtained? Explain	K2	CO2	7M	
		Unit-III				
3		i) Using the stiffness method analyse the beam supported and loaded as shown in below Figure. Assume the flexural rigidity is constant.	К3	CO3	14M	
	a	60 kN 10 kN 10 kN 4 m 30 kN/m 1 m				
		OR				
	ь	A beam fixed at one end supported by roller at other end has concentrated load 15kN at Centre span. Calculate the deflection under the load by stiffness matrix method. Assume E=2x10 ⁵ N/mm ² and I=2500cm ⁴ . Assume length of beam 9m.	К3	CO3	14M	

	T	Unit-IV				
		i) Analyze the continuous beam shown in Figure 3 assume that the supports are unyielding. Assume EI to be constant for all members using direct stiffness method.	K3	CO4	14M	
	a	A JULIAN SERVICE A JULIAN SER				
		Figure 3.				
4		OR		#		
		Using the direct stiffness method, solve the problem of the propped cantilever beam subjected to end load P in Figure 4. The beam is assumed to have constant EI and length 2L. It is supported by a roller at midlength and is built in at the right end.	K3	CO4	14M	
	b					
		Figure 4.				
••		Unit-V				
5		i) Explain the step-by-step procedure for the analysis of a plane truss.	K2	CO5	7M	
	a	ii) Flow Chart for the analysis of the Continuous Beam	K2	CO5	7M	
		OR				
	ь	 i) A two bay two storey frame is to be analysed by computer programme of stiffness matrix method. a) Illustrate node numbering and determine the half band width & size of stiffness matrix to be stored. b) prepare flow chart for the programme & state input required for the same. 	K2	CO5	14M	

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20AMHN04

PATTERN RECOGNITION

Time: 3 hours

CSE(AIML)

Max. Marks: 70

All Questions Carry Equal Marks (5 X 14 = 70M) Note: Answer All FIVE Questions.

Q.No	Questions	KL	CO	M			
	Unit-I						
	i) Examine the types of data sets commonly used for pattern recognized	gnition tasks. 3	1	7M			
	a ii) Discuss the various data structures used for representing patter recognition.	rns in pattern 2	1	7M			
1	OR			! <u> </u>			
	i) Compare and contrast supervised learning, unsupervised learning supervised learning in terms of their applications and limitations.	ng, and semi- 2	1	7M			
	ii) Explain the methods used for evaluating classifiers in pattern re		1	7M			
	Unit-II	-	<u>. </u>	<u> </u>			
	i) Explain the distance metrics edmmonly used in the nearest neig a algorithm.		2	7M			
	ii) Explain the Naive Bayes classifier and the assumptions behind	it. 2	2	7M			
2	OR						
	i) Explain the concepts of data reduction and prototype selection in nearest neighbor classifiers.		2	7M			
	b ii) Compare and contrast the Bayes classifier and the nearest neighbors (NNC). Discuss the key differences in terms of assumptions, mod performance.	hbor classifier 2 el complexity and	2	7M			
Unit-III							
	i) Define a Hidden Markov Model (HMM). Explain the structure	of an HMM 1	3	7M			
	ii) Explain the process of mapping input features to class labels us	sing a decision tree. 3	3	7M			
3	OR						
	i) Explain the procedure for classifying test patterns using Hidden	Markov Models 2	3	7M			
	b ii) Describe the concept of pruning in decision trees and how it he fitting.	elps mitigate over 2	3	7M			
	Unit-IV						
	i) Discuss the working principle of Support Vector Machine, incluformulation of the optimization problem to find the optimal hyper	iding the 2 plane.	4	7M			
4	ii) Define the concept of combining classifiers? Discuss why it is l combine multiple classifiers instead of relying on a single classifier	beneficial to	4	7 <u>′</u>			

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20AIHN04 SPEECH PROCESSING

Time: 3 hours (AI) Max. Marks: 70
Note: Answer All FIVE Questions! All Questions Carry Equal Marks (5 X 14 = 70M)

T	<u> </u>	Note: Answer All FIVE Questions: All Questions Carry Equal Marks (5 X 14 = 70		CO	ъ.				
Q.No		Questions	KL	СО	M				
		Unit-I							
	a	i)Differentiate speech and natural language processing	L2	CO1	7M				
	a	ii)Discuss the closure properties of regular languages	L2	CO1	7M				
1		OR							
		i)Differentiate deterministic finite and non deterministic finite automata with	L2	CO1	7M				
	b	examples.							
		ii)Describe N gram sensitivity to the training corpus	L2	CO1	7 M				
	Unit-II								
		i) Find one tagging error in each of the following sentences that are tagged with							
		the Penn Treebank tag set:							
		1)I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN	L3	CO2	7M				
2	а	2)Does/VBZ this/DT flight/NN serve/VB dinner/NNS							
		3)I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP	ļ						
		ii) What are the advantageous and disadvantageous of hidden Marov model	L2	CO2	7M				
]		OR							
	Ţ,	i)Discuss tag indeterminacy and tokenization	L2	CO2	7M				
	b	ii)Explain contextual spelling error correction	L2	CO2	7 M				
		Unit-III							
		i)With a diagram illustrate major English places of articulation	L3	CO3	7M				
		ii)Find the mistakes in the APRAbet transcription of the following words:							
_	a	1."three"[dh r I] 2."study"[s t uh d i]	L3	CO3	7M				
3		3. "slight"[s l iy t] 4."planning"[p pl aa n ih ng]							
		OR							
		i) Discuss the factors influencing phonetic variation.	L2	CO3	7M				
	b	ii)Write short notes phonetic resources	L2	CO3	7M				
		Unit-IV	<u> </u>						
		i) Implement the text normalization routine that deals with MONEY, i.e.							
		mapping strings of dollar amounts like \$45, \$320, and \$4100 to words (either							
	a	writing code directly or designing an FST). If there are multiple ways to	L4	CO4	7M				
4	u	pronounce a number you may pick your favourite way							
1		ii)Illustrate the process of converting graphemes to phonemes	L3	CO4	7M				
		OR							
		i) Discuss the six steps in building a diphone database.	L2	CO4	7M				
	b	ii)Explain the process of Computing duration from prosodic labels	L2	CO4	7M				
		Unit-V		1:					
		i) Define MFCC. How will you obtain feature vector from MFCC for speech		T					
5	9	recognition.	L2	CO5	7 M				
	a	ii)Demonstrate vector quantization	L3	CO5	7M				
3		OR	1 20	, 000	, 111				
	-		L3	CO5	7M				
]	b	i)Illustrate the a* decoding algorithm ii) Draw and explain HMM based isolated word speech recognition system	L3	CO5	7M				
		ii) Draw and explain rivityi based isolated word speech recognition system	<u>го</u>	1000	\ TAT				

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20CSHN04

AGILE WITH SCRUM

Time: 3 hours

(CSE)

Max. Marks: 70

Note: Answer All **FIVE** Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

	,	All Questions Carry Equal Marks (5 X 14 = 70M)		l	
Q.No		Questions	KL_	CO	M
		Unit-I			···································
	a	i) What is the working principle of Agile? What value is provided by Agile? Discuss	L2	CO1	7M
1	"	ii) How to lead multiple Agile teams without sacrificing sanity?	L3	CO1	7M
		OR		•	
	,	i)What are Agile methods? What are the principles behind the Agile manifesto?	L3	CO1	7M
	b	ii) Discuss the best practices in Agile project management	L2	CO1	7M
		Unit-II			
	a	i) Explain various roles in Agile process. How are these roles different from traditional roles	L2	CO2	7M
_	"	ii) Differentiate Agile and Scruin methodology	L2	CO2	7M
2	<u> </u>	OR			
		i)Evaluate and explain about agile project management	L5	CO2	7M
	b	ii) What is scrum? What is the need of scrum? What values are provided by scrum	L3	CO2	7M
		Unit-III		! <u></u> .	
	\vdash	i) Describe Agile lifecycle. What is its impact on testing	L2	CO3	7M
	a	ii) Discuss the advantageous and disadvantageous of agile testing	L2	CO3	7M
3		OR	1,12	005	/ 147
	<u> </u>	i) List the most popular Agile testing tools. Explain any two in detail	L2	CO3	7M
	b	ii)Describe the pros and cons offtest driven development	L2	CO3	7M
		Unit-IV			7147
		i)What is Liskov substitution pijnciple? Write a simple example of a violation			
	a	of the LSP	L3	CO4	7M
	a	ii)What is open closed principle? Discuss the benefits of open closed principle	L2	CO4	7M
4		OR			72.2
	<u> </u>	i)Illustrate the Naïve Layering scheme.	L3	CO4	7M
	b	ii) How multiple inheritance can be used to achieve interface segregation			
	,,	principle. Illustrate with an example.	L3	CO4	7M
		Unit-V			
		i) Demonstrate the seven agile marketing techniques to help you deliver			
	a	projects more effectively	L3	CO5	7M
_	"	ii) Compare and contrast Agile marketing and Traditional marketing	L4	CO5	7M
5		OR			
	b	i)Explain the following frame works a)scrum framework b)kanban framework	L2	CO5	7M
	ן ע	ii) Describe three real-life examples of Agile marketing in practice	L2	CO5	7M
51		avonomy knowledge Level CO: Course Outcome M:Marks	214	_ 000	, 141

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20DSHN03

PRINCIPLES OF DATA SECURITY

Time: 3 hours (DS) Max. Marks: 70
Note: Answer All FIVE Questions: All Questions Carry Equal Marks (5 X 14 = 70M)

O No	т	Note: Answer An FIVE Questions: An Questions Carry Equal Marks $(5 \times 14 = 70)$		7	
Q.No	-	Questions	KL	CO	M
1	<u> </u>	Unit-I			
		i) What is the difference between a threat, an attack, and an asset in the context of	2	1	7M
	l a	computer security? Explain			/101
	~	ii) Explain the concept of an attack tree. How can attack trees be used to visualize and	2	1	72.4
1		analyze potential vulnerabilities n a system			7M
1		OR			
		i) What is message authentication, and why is it important for ensuring the integrity	2	1	
	Ъ	and authenticity of messages in a communication system?			7M
	"	ii) Describe the concept of public-key encryption and how it differs from symmetric	2	1	
		encryption. How does public-key encryption solve the key distribution problem?	-	-	7M
		Unit-II		<u> </u>	_
	İ	i) What is the difference between authentication and authorization in computer	2	2	
	a	security? Explain	_	-	7M
		ii) Describe the lifecycle of a token in a token-based authentication system	2	2	7M
2		OR			/1/1
		i) Define the concepts of subjects, objects, and access rights in an access control system	2	2	
	₁₋	with Example			7M
	b	ii) What is Role-Based Access Control (RBAC), and how does it differ from	2	2	
		Discretionary Access Control (DAC)? Discuss its benefits			7M
		Unit-III	<u> </u>		
		i) What is a relational database, and how does it organize data into tables, rows, and	2	3	
		columns? Discuss the advantages and disadvantages of relational database.	2	э	7M
	a	ii) What is SQL injection, and how does it exploit vulnerabilities in a web application's	2	7	
_		database query mechanisms? Explain	2	3	7M
3		OR			
		i) What are the key security risks in cloud computing? How can organizations mitigate	7	-	
		these risks? Explain	2	3	7M
	ь	ii) Discuss how Trojans can be used to deliver payloads or open backdoors into			
·		systems.	2	3	7M
	-				
	 	Unit-IV			
		i) What is a Denial-of-Service (DoS) attack, and how does it differ from other types of	2	4	7M
	a	cyberattacks? Discuss the primary objectives of a DoS attack.			
1		ii) Explain the key differences between reflector and amplifier attacks?	2	4	7M
4		OR			
		i) Discuss the main software security issues that organizations face in developing and	2	4	7M
			Į.	ı	\ 1AT

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20CYHN04

AUTHENTICATION TECHNIQUES

Time: 3 hours

(CY)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Question's Carry Equal Marks (5 X 14 = 70M) KLCO M Questions Q.No Unit-I i) Explain the stages and steps involved in the authentication process. **7M** ii) Discuss the roles of User, Device, and Application as entities in the 1 7M authentication process. How do they each contribute to the overall security? 1 OR i) Compare and contrast the following authentication types: Direct vs 14M h Indirect, One-Way vs Mutual On-demand vs Periodic authentication Unit-II i) Explain physical identification using smart cards. 7M 2 ii) Compare and contrast authentication in Card Present and Card Not 7MPresent transactions OR 2 i) How is authentication handled in mobile phones? Discuss the different 2 2 **7M** authentication mechanisms available on mobile devices b 2 2 ii) What is Single Sign-On (SSO)? Explain how SSO works and its 7M advantages in terms of user convenience and security. Unit-III i) Describe the use of iris and retinal scanning in biometric authentication. 3 **7M** 2 ii) Discuss the benefits and challenges of using multi-modal biometrics in 7M modern authentication systems 3 OR i) Explain how fingerprint bidmetrics are used for authentication. 2 3 14M How secure and reliable is fingerprint-based authentication compared to other biometric methods? Unit-IV i) What is pattern analysis in the context of biometric authentication? What 2 7M are the key challenges in accurately recognizing biometric patterns? ii) Discuss the significance of the ROC curve in understanding trade-offs 2 4 7M between True Accept Rate (TAR) and False Accept Rate (FAR). 4 OR **7M** i) Explain the X.509 Authentication Service ii) Compare and Contrast HTTP-based authentication and token-based 4 4 7M authentication Unit-V i) How are authentication protocols represented using BAN Logic? Describe 5 2 14M the steps involved in applying BAN Logic to model an authentication protocol. 5 OR i) What is the Random Oracle Model? Discuss the advantages and 5 2 limitations of the Random Oracle Model in simulating cryptographic operations during the analysis of security protocols. 14M

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20ITHN03

ARTIFICIAL INTELLIGENCE

Time: 3 hours

(IT)

Max. Marks: 70

Note: Answer All **FIVE** Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No	Г	All Questions Carry Equal Marks (5 X 14 = 70M) Questions	KL	СО	M
Q.IVO		Unit-I	TVL	, 00	177
		i) Explain the characteristics of Production Systems?	2	1	7M
		ii) How do production system characteristics influence the design and	2	1	
1		implementation of search programs? Explain	_	•	7M
1	<u> </u>	OR			
		i) Explain the concept of state space search in the context of problem-	2	1	
		solving in Artificial Intelligence.	_		14M
		Unit-II			
	\vdash \vdash \vdash	i) Explain the best first search with an example?	2	2	7M
		ii)Explain the constraint satisfaction problem with example	2	2	7M
2		OR			
		i) Compare and contrast the propositional and predicate logic?	2	2	7M
		ii) Explain the Resolution in knowledge representation.	2	2	7M
		Unit-III			
	a	i) Describe all the different approaches for Knowledge Representation	2	3	14M
3	<u> </u>	OR	<u>:</u>		
_	<u> </u>	i)Discuss about semantic nets	2	3	7M
		ii) What are the components of a Script? Explain with example	2	3	7M
		Unit-IV		·	
		i)Explain the general learning method with neat sketch	2	4	7M
		ii)Explain the learning in problem solving	2	4	7M
4		OR	:		
		i) Define the Markov Decision Problem (MDP) and explain its significance	2	4	
		in the context of reinforcement learning. Discuss the key components of an			14M
		MDP. Give an example			
		Unit-V			
		i) Explain the concept of syntactic processing in natural language processing	2	5	
5		(NLP). Describe the role of syntax in analyzing the structure and			14M
		grammatical relationships within sentences. Give an example			
		OR			
	b	i) Explain the principles of statistical natural language processing (NLP) and	2	5	14M
		its reliance on probabilistic models and machine learning algorithms			TATAT

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CC3201 CRYPTOGRAPHY AND NETWORK SECURITY Time: 3 hours

(CSE, CSE (AI), IT)

Max. Marks: 70

Note Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

ONG	T	An Questions Carry Equal Marks $(5 \times 14 = 70\text{M})$	······	~~	Ţ·····-
Q.No	-	Questions	KL	CO	M
1		Unit-I			
	a	i) Explain the operations, requirements, components of Network security model	2	1	7M
_		ii) Discuss about the security services and security mechanisms in detail	2	\dagger_1	7M
1	_	OR	<u> </u>	1	1 174
	Ь	i) Briefly define the monoalphabetic cipher. What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?	2	1	7M
		ii) Construct a Playfair matrix with the key "LARGEST". Encrypt this message: MEET ME AT THE TOGA PARTY	3	1	7M
		Unit-II	<u> </u>	<u> </u>	L
		i)Explain the single round operation of DES	2	2	7M
2	a	ii) Explain the key expansion function of AES algorithm	2	2	7M
		OR	14	14	/ 1/1
	b	Briefly explain the block cipher modes of operations?	2	2	1 43 4
		Unit-III	4		14M
ĺ	 	i) State and Describe Fermat's theorem.			
	a	ii) State the Chinese Remainder Theorem and find X for the given set of	2	3	7M
Ì	-	congruent equations $X \equiv 2 \mod 3$, $X \equiv 3 \mod 5$ and $X \equiv 2 \mod 7$.	3	3	7M
3		OR		L	-
		i) Perform decryption and encryption using RSA algorithm with p=3, q=11.			
	b	e-/ and N=5	3	3	7M
		ii) Discuss the following about ElGamal algorithm i) Encryption ii) Efficiency	2	3	7M
		Unit-IV			·
	ĺ	i) Illustrate in detail about the message authentication code and its requirements.	2	4	7M
	a	ii) Explain the process of deriving eighty 64-bitwords from 1024 bits for	3	4	
4	ļ	processing of a single blocks and also discuss single round function in	-		7M
}		SHA-512 algorithm. Show the values of W16, W17, W18 and W19.			• •
ļ		OR OR			
	b	i) Differentiate digital signature from digital certificate	2	4	7M
		ii) Explain the signing and verification in Digital Signature Algorithm	2	4	7M
		Unit-V	L	L.	•
}		i) Why does PGP compress the message? What are the reasons for	2	5	
_	a	compressing the signature but before encryption?			7M
5		ii) Compare and Contrast Kerberos 4 and Kerberos 5	4	5	7M
	···-	OR			
ľ	b	i) Explain Secure Electronic Transaction with neat diagram	2	6	7M
		ii) Discuss about different types of firewalls	2		7M
KL: Bloor	ns T	axonomy Knowledge Level CO: Course Outcome M:Marks			

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CC3204

MACHINE LEARNING

Time: 3 hours

(CSE, IT)

Max. Marks: 70

Note Answer All FIVE Questions.

All Questions	Carry Equal Marks	(5 X 14 = 70M)

Q.No		An Questions Questions	KL	CO	M
Q.110	!	Unit-1			
		i) Define Supervised Learning and explain how it differs from other forms of	K2	CO1	
		machine learning. Provide examples of applications where Supervised			7M
	a	Learning is commonly used.			
		ii) What is the Vapnik-Cheryonenkis (VC) Dimension, and how does it relate	K2	CO1	7M
1		to the capacity of a learning algorithm to generalize from training data?			/101
		OR			
		i) Define simple linear regression and multiple linear regression in the context	K2	CO1	
	ь	of Supervised Learning. Provide examples of scenarios where each regression			14M
		technique would be appropriate.			
		Unit-II			
	-	i) What is Maximum Likelihood Estimation (MLE), and how does it apply to	K2	CO2	
		probability density functions such as Bernoulli, multinomial, and Gaussian			7M
	a	distributions?			
2	"	ii) Discuss techniques such as cross-validation and regularization methods for	K2	CO2	73.4
2		selecting the optimal model from a set of candidates.			7M
	 	OR OR	<u> </u>		
	<u> </u>	i) Explore the Bias-Variance Pilemma in tuning model complexity. What is	K2	CO2	1 13 5
	b	the relationship between model bias, model variance, and model complexity?			14M
	-	Unit-III			
 -		i) Discuss the challenges and limitations of Subset Selection as a technique	K2	CO2	73.4
		for dimensionality reduction.			7M
	a	ii) Describe Principal Components Analysis (PCA) and its role in	K5	CO3	77.6
		dimensionality reduction.			7M
3	-	OR	I		
'	-	i) Explain Linear Discriminant Analysis (LDA) and its utility in	K5	CO3	77.4
		dimensionality reduction and classification tasks.			7M
	b	ii) Describe the Apriori Algorithm for mining frequent itemsets in transaction	K5	CO3	
		databases. How does the Apriori Algorithm generate association rules based	İ		7M
		on the frequency of item co-occurrences?			
	 -	Unit-IV	1		!
	-	i) Explain the k-Means Clustering algorithm and its basic principles for	K5	CO3	_
		partitioning data into clusters. Discuss the role of the k parameter and its			7M
4		impact on the clustering outcome.			
4	a	ii) Describe the Expectation Maximization (EM) algorithm and with tossing a	K5	CO3	
1		coin example			7M
	<u> </u>		<u> </u>	_!	I

	-	i) Discuss he challenges and limitations of clustering algorithms	" K4	CO4	10M
	h	ii) Discuss the advantages and disadvantages of Hierarchical Clustering.	K4	CO4	4M
		Unit-V		1	
		i) Describe the concept of Decision Trees and differentiate between classification trees and regression trees.	K4	CO5	7M
5	ä	ii) Describe the Random Forest Algorithm and its step-by-step process for building an ensemble of decision trees.	K5	CO5	7M
.,		OR			
		i) Illustrate the different appropriate problems for decision tree learning	ΚĄ	CO5	7M
	b	ii) Explore the concept of Learning Rules from Data and its relevance in machine learning.	K5	CO5	7M

III B.Tech II Semester Regular & Supple. Examinations, April-2025

	I	II B.Tech II Semester Regulär & Supple. Examinations, April-2025			
Sub Co	de:	R20CC3205 ADVANCED JAVA AND WEB TECHNOLOGIES	^		
Гime: 3	l hoi	[]			
		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70)	/I) KL	СО	M
Q.No		Questions Unit-I	IND		
		i)Distinguish between GenericServlet and HttpServlet and explain the life cycle	K4	CO1	77.4
	a	methods of Servlet.			7M
1		ii) Implement a servlet by extending HttpServlet.	K3	CO1	7M
1		OR	1 7	G01	
i		i) Explain the Deployment descriptor in detail.	K4	CO1	7M
	ъ	ii) Summarize in how many ways session tracking can be done in servlets.	K2	CO1	7M
		Describe the concept of Cookies.			
		Unit-II	1 22 / 1	G00	
		i)Illustrate all the directive elements in JSP through example code.	K4	CO2	7M
2	a	ii)Explain JSP standard action tags.	K4	CO2	7M
2		OR	 1		
	b	i) Explain any 5 implicit JSP objects.	K4	CO2	7M
		ii) Analyze what are the advantages of JSPs when compared with servlets.	K4	CO2	7M
		-Unit-III	-1" 1		
	а	i) Illustrate request, response and out JSP implicit objects.	K4	CO3	7M
3		ii) Determine how to pass the data between JSP pages using session object?	K3	CO3	7M
3		OR	-1 1		•
		i) Explain how to pass control and data between JSP pages.	K4	CO3	7M
	b	ii) Explain scope of JSP Objects.	K4	CO3	7M
		Unit-IV			
		i) Determine all the types of JDBC Drivers and explain.	K3	CO4	7M
	a	ii) Implement a JSP page to insert data into database table.	K3	CO4	7M
4		OR			
	Ī.	i) Sketch JDBC Architecture and explain in detail.	K3	CO4	7M
	b	ii) Implement a JSP page to retrieve the data from the database.	K3	CO4	7M
		Unit-V	·- <u>-</u>		
		i) Analyze PHP Associative Arrays and Multidimensional arrays	K4	CO5	7M
.	a	ii) Explain any 5 string functions in PHP.	K4	CO5	7M
5		OR		·	
		i) Implement PHP code to create a database in MySQL.	K3	CO6	7M

ii) Explain the concept of Form validation in PHP.

C06

7M

<u>K4</u>

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CC3206

BIG DATA ANALYTICS

Time: 3 hours

(SE, IT)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks $(5 \times 14 = 70M)$

ON	An Questions Carry Equal Matrix (5 A 14 - 7001)		1 66			
Q.No	Questions	KL	CO	M		
İ	Unit-I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	i) Explain about Google File System	2	1	7M		
	ii) Explain the following i) Job tracker ii) Task tracker	2	1 1	7M		
	OR OR					
	i) List and explain the important features of Hadoop	2	1	7M_		
	b ii) Build a distributed file system by installing hadoop in pseduo distributed mode	2	1	7M		
	Unit-II					
	i) With a neat diagram, explain the anatomy of Map Reduce job.	2	2	7M		
	ii) Write a Map-Reduce program to count number of words in a file	2	2	7M		
2	OR					
	i) Write an application to find the maximum temperature, using a combiner	2	2	71.4		
	b function for efficiency?			7M		
	ii) With a neat sketch explain the lpgical data flow for map reduce?	2	2	7M		
	Unit-III					
	i) Explain the working of spark with the help of its architecture	2	3	7M		
	a ii) Write about the element wise transformations and explain each with an	2	3	73.4		
3	example			7M		
	OR					
	i) Analyse the concept of RDD and state how we can create RDDs in	4	3	7M		
	b Apache spark			/1/1		
	ii) Explain different actions with examples on transformations	2	3	7M		
	Unit-IV					
	i) With a neat diagram explain the Pig architecture in detail?	2	4	7M		
	ii) Discuss about four types in its data model of Pig Latin?	2	4	7M		
	OR					
4	i) Consider the Departmental Stores data file (stores.txt) in the following	2	4			
	format customerName, deptName, purchaseAmount.			7M		
	b i) Write a Pig script to list total sales per departmental store.			/141		
	ii) Write a Pig script to list total sales per customer.					
	ii) Explain the operators supported in Pig Latin with examples	2	4	7M		
Unit-V						
	i) With a neat diagram explain the components of Apache Hive architecture?	2	5	7M		
5	11) Compare and contrast SQL and Hive QL.	4	5	7M		
ر	OR		- 1			
	b Discuss the Hive QL features.	2	5	7M		
	ii) Explain any three Hiveql commands with their syntax and example.	2	5	7M		

III B.Tech II Semeşter Regular Examinations, April-2025

Sub Code: R20CC3208

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours

CSE(DS), CSE(AIML)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5	$5 \times 14 = 70M$
------------------------------------	---------------------

		All Questions Carry Equal Marks (5 X 14 = 70M)	777	T ~~ T	1.5
Q.No		Questions Unit-I	KL	CO	M
		i)Explain the characteristics of Algorithm	K2	1	7M
1	a	111	K2	1	
1		ii)Describe time and Space complexity	N2 	1	7M
_		OR OR	TZO	1 4 "	
	Ь	i) Illustrate asymptotic notations and derive asymptotic notations for	K2	1	14M
	ט	$f(n)=3n^2+4n+1$			1-1141
	<u> </u>	Unit-II		·	
l		i)Explain the control abstraction of Divide and conquer	K2	2	7M
	a	ii) Apply the algorithm with an example 310,285,179,652,351, 423,861,254	K3	2	71.4
2	l	,450, 420. Write an algorithm for Merge sort Algorithms.			7M
		OR			1
		i)Describe Strassen's matrix multiplication	K2	2	7M
	b	ii)Write algorithm for Merge Sort		2	7M
		Unit-III	<u> </u>		
	a	Explain Greedy fractional knapsack problem for the following data bag	K4	3	
		capacity m=20, n=3 (m1,m2,m3)=(18,15,10) and (p1,p2,p3)=(25,24,15).			 14M
					1-4141
		Find the optimal solution		<u> </u>	
		OR	772		 -
	ь	i) Apply Prism algorithm for the following graph?	K3	3	
3					
		(1) 28		-	
		10/ 14/2/16			14M
	"	(6) (7) (3)			' ' ' '
1		25 24/18/12			
		22 (4)			[}
	_	Unit-IV		1 4	1
		i) Find the minimum number of operations required for matrix	K4	4	1
	a	multiplication using dynamic programming.			14M
,		A(4x3) * B(3x5) * C(5x3) * D(3x6)			
4		OR	i	·	<u> </u>
	<u> </u>	1 1	K4	1 4	I
	h	i) Construct an optimal binary search tree for the following data: n=4,	14	"	14M
	b	(a1,a2,a3,a4)=(do, if, int, while), p(1:4)=(3,3,1,1) and q(0:4)=(2,3,1,1,1).			
L					

		Unit-V	<u> </u>		1
		i) Write the algorithm for N queens problem using backtracking	K2	5	7M
_	a	ii)Explain graph coloring problem with suitable example	K4	5	7M
3		OR		<u> </u>	
	h	i)Describe 0/1 knapsack problem using Branch and Bound	K2	5	7M
	b	ii)Illustrate Hamiltonian Cycle	K2	5	7M

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CE3201

DESIGN AND DRAWING OF STEEL STRUCTURES

Time: 3 hours

(CE)

Max. Marks: 70

Answer any ONE Question from Part - A & Any THREE Questions from Part - B

Q.No	Questions	KL	СО	Marks
	PART A		<u> </u>	<u> </u>
1	Design a gantry girder for an industrial building to carry an electric overhead traveling crane with the following data. Crane capacity is 300 kN. Weight of crane excluding crab is 200kN. Weight of crab is 5 kN. Span of crane between rails is18 m. Minimum hook approach is 1.0 m. Wheel base is 3.0 m. Span of gantry girder is 9 m. Weight of rail section is 30 kg/m. Assume any missing data. Draw to scale the cross section and longitudinal section.	3	5	[28M]
	OR	!	<u> </u>	<u></u>
2	Design a column of effective length 6 m. It is subjected to a factored axial compressive load of 2100 kN. Provide two channels back to back connected with battens by site welded connection. Draw to scale the cross-section and sectional elevation of the column with batten details.	3	4	[28M]
	PART B	<u> </u>		
3	a) Write the Advantages and disadvantages of steel structures(7m) b) Design a connection to joint two plates of size 200 mm x 10 mm of grade Fe 410 to mobilize full plate tensile strength using shop fillet welds if (i) a lap joint is used (ii) a double cover butt joint is used. (7m)	3	1	[14M]
4	Design a compression member of two channels placed toe-to-toe. The length of the compression member is 2m and carries a load of 1500kN The width over the backs of channels is 450mm. The channels are connected by double lacing. Sketch the cross-section of the column.	3	2	[14M]
5	Design a beam of span 5.0 m 6 m and 5.0 m carrying a total uniformly distributed load of 30 kN/m and laterally unrestrained with a bearing length of 100 mm	3	3	[14M]
6	Design the suitable slab base for a column having one and two cover plates of 350 mm x 25 mm. The column carries an axial load of 2400 kN. Assume the permissible baring stress for slab base as 1890 kg/cm2.	3	4	[14M]
7	of 200kN. Design a suitable section for the member as per IS specifications. Design the section as two angles placed back to back of a gusset plate.	3	5	[14M]
KL: Bloc	oms Taxonomy Knowledge Level CO: Course Outcome M:Marks		- <u>, </u>	

NEC ENGINEERING COLLEGE

III B.Tech II Semester Regular & Supple. Examinations, April-2025

inh Co		R20CE3202 ENVIRONMENTAL ENGINEERING			
Time: 3		rrs (CE) Max. Marks; 70			
		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)	KL	co	M
Q.No		Questions Unit-I	KL	60	141
-	 		K2	C01	7M
	a	i) Explain in detail about the population forecasting methods.	K2	C01	7M 7M
		ii) What are the fluctuations in water demand?			/14/
1	 	OR OR	770	CO1	7 <u>M</u>
	_	i) Write in detail about the water quality standards.	K3 K1	C01	7M
	b	ii)List out the factors affecting per capita water demand.	12	COI	1141
	╁┷	Unit-II			
	\Box	i) Explain the different mechanisms of filtration.	К3	C02	7M
	a	ii) What are the components of a water supply system? Explain in detailed.	K 1	C02	7M
2		OR			
		i) What is the purpose of coagulation? List out four coagulants used in treatment of water.	K2	C02	7M
	b	ii) Describe with a neat sketch the working of a pressure filter.	K1	C02	7M
		Unit-III			
,		i) Explain in detail the Ultimate disposal of sewage	K2	C03	7M
			K3	C03	7M
3	a	ii))For a waste water sample, the 6 day BOD at 20°C is 220 mg/l and is 76% of the ultimate. What will be 5-day BOD at 30°C.			
3	-	OR			
		i) Explain self-purification of rivers in detailed with neat sketch.	K2	C03	7M
	b	ii) Write about Collection and conveyance of sewage	K2	C03	7M
	1-	Unit-IV	V 7 4	<u> </u>	1 73.6
	-	i) Explain the design and working principles of septic tank.	K4	C04	7M
4	a		К3	C04	7M
4	-	OR			
	-	i) Describe in brief about oxidation ditches	K2	C04	7M
	b	ii) Prove that depth is not a theoretical criterion in designing a plain sedimentation tank.	K2	C04	7M
	-}-	Unit-V			
	-	i) Explain about the low cost waste treatment methods.	K4	C05	7M
	a	ii) Explain the principal and working of the Activated Sludge Processes.	K2	C05	7M
5	\vdash	OR	T	1	1 ====
	-	i) What do you understand by digestion of sludge?	K4	C05	7M
	t		K2	C05	7M

III B.Tech II Semester Regular&Supple. Examinations, April-2025

Sub Code: R20CE3203

HYDROLOGY AND IRRIGATION ENGINEERING

Time: 3 hours

(CE)

Max. Marks: 70

Note: Answer All FIVE Questions.

				A11.0				y Equal	-	•		70M)						
Q.No				Ang	<u>zucstr</u>	113	Jun	Questi		(0 22	. 1-1	, 0111)				KL	CO	M
		<u>J </u>				<u></u>	1			it-I						· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		i) Explain the cycle.	e stor	age a	nd tra	ans	port	ation c	ompon	ents u	sing !	Horto	n's H	ydrol	ogical	2	1	4M
1	a	ii) The average 41 and 55 cm How many ac	. If th	ie erro	or in t	he	esti	mation	of basi	n rain	fall s	hould				3	3	10M
		110W Indity at	IGICIO	nui io	in gu	1	1 51.	outu o		R						<u> </u>		
		i) List the im	nortai	nce of	f hydi	old	igy y	with en			obal v	vater:	availa	bility		2	1	7M
	b	ii) Describe to curves.														3	2	7M
		<u> </u>				1	1			it-II								
		i) What are infiltrometer						g the	infiltr	ation?	Exp	olain	the	doubl	e-ring	2	1	7M
	a	ii) What is th	ie eva	aporat	ion i	f 4	.80 1	itres of	f water	is re	move	d fron	n an e	evapo	ration	3	3	7M
2	ļ	pan of 1.22 m	and	the si	multa	ıne	ous:	rainfall	measu	reme	nt is 9	.0 mn	1?					
										R	_							
		i) What do yo														2	1	7M
	b	ii) Define eva	•	, -	ation.	E	oplai 	n in br			meter	methe	od' of	estin	nating	2	1	7M
							<u> </u>			t-III								T === =
		i) A 6 hour s successive or	e ho	ur inte	ervals	o,	er a	basin	of 800	sq. k	m. If					4	3	7M
	a	observed to b																ļ
	ii) Define Hydrograph. With neat sketch explain component parts of hydrograph.									2	4	7M						
	OR									r		· · · · · · · · · · · · · · · · · · ·						
3		i) Define the flow.		_												2	1	8M
		ii) Given the	ordi	nates	of a	4-ի	our	unit hy	drogra	ph. D	erive	the o	rdinat	es of	a 12-	4	3	6M
	ь	hour unit hyd		-							_				_			
	ן ט	and the corre	,											,				
		Time (hrs)	0	4	8		2	16	20	24	28	32	36	40	44			
		Ordinates of 4-h UH (cm³/s)	0	20	80		30 	150	130	90	52	27	15	05	0			
										t-IV							_	
4		i) Distinguish aquifers were	fou	nd to	be co	շոր	ecte	d by a	water-	beari	ng str	atum,	whic	h is 3	32 km	4	5	7M
4	a	apart. The the gradient between stratum. It to	veen	the a	quife	r įs	s 0.2	2 m/km	ı. Dete	rmine	the	transn	nissib	ility	of the			
	<u></u> .	stratum.				4	1	_								<u> </u>	<u> </u>	<u> </u>

		ii) A well penetrates into an unconfined aquifer having a saturated depth of 50m.	4	5	7M
		The discharge is 250 lpm at 8m drawdown. What would be the discharge at a 10m			
	1	drawdown? The radius of influence in both cases may be taken as the same.		ıł.	
		OR		Ĵ	
		i) Describe the recuperation test for the estimation of the yield of an aquifer.	2	5	5M
	Ь	ii) State and explain Darcy's law. Calculate the seepage velocity for the following	; 3	5	9M
	ן ט	data: Time taken for a tracer to move from one well to another 25 m apart is 5			
		hours, the porosity of the aquifer is 20% and head loss during travel is 0.5m.		i	
		Unit-V		1	
		i) Explain the various types of irrigations and efficiencies.	2	Ī	7M
		ii) The gross commanded area for a distributor is 20000 hectares. 75% of which can	4	Ī	7M
		be irrigated. The intensity of irrigation for the Rábi season is 40%, and for the		- 1	
	a	Kharif season 10%. If the Kov period is four weeks for Rabi and 25 weeks for			
		Kharif. Determine the outlet discharge. Outlet factors for Rabi and Kharif may be			
5		assumed as 1800 hectares/cumecs and 775 hectares/cumec. Also, calculate the delta			
3		for each crop.			
		OR			
		i) Explain the benefits and ill effects of irrigation.	2	1	7M
		ii) After how many days is water supply required to ensure a good yield if the field	3	1	7M
	b	capacity of soil is 30%, the permanent wilting point is 12%, the density of soil is			
		1.4g/cc, the effective depth of root zone is 80cm, daily consumptive use if 15mm			
		and readily available moisture is 85% of available moisture.			

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

2

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20CE3204

FOUNDATION ENGINEERING

Time: 3 hours (CE) Max. Marks: 70
Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)

		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70			1
Q.No		Questions	KL	CO	M
		Unit-I			
	a	Describe the wash boring method of advancing a bore hole. What are its advantages and limitations?	2	I	141
		OR	1	· · · · · · · · · · · · · · · · · · ·	
1	\vdash	Distinguish between i) Undisturbed and Disturbed Samples ii) Area Ratio and Inside	2	1	7M
	l	Clearance iii) Core Recovery			
	b	ii) Describe the procedure for conducting a standard penetration test (SPT). What are	2	1	7M
	1	the corrections to be applied?			
<u> </u>	1	Unit-II			
		How do you distinguish a finite slope from an infinite slope? What are the various	2	2	14N
	a	types of failures that are likely to occur in finite slopes? Under what circumstances do			
2		they occur? Explain with sketches.			•
		OR			
	一	i) Explain Taylor's Stability Number	2	2	7M
	b	ii) Discuss stability analysis by Swedish arc method	2	2	7M
	T	Unit-III			
		i) Write about a)Bearing capacity b)Ultimate bearing capacity	2	3	7M
	a	ii) Explain about "Terzaghi" Theory used in Bearing Capacity evaluation of soils.	2	3	7M
		OR			
2		i) Determine allowable load carrying capacity of a Circular footing of 3m diameter	3	3	7M
3		installed in medium sand ($\gamma = 1/8$ kN/m ² , γ sat = 19 kN/m ² N =25) deposit at a depth			
	١,	of 1.5 m below ground level if i) permissible settlement should not exceed 30mm and			ł
	b	ii) factor safety against shear failure in soil should be 2.5. The ground Water table is			
		at 1m below ground level.			
		ii) Write the factors influencing tlearing capacity	2	3	7M
		Unit-IV			
		i) Differentiate Between "Safe Bearing Capacity" and "Allowable Bearing Capacity".	2	4	7M
		Describe a field test used in determination of allowable bearing capacity of			
	a	foundations.			
		ii) Write the different types of foundation and their determination	2	4	7M
4		OR			
		Determine the consolidation settlement of a square footing of size 2m x 2m	3	4	14N
		transmitting a load of 250kN, founded at a depth of 1.5m below ground level in a	}		
	b	saturated clay deposit (Liquid Limit =42%, NMC=28%, G=2.70, γ sat = 20kN/m ³).			
		The water table is at ground surface and the saturated clay deposit is 6m thick and			
		underlain by bed rock. The clay deposit is over consolidated.			<u> </u>
		Unit-V			
		i) What is the basis on which the dynamic formulae are derived? Mention two well-	2	5	7M
	a	known dynamic formulae and explain the symbols involved?			
_	"	ii) Discuss the construction aspects of well foundation. What are the tilts and shift?	2	5	7M
5		What are the remedial measures to control these?			
		OR			
	Ь	i)What are the various components of a well foundation? Discuss them in detail.	2	5	7M
	"	ii)State the problems associated with well sinking and its remedial measures	2	5	7M
·	ا				

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20EE3201

MICROPROCESSOR AND MICROCONTROLLERS

Time: 3 hours

(EEE)

Max. Marks: 70

Note: Answer All FIVE Questions.

A 11 🛆	_ `	
All Cluctions	Carry Equal Marks	
***** Anconone	Carry ramai Marke	(E V 11 - 70xx)
	THE POUNT INITIAL	13 A 14 - /111VII

Q.No	,	Am Questions Carry Equal Marks (5 X 14 = 70M)			
	\dashv	Questions	KL	CO	M
	-	i)Present the physical and III			
	a	i)Present the physical memory organization of 8086 with neat diagram and explain.	K3	CO2	7M
1		ii)Categorize the names of all the registers present in 8086 and explain the purpose of each and every register.	K4	CO2	7M
	<u> </u>	OP			
	Ь	i)Explain the architecture of 8085 microprocessor with neat diagram.	K4	Tool	77.4
<u> </u>	-	ii) Summarize the architecture of Pentium processor.	$\frac{K4}{K2}$	CO1	7M
	 	I Init. II	NZ	CO1	7M
2	a	Distinguish between maximum mode and minimum mode operations of 8086 and explain the pin configuration of 8086 in detail.	K4	CO2	14M
	ļ	OP		<u> </u>	
}	Ь	i) Explain all the addressing modes of 8086 in detail	K4	T CO2	1 = 2 =
<u> </u>	∔	ii) Sketch the memory read cycle for 8086 in minimum mode.	K3	CO3	7M
	<u> </u>	I Init-III	<u></u>	CO3	7M
	a	i) Interpret what is Assembler Directive and explain any 7 assembler directives of 8086.	K2	CO3	7M
3		ii) Explain Data Transfer instructions and Arithmetic instructions of 8051.	K4	CO5	7M
	<u> </u>	OR -	1 18-	_ CO3	/IVI
	b	i)Implement program to copy a block of 10 bytes of data from 35H to 60H in 8051 microcontroller.	K3	CO5	7M
	 -	ii)Implement an assembly language program for 8086 to add two numbers.	K3	CO3	7M
	┝╌┰		<u> </u>		- / 1/1
	a	i)Explain different modes of operation of 8255.	K4	CO4	7M
4	— <u> </u>	ii)Explain the working of 8257 DMA Controller with neat diagram.	K4	CO4	7M
		Explain Programme 11 X			
	b	Explain Programmable Interrupt Controller 8259 in detail with neat diagrams.	K4	CO4	14M
ļ	- -	Charles Unit-V	<u>l</u>		
5	a	Sketch the Architecture of 8051 micro controller and explain in detail.	K3	CO2	14M
, l		OR			1.4141
ĺ	b -	i)Explain the memory organization of 8051 in detail.	K4	CO2	7M
KI · Bloc	ns To	ii)Interpret the interrupt structure of 8051. xonomy Knowledge Level CO: Course Outcome M:Marks	K2	CO2	7M
יירי סומטו	112 I g	xonomy Knowledge Level CO: Course Outcome M.Marke			7 4 7 4

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20EE3202

POWER SYSTEM ANALYSIS

Time: 3 hours

(EEE)

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No	Questions	KL	CO	M
<u> </u>	Unit-I		· ·	
	i) What are the advantages of per unit system? ii) A 40 MVA, 20 / 400 kV single phase transformer has the following impedances. Zp = 0.9 + j1.8 onms and Zs = 128+j288 ohms. Find:	K1 ng K2	1	7M 7M
•	i. p.u impedance of the transformer referred to HV ii. p.u impedance of the transformer referred to LV.			
1	OR	77.1	1 -	773.4
1	i)Discuss how to form Y Bus by direct inspection with a suitable example	K1	2	7M 7M
	b The Y _{bus} of a 3 bus system is given by $ Y_{bus} = \begin{bmatrix} -j10 & j5 & j5 \\ j5 & -j10 & j5 \\ j5 & j5 & -j10 \end{bmatrix} $	K2	2	/1/1
	A shunt capacitor of admittance j0.5 pu is connected at bus 3. Find the modifi Y _{bus} matrix.	ed		
	Unit-II		1 0	73.6
2	i) How do you classify the buses in power system and what is its necessity. ii) What are the assumptions in static load flow equations and derive approximate load flow equations.	he K2	3	7M 7M
2	OR		<u> </u>	
	b i) Explain the formulation of Newton Raphson load flow method in polar form Derive the equations to determine elements of Jacobian matrix in this case	n. K2	3	14M
	Unit-III			
	i) What is the importance to study the short circuit analysis? Discuss the possible causes of short circuits in the power system	K2	4	7M
3	ii)Determine short circuit MVA at the bus bars of a generating station 5 MVA and other station is 200 MVA. The generated voltage of each station is kV. Also find the possible short circuit MVA at each station when they a linked by an inter connected gable with a reactance of 0.6 Ω	12	4	7M
	OR			
	i) What are symmetrical components? Explain the symmetrical components transformation.	ent K2	4	7M
	b ii) In an unbalanced three phase system, phase current $I_a=1 \ge 90^{\circ}$ p.u, negative sequence current $I_{b2}=4 \ge 150^{\circ}$ p.u, zero sequence current $I_{co}=3 \ge 90^{\circ}$ p.u. Calculate the magnitude of phase current I_b		4	7M
	Unit-IV			
4	i) Derive an expression for the positive sequence current Ia ₁ of an unload generator when it is subjected to a double line to ground fault.	led K2	4	7M

		ii) For the system shown in figure. A LLG fault occurs at point F. Find fault current	K2	4	7M
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		OR		<u></u>	1
		i) Derive an expression for the fault current for a line-to- ground fault at an unloaded generator.	K2	4	7M
		ii) A 50 MVA, 11 kV, 3 phase alternator was subjected to different types of	K3	4	7M
		faults. The magnitude of the fault currents are as below		į	
	b	Three phase fault: 1870 A		3	
		Line to line fault: 2590 A		Ì	
		Single line to ground fault: 4130 A			
		The neutral of the alternator is solidly grounded. Calculate the negative sequence reactance of the alternator			
	+	Unit-V			<u> </u>
		i) Define power system stability and explain how it is classified based on the	K1	5	7M
! 		nature of disturbance.	12.1	J	/141
	a	ii) What is power angle curve? Derive the necessary equation and show that the	K2	5	7M
5		criterion for system to be steady state stable is $\frac{d\delta}{dp} > 0$			
,		OR			
		i)Derive the swing equation for a single machine connected to infinite bus	K2	5	7M
		system. State the assumptions if any and state the usefulness of this equation.			
	b	Neglect the damping			
•		ii) Discuss the various methods for improving steady state stability and transient stability	K2	5	7M

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20EE3203

MEASUREMENTS AND INSTRUMENTATION

Time: 3 hours

(EEE)

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

		All Questions Carry Equal Marks (3 X 14 - 70W)	TZT	$\overline{\alpha}$	14
Q.No		Questions	KL	CO	M
		Unit-I	K2	1	7M
	a	i) Illustrate briefly about different types static errors in a measuring instrument.		- 	7M
1		ii)Explain briefly the different types of Digital Voltmeters.	K1	1	1101
1	<u> </u>	OR OR	170	1 1	71.1
	ь	i) Explain briefly about the dynamic characteristics in a measuring instrument.	K2_	1	7M
		ii) Explain briefly about accuracy and precision in a measuring instrument.	K2	1	7M
		Unit-II	Τ		
	a	i) Illustrate the working principle of a single phase induction type energy meter	К3	2	14M
2	a	and aslo derive torque equation			
		OR	T		
		i) Explain the working of a 3 phase dynamometer wattmeter.	K1_	2	7M
	b	ii)Illustrate in detail about instrument transformers.	K2	2	7M
		Unit-III			
		i) Explain briefly the procedure for determining the unknown resistance with	K3	3	7M
		the help of kelvin's Double bridge.	15.5		7111
Ì	a	ii) Resistances of the ratio arms of a Wheatstone bridge are 300 Ω and 30 Ω .			
		The fourth arm is connected to an unknown resistor. Find the value of the	172	3	7M
3		unknown resistance if the third arm has a resistance of 250Ω in a balanced	K3)	/MI
		condition?			
	-	OR	.1	,	<u> </u>
		i) With the help of circuit diagram explain how unknown inductance value can	770		73.4
	Ъ	be determined using Maxwells inductance bridge?	K2	3	7M
	"	ii)Explain in detail about the grounding techniques.	K2	3	7M
	-	Unit-IV		<u> </u>	!
		i) Explain the major parts of CRT with a block diagram.	K1	4	7M
ļ	a	ii)Discuss in detail about Data loggers.	K1	4	7M
	<u> </u>	OR			, , <u></u>
4	-	i)Illustrate briefly the working principle of a Cathode ray oscilloscope.	K2	4	7M
ļ	1	ii)Write a short note on	- :	 	, , , , ,
	Ъ	1 '	K2	4	7M
		a) Digital plotters	I KZ	-	/11/1
		b) Recorders	· -	_l	<u> </u>
1	<u> </u>	Unit-V	K2	5	7M
	a	i) Explain briefly the working principle of resistive pressure transducer.		5	7M
5		ii) What is hall effect? Explain the working principle of a hall effect sensor.	K3	1 3	LIVI
'		OR	770	ح ا	73.4
	Ь	i) Explain the working principle of a capacitve transducer.	K2	5	7M
	"	ii) What is transducer? Briefly explain the procedure for selecting a transducer	K1	5	7M
		The dealer Level CO: Course Outcome M. Marks			

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20EE3205 ELECTRIC DRIVES

Time: 3 hours (EEE) Max. Marks: 70

Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)

	- 17	ote: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)							
Q.No	<u> </u>	Questions	KL	CO	M				
		Unit-I		 					
		i)How can you differentiate active and passive load torques? Compare these two	1	1	7M				
	a	torques			53.4				
_		ii)List out the advantages of electric drive. What is the concept of load equalization?	2	1	7M				
I		OR							
		i) What are the advantages of electric drives than mechanical drives? With a neat	1	1	7M				
	Ь	block diagram, explain different components of an electric drive.		<u> </u>					
		ii)What are the advantages of electric braking? Explain the dynamic and plugging	2	1	7M				
	├	electric braking methods. Unit-II		<u> </u>					
	<u> </u>	With the help of waveforms, explain in detail about single phase fully controlled							
		rectifier control of DC separately excited motor in continuous and discontinuous	2	2	14M				
	a	conduction mode			1-7141				
2	<u> </u>	OR		L					
<u> </u>	\vdash	i)Explain the operation of dual converter controlling the separately excited DC							
		motor.	2	2	7M				
	b	ii)Draw and explain the speed-torque characteristics at different firing angles for a							
		fully converter feeding a DC series motor.	2	2	7M				
	一	Unit-III		l					
		i)Explain the four-quadrant operation of dc drive using chopper	2	3	7M				
		ii)A 220 V, 1500 rpm, 2 kW dc separately excited motor has the armature resistance							
		and inductance of 1 Ω and 50 mH respectively. It is controlled by a chopper. The							
^	a	chopper operating frequency is 400 Hz at a load whose torque is proportional to the	3	3	7M				
3		speed. At \$=0.9, the motor runs at 1320 rpm. What will be the value of \$ and the							
	İ	current ripple at 1000 rpm?							
		OR							
	ь	i)Explain the operation of a two-quadrant class-A separately excited dc motor drive	3	3	14M				
	<u> </u>	along with output waveforms and speed-torque characteristics	<u>, </u>		1.4747				
		Unit-IV							
		i)What are the disadvantages of using AC voltage controllers when they are used in	1	4	4M				
		induction motor control?	<u> </u>	·					
		ii)A 440V, 3 phase, 50Hz 6 pole 945 rpm delta connected induction motor has the							
	a								
		4W. When driving a fan load at raied voltage, it runs at rated speed. The motor speed	4	4	10M				
		is controlled by stator voltage control. Determine motor terminal voltage, current and							
4		torque at 600 rpm							
-	<u> </u>	OR			<u>.</u>				
		i)Explain the slip-power recovery scheme of induction motor using commutator-less	2	4	7M				
	'	Kramer drive.							
	L	ii) A three-phase, 440 V, 50 Hz, 6 pole Y-connected induction motor is driving 300 N.m constant torque load. The motor has rotational losses of 1 kW. The motor is							
	b	driven by a slip-energy recovery system. The triggering angle of the dc to ac	4	4	7M				
						converter is adjusted to 1000, Calculate: (i) motor speed (ii) rotor RMS current (iii)	7	4	1141
		stator RMS current, and (iv) power returned back to the source.							
	Щ	States Party Carrent, and (14) power retained back to the source.							

		Unit-V						
5		i)Explain closed-loop speed control of self-controlled synchronous motor drive fed from voltage source inverter	2	5	7M			
	a	ii)Describe the merits and demerits of separate and self-control operations of synchronous motor	3	5	7M			
	OR							
	b	i)Explain in detail the basic operation of permanent magnet synchronous motor	2	5	7M			
		ii)Explain the advantages of the self-control scheme of synchronous motor?	, 2	5	7M			

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20ME3201

DESIGN OF MACHINE ELEMENTS-II

Time: 3 hours

(ME)

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

		All Questions Carry Equal Marks (5 X 14 = 70M)	TPT		·				
Q.No		Questions	KL	co_	M				
	Unit-I								
		i) Define Bearing Modulus. Derive the expression for bearing modulus and		gc.	l				
	a	explain its significance in the design of journal bearings.	K3	C01	7M				
		"'C P II' C + API - A - API - A - API - A - API - A - API - A - API - A - API	77.2						
		ii) Compare Rolling Contact Bearings and Sliding Contact Bearings.	K3	CO1	7M				
		Discuss their advantages, disadvantages, and applications.							
1		OR							
		A full journal bearing and a partial journal bearing are subjected to the same							
		load and speed conditions. Compare the power loss due to friction in both	К3	CO2	14M				
	b	cases, given that the coefficient of friction in the full bearing is 0.0025 and							
		in the partial bearing is 0.0018 Shaft diameter is 50 mm and speed is 1500							
		rpm. Assume bearing length = shaft diameter.							
	Unit-II								
		i) Discuss the various forces acting on a connecting rod during engine							
		operation. Include inertia forces, gas pressure forces, and explain how these	К3	CO2	7M				
		affect the design.							
	a	anect the design.							
		ii) Describe the role of a crank and crankshaft in an IC engine. With a neat							
2		sketch, explain the crank mechanism and how motion is transmitted.	K3		7M				
	OR								
		At a certain instant, the pressure on the piston is 2 MPa and the crank angle							
	b	is 30°. The cylinder bore is 80 mm, and crank radius is 60 mm. Design a	К3	CO3	14M				
		connecting rod.							
	-	Unit-III	1						
		· · · · · · · · · · · · · · · · · · ·	<u> </u>						
	а	i) Discuss the materials used for manufacturing pistons. Justify your selection based on thermal conductivity, strength-to-weight ratio, and wear	K3	CO3	7M				
		111							
}		resistance. Compare aluminium alloy and cast iron pistons.							
		ii) What are piston rings? Discuss the material used, number of rings			7M				
_			K3						
3		required, and how they are fitted.			<u></u>				
	OR								
	b	i) Calculate the thickness of a cylinder wall for a liner made of cast iron	К3	CO3	14M				
		and design the cylinder for the following data							
		Given: Maximum pressure = 5 MPa, Bore = 90 mm, Allowable tensile stress							
		= 70 Mpa. Reboring allowance = 2 mm							
			<u> </u>		ļ <u>.</u>				
		n #							

		Unit-IV	·		
	a	i) Explain the difference between curved beams and straight beams in terms of stress distribution. List real-world applications where curved beam theory must be used over straight beam theory.	К3	CO4	7M
4		ii) Discuss important design considerations in curved beams under load.	K3	CO4	7M
7		OR	1	1 001	J
	ь	 i) A curved beam has a circular cross-section of 50 mm diameter. The inner radius of curvature is 75 mm. It is subjected to a load of 10 kN at the free end. Calculate the maximum stress using the curved beam formula and find the location of the neutral axis. 	К3	CO4	14M
_		Unit-V	!	<u> </u>	1
5		i) Discuss the factors that affect the selection of belt drives in power transmission. How do load, speed, distance between shafts, and service conditions influence the choice?	К3	C05	7M
	a	ii) List and explain at least five advantages and five disadvantages of belt drive systems compared to other mechanical transmission systems like gears or chain drives.	К3	CO5	7M
		OR		<u> </u>	
	h	A rope drive transmits 40 kW at 500 rpm using a pulley of 1.5 m diameter. Angle of contact = 160°, Coefficient of friction = 0.28 Max tension per rope = 1200 N	К3	CO5	
	b	Calculate: a) Power transmitted per rope b) Number of ropes required (Use appropriate formula for rope tension ratio and power)			I4M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

2

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20ME3202

HEAT TRANSFER

Time: 3 hours

(ME)

Max. Marks: 70.~

К3

CO₂

7M

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No		1 1 2001	Questions	· · · · · · · · · · · · · · · · · · ·		
	 	The state of the s	Unit-T	KL	CO	M
)	n n	Perive the general conduction	on equation for Cylindrical co-ordinates, the	. r _ 1 29.2	<u> </u>	
	a svste	em being with uniform best	generation and unsteady state.	, KA	CO1	14M
1		indicate in the	generation and unsteady state.	1 2 2 2 2		14171
	i) A	Spherical container of ped	gible thickness holding a hot fluid at 140%	el areamanna		
1.	1 . 2 15001113	HAVING AN OUTER dismotor o		1 1/20 50 70		* 30,
,	50m	m thick insulation of k := 0	0.04 m/s instituted with three layers of each 0.02 , 1.02 ,	rintisi.		, <u></u>
	b from	rinside). The outside surface	$4.027 \text{ K}_2 = 0.06$ and $4.5 = 0.16 \text{W/mK}$ (starting) temperature is 30°C . Determine:	[3(K3)0	ÇQ1	7M
	(i) th	e heat loss, and (ii) Interface	temperatures of insulating layers.	gring ?		
ľ	ii) A	nalyze the concept of critic	al radius of insulation and on the	THE ST WITHOUT		
	the e	quation for a cylindrical sys	al radius of insulation and apply it to derive temperati rotom again and ice difference	"K2"	CO1	7M
\$ 10° 5				* 42.254 in.45	1.5	
£ * ·	i) De	Prive the expression for tem	AND THE PROPERTY OF THE PROPERTY OF THE PARTY		7	1. x2x
	straig	ght fin with a rectangular pro	frid assuming insulation at the fin's tip.	17K4	CO2	7M
· •/-		*** CHE CICCISC VIII RIFIED VERSING	[83] [12] [13] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2		## A A	
•	a a fun	nace at 820°C with local hea	transfer coefficient of 140W/m2K; Calculate	urahi		ļ
	i inicin	mie redmien tot me axis tei	inderature to reach 800 C. Alco calculate Alco	4 160 L		हैं हैं अर्थक स्मृति के इ.स.च्या के स्मृति कर
~** : _	1 (0.532	Sharring ectiviber arme at 190	rus or 5:4 cm.	i wou	[CO23 (⊌7 M ! 4
2	α ≒ 6	$11^{12} \times 10^{-6} \mathrm{m}^2/\mathrm{s}, k = 21 \mathrm{W/m}$				
	7 H 3 155		°OR «		12	
	i) De	rive an expression for temp	erature as a function of time 't' in lumped	- ,		• • •
	ויווכמנינ	LODOLIEV SYSTEM "Y	. •	K2	CO2	7M
	b ii) A	long fin of 10mm diam	eter made of steel (thermal conductivity,	1	<u> </u>	
	115	initial is anached to a lile	HP AT 2001 and extende to comment the con-			
İ	. ب _ا يور	Mini a convective tiest tran	isfer coefficient of 20W/m K. Find the heat	КЗ	CO2	7M
	110M-1	rate through the fin.	N. S.	-	ı	
}	133 75	1.2.1.1.1	Unit-III.	1		
	i) EXI	plain hydrodynamic and the	mal boundary layers with neat sketch. Also	7,,		
İ	Sivc r	erevalit expressions.	· · · · · · · · · · · · · · · · · · ·	K1	CO3	7M
]	пр А	vertical plate measuring 18	0mm × 180mm and at 50°C is exposed to		- 	 -
j	a l aumos	pullie at 10 C. Compare the	free convection host transfer from 1 . "	İ	1	
ľ	Mini t	mar winch would result du	e to forced convection over the place at	К3	CO3	7M
3	ACTOCI	ction boundary layer.	imum velocity which would occur in free	1	-	
}	Leonve	cuon boundary layer.				
}	DDeii	vo an advation for free	OR			
	Nu = 4	C(Pr.Rem)	ection by applying dimensional analysis.	K2	COD	73.6
1	1 22 A	S(II -RC)		1/2	CO3	7M

ii) A vertical pipe 80mm diameter and 2m height is maintained at a constant temperature of 120°C. The pipe is surrounded by still atmospheric air at 30°C.

Find heat loss by natural convection.

				- 1	
	<u> </u>	Unit-IV			
		i) What do you understand by the term forced convection? Explain its mechanism in detail.	K4	СОЗ	7M
	a	ii) A plate 20cm height and 1m wide is placed in air at 20°C. If the surface of the plate is maintained at 100°C calculate the boundary layer thickness and local heat transfer coefficient at 10cm from the leading edge. Also calculate the average heat transfer coefficient over the entire length of the plate.	К3	CO3	7M
4		OR			
		i) Derive an expression for LMTD in a parallel flow double pipe heat exchanger.	K4	CO3	7M
	b	ii) A counter flow heat exchanger is employed to cool 0.55 kg/s (C _p = 2.45kJ/kg ⁰ C) of oil from 115°C to 40°C by the use of water. The inlet and outlet temperatures of cooling water are 15°C and 75°C, respectively. The overall heat transfer coefficient is expected to be 1450W/m ² K. Using the NTU method, calculate the following: (i) The mass flow rate of water, (ii) the effectiveness of the heat exchanger and (iii) the surface area required.	КЗ	CO3	7M
1	<u> </u>	Unit-V			
1		i) Discuss the regimes of Pool boiling curve in detail.	K2	CO4	7M
	a	ii) Saturated steam at a temperature of 65°C condenses on a vertical surface at 55°C. Determine the thickness of the condensate film at locations 0.2 m and 1.0 m from the top. Also calculate condensate flow rate at these locations.	КЗ	CO4	7M
		OR		!	
5		i) Derive an expression for the shape factor in case of a radiation exchange between two surfaces.	K2	CO5	7M
	b	ii) Two large parallel planes with emissivities of 0.3 and 0.5 are maintained at temperatures of 527° C and 127°C respectively. A radiation shield having emissivities of 0.05 on both sides is placed between them. Calculate (i) Heat transfer rate between them without shield. (ii) Heat transfer rate between them with shield.	. КЗ	CO5	7M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20ME3203	DYNAMICS OF MACHINERY	
Time: 3 hours	(ME)	Max. Marks: 70

Time:	3 ho	ours (ME)	Max. Marks	s: 70		
		Note: Answer All FIVE Questions. All Questions Carry Equal I				
Q.No		Questions		KL	CO	M
		Unit-I				
		i) Derive the expression for angle of heel of a two-wheeler while	e taking a turn.	3	1	5M
		ii) The turbine rotor of a ship has a mass of 20 tones and a ra		3	1	
	ľ	Its speed is 2000 rpm. The ship pitches 6° above and below th				
		One complete oscillation takes 18 seconds and the motion			•	
	a	Determine (i) the maximum couple tending to shear the hold				9M
		turbine (ii) The maximum angular acceleration of the ship	-			
		direction in which the bow will tend to turn while, if the ro				
		clockwise when looking from rear.				
1		II OR				
		Each wheel of a four wheeled rear engine automobile has a mo	ment of inertia of 2.4	3	1	
		kg-m ² and an effective diameter of 660 mm. The rotating par				
		moment of inertia of 1.2 kg-m ² . The gear ratio of engine to b				
		engine axis is parallel to rear axle and the crank shaft rotates in				
	b	road wheel. The mass of the vehicle is 2200 kg and the centr				
		above the road level. The track width of the vehicle is 1.5m. F.				
		of the vehicle around a curve with 80 m radius so that all the		,		
	ļ	contact with the road surface.	Todi whocis mamam			
	1	Unit-II	<u> </u>			
		i) Analyze the working of single plate clutch with neat diagram		2	2	7M
	a	ii) Explain about the working of a cone clutch with neat diagram	n	3	2	7M
		I OR	<u>i1</u>	5	2	7141
		i) Derive the expression for the ratio of tension on tight side to	clock side in case of	3	2	
		- ' []	stack side in case of	ا '		5M
		band and block brakes.		_	_	
		ii)		3	2	
		A - 500 →				
		35 ←				
	ļ	OB C				
		0 B C				
2						
	b					
		225°			ł	9M
				- 1		
		A differential band brake, as shown in Fig. has an angle of cont	act of 225°. The band			
	l	has a compressed woven lining and bears against a cast iron dru				
		ter. The brake is to sustain a torque of 350 N-m and the coef				
		tween the band and the drum is 0.3. Find: 1. The necessary for		ŀ	·	
		wise and anticlockwise rotation of the drum; and 2. The value				
	1	to be self locking, when the drum rotates clockwise.	or orr for the brake			
		to be sell focking, when the drugh fockies clockwise.				

		Unit-III			
		i) State the different types of governors. Explain about any one of them.	2	3	9M
	a	ii) The following particulars refer to a Wilson-Hartnell governor: Mass of each ball = 2 kg; minimum radius = 125 mm; maximum radius = 175 mm; minimum speed = 240 rpm; maximum speed = 250 rpm; length of the ball arm of each bell crank lever = 150 mm; length of the sleeve arm of each bell crank lever = 100 mm; combined stiffness of the two ball springs = 0.2 kN/m. Find the equivalent stiffness of the auxiliary spring referred to the sleeve.	3	3	5M
3		OR		<u> </u>	<u>.t</u>
		i) Derive the equation for the energy stored in fly wheels.	3	3	5M
	b	ii) The torque exerted on the crank shaft of a two stroke engine is given by the equation $T=(14,500+2,300\sin 2\theta-1,900\cos 2\theta)N$ -m where θ is the angle moved by the crank from I.D.C. If the resisting torque is constant find: i) The power of the engine, when the speed is 150rpm. ii) The moment of inertia of the flywheel if the speed variation is not to exceed $\pm 0.5\%$ of the mean speed. iii) The angular acceleration of the flywheel when the crank has turned through 30° from the I.D.C.	3	3	9M
		Unit-IV	_		, , ,
		i) Discuss how a single revolving mass is balanced by two masses revolving in different planes.	2	4	5M
	a	ii) A, B, C and D are four masses carried by a rotating shaft at radii 100mm,125mm,200mm and 150mm respectively. The planes in which the masses revolve are spaced 600mm apart and the masses of B,C and D are 10kg,5kg and 4kgrespectively. Find the required mass A and relative angular setting of the four masses so that the shaft be in complete balance.	3	4	9M
4					
-		i) Differentiate Static Balancing from Dynamic Balancing.	3	4	4M
	b	ii) A shaft caries four rotating masses A, B, C and D which are completely balanced. The masses B, C and Dare 50kg, 80kg and 70kg respectively. The masses C and D make angles of 90° and 195° respectively with mass B in the same sense. The masses A,B,C and D are concentrated at radius 75mm,100mm,50mm and 90mmrespectively. The plane of rotation of masses B and C are 250mm apart. Determine (i) the magnitude of mass A and its angular position (ii) the position of planes A and D.	3	4	10M
		Unit-V			
5	а	A four-cylinder vertical engine has cranks 300mm long. The plane of rotation of the first, third and fourth cranks are 750mm,1050mm and 1650mm respectively from that of the second crank and their reciprocating masses are 10kg,400kg and 250kg respectively. Find the mass of the reciprocating parts for the second cylinder and relative angular position of the cranks in order that the engine may be in complete balance.	3	5	I4M
		OR			
	ь	Derive the following expression of effects of partial balancing in two cylinder locomotive engine (i) Variation of attractive force (ii) Swaying couple (iii) Hammer blow	3	5	14M

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20ME3207

ROBOTICS AND APPLICATIONS

Time: 3 hours (ME) Max. Marks: 70

Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)

Unit-I i) Explain the various parts of a robot with neat sketch a ii) Classify the robots according to the coordinates of motion, with a sketch and example, explain the features of each type OR i) Find a homogeneous transformation matrix T that represents a rotation of 60° kL3 (angle about the OX axis, followed by a translation 10 units along the current OV axis, followed by a rotation of 30° angle about the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II i) Discuss various electrical actuators used in robots ii) Explain salient features of pneumatic actuators KL1 (angle about the various parts of a robots and in robots are provided by a rotation of a robots are provided by a rotation of 30° angle about the current OW axis.	CO1 CO1 CO2 CO2 CO2	7M 7M 14M
i) Explain the various parts of a robot with neat sketch a ii) Classify the robots according to the coordinates of motion. with a sketch and example, explain the features of each type OR i) Find a homogeneous transformation matrix T that represents a rotation of 60° kL3 angle about the OX axis, followed by a translation of 15 units along the current OV axis, followed by a rotation of 30° angle about the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II i) Discuss various electrical actuators used in robots ii) Explain salient features of pheumatic actuators KL1 C	CO1 CO2	7M 14M 7M
a ii) Classify the robots according to the coordinates of motion, with a sketch and example, explain the features of each type OR i) Find a homogeneous transformation matrix T that represents a rotation of 60° KL3 angle about the OX axis, followed by a translation 10 units along the current OV axis, followed by a rotation of 30° angle about the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II i) Discuss various electrical actuators used in robots ii) Explain salient features of pheumatic actuators KL1 C	CO1 CO2	7M 14M 7M
example, explain the features of each type OR i) Find a homogeneous transformation matrix T that represents a rotation of 60° KL3 of angle about the OX axis, followed by a translation 10 units along the current OV axis, followed by a rotation of 30° angle about the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II a i) Discuss various electrical actuators used in robots ii) Explain salient features of pheumatic actuators KL1 of the current of the curren	CO1 CO2	14M
i) Find a homogeneous transformation matrix T that represents a rotation of 60° kL3 angle about the OX axis, followed by a translation 10 units along the current OV axis, followed by a translation of 15 units along the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II a i) Discuss various electrical actuators used in robots kL1 (KL2)	CO2	7M
i) Find a homogeneous transformation matrix T that represents a rotation of 60° kL3 angle about the OX axis, followed by a translation 10 units along the current OV axis, followed by a rotation of 15 units along the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II a i) Discuss various electrical actuators used in robots kL1 (KL1) Explain salient features of pheumatic actuators kL2 (Control of 10°).	CO2	7M
angle about the OX axis, followed by a translation 10 units along the current OV axis, followed by a translation of 15 units along the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II a i) Discuss various electrical actuators used in robots ii) Explain salient features of pheumatic actuators KL1	CO2	7M
OV axis, followed by a translation of 15 units along the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II a i) Discuss various electrical actuators used in robots ii) Explain salient features of prejumatic actuators KL2		7M
followed by a translation of 15 times along the current OW axis, followed by a rotation of 30° angle about the current OW axis. Unit-II a i) Discuss various electrical actuators used in robots KL1 Comparison of the current OW axis. KL2 Comparison of the current OW axis. KL1 Comparison of the current OW axis. KL1 Comparison of the current OW axis. KL1 Comparison of the current OW axis. C		
a i) Discuss various electrical actuators used in robots ii) Explain salient features of pheumatic actuators KL2		
a i) Discuss various electrical actuators used in robots ii) Explain salient features of pneumatic actuators KL2		
a ii) Explain salient features of pneumatic actuators KL2		
ii) Explain salient features of pneumatic actuators	CO2	
		7M_
OR		
i) Explain the principle of the following sensors and also mention how they are KL2	CO2	7M
used in robots. (i) Piezo electric sensor (ii) Inductive proximity sensor		
b ii) Describe the classification of sensors and the factors to be considered for its KL1	CO2	7M
selection	l	/ 1/1
Unit-III		
i). Derive forward kinematics equations of manipulator for a particular position KL3	CO3	<u>7M</u>
a ii) Discuss various difficulties associated with the inverse kinematic solution KL2	CO3	
and explain 'geometric approach,' used in inverse kinematic problem		7M
OR	L_	
VI 2	CO3	14M
b i) Obtain direct kinematics using D-H convention for SCARA manipulator.		14101
Unit-IV		
i) Define and explain a geometric Jacobian. KL1	CO4	7M
a ii) What are Lagrange-Euler formulations? What are its applications? KL2	CO4	7M
OR		
4 i) What are the steps involved in Newton-Euler formulations in deriving KL2	CO4	73.4
dynamic equations of manipulators.		7M
b ii) Apply Lagrangean formulation to derive the dynamic equations of motion KL3	CO4	G3.f
for RP type planar manipulator.		7M
Unit-V	<u> l</u>	
1 18	CO5	
		7M
a applications? ii) Describe the Spray coating operation with robot system. KL2	CO5	7M
5 ii) Describe the Spray coating operation with robot system. KL2	203	/ 141
	CO5	
1 1) Diplim and approximated to 1	CO2	7M
b painting.	COS	73.4
ii) Differentiate between path planning and trajectory planning. KL2	CO5	7M

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20EC3201

MICRO WAVE AND OPTICAL COMMUNICATIONS

Time: 3 hours		(ECE)		Max. Marks:	70
Note: Answer All FIVE	Ouestions	All Over	ione Carry Equal Marke	(5 X 14 - 70M	n

	,	Note: Answer All FIVE Questions All Questions Carry Equal Marks (5 X 14	= 70M)		
Q.No		Questions		KL	CO	M
		Unit-I			-	
		i) A TE ₁₀ wave at 10 GHz propagates in a rectangular waveguide of inte	rnal	K2	CO1	
		dimensions 2.5cm×1.25 cm filled with Teflon having ε_r =2.1. Determine (i) p	hase			7M
	a	constant, (ii) guide wavelength, (iii) phase velocity, (iv) The wave impedance	÷.			
		ii) Derive different field expressions for TM mode existing in Circ	cular	K3	CO1	73.4
		Waveguide?	İ			7M
,		OR			· · - · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
1		i) Derive different field expressions for TE mode existing in Rectang	gular	К3	CO1	73.4
		Waveguide?				7M
i		ii) A silver plated (σ=6.17× 1 0 ⁷ Sm ⁻¹) WR 90 rectangular waveguide (a=2	.286	K2	CO1	
	Ъ					
	ľ	propagate the TE ₁₀ wave at 10 GHz. Determine the attenuation due to conduc				7M
		and dielectric losses for the wave propagating down the dielectric-los				
		waveguide.				
		Unit-II				
		i) Discuss the principle of operation of an Isolator with the help of a neat sket	tch.	K2	CO2	7M
	a			K3	CO2	2+5
_		plane Tee.				M
2		OR				111
	┢	i) Discuss the principle of the reflex klystron as a microwave oscillator.	$\overline{}$	K2	CO2	7M
	ь		lagic	K3	CO2	2+5
}		Tee.	ugic	13.5	002	M
	-	Unit-III	1			141
	-	i) Write down the working principle of Gunn diode using the valley m	odel	K2	CO3	
		theory.	louci	K2	003	7M
	a	ii) Explain how the high value of VSWR can be measured by twice the minir	22222	K2	CO3	
3		method.	nun	K4	CO3	7M
3	-	Method: OR			l	<u>!</u>
	\vdash	• • • • • • • • • • • • • • • • • • •		I/O	GO2	73.4
	,	i) Write down the working principle of the IMPATT diode as an oscillator.		K2	CO3	7M
	0	ii) Explain with a block diagram how the frequency of an unknown microv	vave	K2	CO3	7M
-	<u> </u>	signal can be measured.				<u> </u>
	<u> </u>	Unit-IV				
		i) (a) What do you mean by numerical aperture and the acceptance angle	of a	K1	CO4	2+5
	a	fiber? (b) Derive expressions for them.				M
		ii) Describe the structures of different optical fibers with ray paths. What is	s the	K3	CO4	7M
4	<u></u>	approximate diameter of an optical fiber in each case?			<u> </u>	
•		OR			1	1
		i) What do you mean by V-number? Give the expression for the same.		K3	CO4	7M
	Ь	ii) Single-mode step-index fiber has a core diameter and numerical aperture		K3	CO4	
	"	3 μm and 0.1, respectively! Calculate the value of the V-number when	ı the		1	7M
		wavelength of the propagating wave is 0.8 µm.				

ı	L	Unit-V		<u> </u>					
5	a	i) Derive the condition of lasing in terms of gain and loss coefficients per unit length and the reflectivity of mirrors placed at the end facets of the LASER crystal.	K3	CO5	7M				
		ii) Explain the detection process in a p-i-n photodiode. Compare the device with the p-i-n avalanche photodiode.	KI	CO5	7M				
	OR								
	Ь	i) Write a note on the semiconductor Injection laser or explain the working principle of the LASER diode.		CO5	7M				
		ii) Explain the detection process in a p-n photodiode. Compare the device with the p-i-n photodiode.	ΚI	CO5	7M				

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M: Marks

III B.Tech II Semester Regular & Supple. Examinations, April-2025

		R20EC3202 VLSI DESIGN	2		
Time: 3		 			
O Ma		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M) Questions	KL	CO	M
Q.No		Unit-I	1712		1/1
		i) Explain the nMOS enhancement mode fabrication process for different	K2	1	
		conditions of V_{ds} .	132	. *	7M
	a	ii) Derive an expression for transconductance of an n-channel enhancement	K3	1	
		MOSFET operating in active region.	113	.	7M
1		West ET operating in active regions			
		i) Explain in detail the p-well process for CMOS fabrication indicating the masks	K2	1	
		used.			7M
	b	ii) Compare the relative merits of three different forms of pull-up for an inverter	K4	1	
		circuit. What is the best choice for realization in nMOS and CMOS technology?			7M
		Unit-II			<u></u>
}		Analyze the sheet resistance congept applied to MOS transistor and inverter.	К3	2	7M
	a	Why scaling is required? Write the scaling factors for different types of device	K2	2	73.4
		parameters.	.		7M
		OR		···	L
2		Evaluate the scaling factors implact on the device parameters: Gate Area (Ag),	K3	2	
ļ		Gate Capacitance (Cg), Parasitic Capacitance (Cx) and Gate Capacitance Per	i		7M
	b	Unit Area (Co).			
		What is meant by sheet resistance R _s ? Explain the concept of Rs applied to MOS	K2	2	7M
		transistors.			7147
		Unit-III	······································		,
		i) What are the λ-based design rules? Give them for each layer.	K2	3.	7M
	a	ii) Draw a stick diagram and layout for two input CMOS NAND gate indicating	K3	3	7M
3		all the regions and layers.			
		OR	***		63.6
	ь	i) Explain 2 µm Double Metal, Double Poly CMOS / BiCMOS Rules.	K2	3	7M
		ii) Draw a stick diagram for CMOS logic Y= (A+B+C) ¹ .	K3	3	7M
		Unit-IV	TZO	- 4	773.6
	a	i) What are the issues occurred in Dynamic Design of static CMOS design.	K2	4	7M
		ii) Explain about the Cascading Dynamic Gates in detail.	K2	4	7M
4		OR	TZO	1	¥ 77 N. AF
		i) Discuss the Dynamic Logic-Basic Principles of static CMOS design.ii) Explain the Speed and Power Dissipation of Dynamic Logic in CMOS	K3 K2	4	<u>7M</u>
-	b		K2	4	7M
		process. Unit-V	L	İ	<u>i</u>
		1		ı — <u> </u>	T
	а	i) Discuss the procedure for implementation of Basic FPGA architecture.	K3	5	7M
_		ii) Explain various forms of FPCA Technologies.	K2	5	7M
5		OR	5 100 C		
		i) Explain the following related to advanced technologies of Giga-scale dilemma	K2	5	7M
	b	and High-k.			
		ii) Discuss in detail about Metal Gate Technology.	K2	5	7M

III B. Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20EC3203

MICROPROCESSOR AND MICRO CONTROLLERS

time: 3 hours

(ECE)

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

All Questions Carry Equal Marks (5 X 14 = 70M)								
Į.No		Questions	KL	CO	M			
I		Unit-I						
		i)Sketch the architecture of 8086 microprocessor and explain.	K3	CO1	7M			
	a	ii)Explain the Flag register of 8086 microprocessor in detail.	K4	CO1	7M			
		OR						
	b	i)Explain all the addressing modes of 8086 processor	K4	CO1	7M			
	ט	ii)Implement an assembly language program to multiply two numbers.	K3	CO1	7M			
		Unit-II						
	a	Sketch the pin diagram of 8086 and explain each signal in detail.	K3	CO2	14M			
2		OR						
2		i)Distinguish between maskable interrupt and non-maskable interrupts and write	K4	CO2	7M			
	b	about interrupt vector table.	<u> </u>					
		ii)Determine the salient features of Pentium processor.	K3	CO2	7M			
		Unit-∏I						
	_	i)Explain Dynamic RAM interfacing with 8086 in detail.	K4	CO3	7M			
	a	ii)Explain interfacing of Analog to digital converter with 8086.	K4	CO3	7M			
3		OR						
	ъ	i)Analyze the block diagram of 8255 and explain.	K4	CO3	7M			
		ii)Demonstrate Programmable Communication Interface 8251 and explain in detail.	K2	CO3	7M			
		Unit-IV	!··					
	a	Sketch the architecture of 8051 mit rocontroller and explain in detail.	K3	CO4	14M			
4		OR	-					
	1.	i)Demonstrate the memory organization of 8051 microcontroller.	K2	CO4	7M			
	b	ii)Analyze special function registers of 8051 in detail.	K4	CO4	7M			
		Unit-V						
		i)Explain LED interfacing with 80\$1 Microcontroller briefly.	K4	CO5	7M			
5	a	ii) Explain DAC interfacing with 8051 briefly.	K4	C05	7M			
		OR						
	b	Analyze the interfacing of Seven segment display with 8051 in detail.	K4	CO5	14M			

L: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

* * *

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20EC3207

DIGITAL IMAGE PROCESSING (ECE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

		Note: Answer All FIVE Questions.			
Q.No		All Questions Carry Equal Marks (5 X 14 = 70M) Questions	KL	CO	M
Q.MO	-	Unit-I		<u>, </u>	
		i) Write a short note on image sensing and acquisition.	2	1	10M
		ii) Using DCT prove the energy compaction property of the given image.	3 .	1	
	a				4M
_					
1		<u> </u>	<u> </u>		
		OR			
		i) Find KL transform of the image and verify.	3	1	
	Ъ	4 -2			7M
	"				
		ii) Explain connectivity and its types.	2	1	7M
		Unit-II			
		i) Perform Histogram equalization for the given image. Draw the Histogram	3	2	
		of the image before and after equalization.			
	a	月 6 2 4	ļ		7M
		β 1 2 2	İ		
	"	4 2 3 5			
		2 3 1 2			<u> </u>
		ii) Explain how smoothing and sharpening operations are performed on an	2	2	7M
2		image using spatial filters.			
	<u> </u>	OR			
		i) Explain how illumination and reflectance components of an image can be	2	2	7M
		enhanced independently.			
	١.	ii) Perform Geometric mean, harmonic mean and Alpha-trimmed mean filter	4	2	
	b	(Assume d=2), for the given image for the marked (bold) pixel only)			7M
		30 10 20			/1V.
ı		10 250 25 54 25 20			
		20 25 30 Unit-III	·	11	
		i) Explain global edge linking me hod used in line detection for the color	2	3	
					7M
	a	image. ii) Compare the performance of first and second order derivative in the	5	3	
		detection of point, line and edge for the color image.			7M
		OR		1	
3	<u> </u>	i) Convert any RGB into CMY model and HIS model.	3	3	7M
J		ii) Compute the degree of compression that can be achieved using Huffman		3	
		coding for the given image.			
	ь	Coding for the given image.			
	ט ן		1		7M

1 1 2 2 2 3 3 0

	1	Unit-IV							
	a	i) Define orthonormality and explain the method of finding the coefficients with derivations	1	4	7M				
,		ii) Define wavelet packets. Explain the use of this in image compression.	Ī	4	7M				
+		OR							
		i) Constructs the discrete wavelet transform for multi resolution analysis.	3	4	7M				
	b	ii) What is image de-noising? How the Haar wavelet is used to de-noising any signal with an example.	I	4	7M				
	1	Unit-V							
5	a	i) Explain in detail how an image is segmented using region splitting and merging algorithm with an example.	2	5	7M				
		ii) Write a short note on gray scale morphology.	3	5	7M				
		OR							
	h	i) Explain watershed algorithm using dam construction.	2	5	7M				
	b	ii) Explain Hit or mise transformation	2	5	7M				

ii) Explain Hit-or-miss transformation.

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

. . .

III B.Tech II Semesten Regular Examinations, April-2025

Sub Code: R20CY3201

INTRODUCTION TO CYBER SECURITY

Time: 3 hours

(CS)

Max. Marks: 70

Note: Ariswer All FIVE Questions.

All Questions Carry Equa	$1 \text{ Marks} (5 \times 14 = 70 \text{ M})$
--------------------------	--

Q.No	•	All Questions Carry Equal Marks (5 X 14 = 70M) Questions	KL	CO	M
Q.110		Unit-I	- KL		141
		i) Define cybercrime and discuss its origins. Explain the relationship	K2	1	
		between cybercrime and information security.			7M
	a	ii) Analyze the various classifications of cybercrimes and discuss the legal	K4	2	
		perspectives associated with them.			7M
1		OR		1 1	
1		i) Explain the concept of cyterstalking and discuss how cybercafés can be	K2	4	
		exploited for cybercrimes. Propose preventive measures to counter such			7M
	ь	crimes.			
		ii) Evaluate the impact of cloud computing on cybercrime and how it serves	K4	3	
		as an attack vector for cybercriminals.			7M
		Unit-II		1	
		i) Explain the proliferation of mobile and wireless devices and discuss the	K2	1	
		emerging trends in mobility. How do these trends influence cybersecurity?			7M
	a	ii) Analyze the security challenges posed by mobile devices, including	K4	2	
		authentication service security and registry settings. Provide examples of			7M
		potential vulnerabilities.			
2		OR	!	! '	
		i) Evaluate the organizational measures necessary for handling mobile	K2	4	
		device security. Discuss the importance of security policies and measures in			7M
	b	the mobile computing era.			
		ii) Critically analyze the types of attacks on mobile/cell phones and discuss	K3	5	
		how organizations can safeguard against such attacks.			7M
		Unit-III			
		i) Explain how proxy servers and anonymizers are used by cybercriminals to	K2	1	
		mask their identities. Discuss their implications for cybersecurity.			7M
3	a	ii) Analyze how phishing attacks are carried out and discuss effective	K4	2	
		countermeasures to protect individuals and organizations. Provide real-			7M
		world examples.			
	<u>.</u>		1	+	

	L	OR					
		i) Discuss the functioning of keyloggers and spyware, and explain how they	К3	5			
		are used to compromise systems. Suggest preventive techniques to mitigate	:		7M		
		these threats.		ļ	/101		
•	Ь	ii) Explain how SQL injection and buffer overflow attacks work, and discuss	K4	3			
		how they can compromise database security. Provide preventive measures to	l i		7M		
		secure databases.			/1/1		
<u></u>		Unit-IV	1	<u> </u>	<u> </u>		
		i) Explain the importance of cyber laws in India and discuss the key	K2	1			
		provisions of the Indian IT Act. How does it address cybercrime challenges?			7M		
	a	ii) Analyze the challenges faced by Indian law in combating cybercrimes.	K4	2			
		Discuss how addressing the weaknesses in the Information Technology Act		}	7M		
		can strengthen cybersecurity.	!		,,,,		
4	OR :						
		i) Analyze the challenges faced by Indian law in combating cybercrimes.	К3	5			
		Discuss how addressing the weaknesses in the Information Technology Act		:	7M		
	b	can strengthen cybersecurity.			, , ,		
		ii) Critically analyze the importance of continuing strategies in cybersecurity	К3	5			
		and discuss how organizations can maintain a proactive security approach.			7M		
		Unit-V	ل				
		i) Explain the historical background of cyber forensics and discuss the	K2	1			
		evolution of digital forensics science.			7M		
	a	ii) Discuss the role of network forensics in cybercrime investigations. How	K2	4			
5		does the OSI 7-layer model relate to computer forensics?			7M		
		OR					
i		i) Analyze the digital forensics life cycle and explain the significance of the	K4	2			
	ь	chain of custody concept in maintaining the integrity of digital evidence.			7M		
İ	ט	ii) Critically analyze the concept of antiforensics and discuss how it affects	K4	2			
		the integrity of digital investigations.			7M		

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20CY3202 MALWARE ANALYSIS & REVERSE ENGINEERING

Time: 3 hours

(CY)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

	An Questions Larry Equal Marks (5 X 14 = 70M)			
Q.No	Questions	KL	CO	M
	Unit-I			
	i) What is malware analysis and why is it important in cybersecurity?	L2	1	7M
	ii) How can malware indicators be utilized to enhance threat detection?	L3	1	7M
1	OR			
	i) What are the major differences between behavioral analysis and code analysis in	L2	1	71/4
	b malware analysis?			7M
	ii) How can malware indicators be utilized to enhance threat detection?	L3	1	7M
	Unit-II			
	i) What is the purpose of using the Microsoft Offline API for registry discoveries in	Ŀ2	2	73.4
	a forensic investigations?			7M
_	ii) How can TSK (The Sleuth Kit) be used for network and host discovery in	L3	2	71.4
2	malware forensics?			7M
	OR			
	i) How can malware artifacts be identified through registry analysis?	L2	2	7M
	b ii) Describe how PEID can heli in identifying packers and its relevance in malware	L3	2	71.4
	analysis.			7M
	Unit-III			
	Describe how Python scripts and Py commands can assist in debugging.	L2	3	7M
_	ii) How can program execution be controlled during the debugging process?	L3	3	7M
3	OR		_	
	i) How does debugging on a Parallels guest differ from debugging on a VMware	L2	3	73.4
	b guest?	ľ		7M
	ii) Describe the challenges faced when debugging a VMware Workstation guest.	L3	3	7M
	Unit-IV Control of the Control of th			
	i) How does Volatility assist in analyzing memory dumps?	L2	4	7M
4	ii) Describe the process of investigating processes in memory dumps.	L3	4	7M
	OR			
	b i) What is the role of Malfind and YARA in identifying injected code?	L2	4	7M
	ii) How can artifacts in process memory be identified during memory forensics?	L3	4	7M
ļ	Unit-V			
ļ	i) How can WHOIS lookups be used to research domains associated with malware?	L2	5	7M
	a ii) Explain the process of DNS hostname resolution and its relevance in malware	L3	5	73.4
]	analysis.			7M
5	OR			
	i) Describe the importance of checking DNS records in the context of malware	L2	5	71/4
	investigations.			7M
ł	b ii) What are the steps involved in creating static maps for domain and IP data	L3	5	7M
	analysis?			
		- 1		

NAKASARA OPETA NEC ENGINEERING COLLEGE

(AUTONOMOUS)

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20AI3204

DEEP LEARNING

Time: 3 hours

CSE (AI)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No		Questions	777	1 60	7.5
Quito	-	Unit-I	KL	СО	M
		i) Compare and contrast Over fitting and Under fitting	TZT O	004	T =3.5
İ	a	ii) Explain about Stochastic Gradient Descent	KL2	CO1	7M
1		11	KL4	CO1	7M
		i) Exemplifying about Bias and Variance			
	b		KL2	CO1	7M
		ii) Summarizing Supervised Learning Algorithms	KL2	CO1	7M
	ļ	Unit-II		.	.1
	a	i) Illustrating Gradient-Based Learning in Deep Feed forward Networks	KL4	CO2	7M
2		ii). Explain about Hidden Units of Deep Feed forward Networks	KL4	CO2	7M
		OR			
[,	i) Determine parameter Norm Perialties	KL3	CO2	7M
	b	ii) Summarizing Regularization for Deep Learning	KL2	CO2	7M
ĺ	a	Unit-III	<u> </u>	<u> </u>	J
		i) Justify How Learning Differs from Pure Optimization.	KL3	CO3	7M
3		ii) Explain Challenges in Neural Network Optimization	KL4	CO3	7M
	<u></u>	OR			·i
	b	i) Illustrate Approximate Second-Order Methods	KL4	CO3	7M
		ii) Explain Optimization Strategies and Meta-Algorithms	KL4	CO3	7M
-		Unit-IV	!		7.11
		i) Explain about the Convolution Operation, Motivation, Pooling	KL4	CO4	7M
4	a	ii) Summarize The Neuroscientific Basis for Convolutional Networks.	KL2	CO4	7M
4		OR			
	L.	i) Examining Convolution and Pobling as an Infinitely Strong Prior	KL3	CO4	7M
	b	ii)Explain any one Efficient Convolution Algorithms	KL4	CO4	7M
		Unit-V			7141
		i) Explain about Recurrent Neural Networks	KL4	CO5	7M
_	a	ii) Illustrate Bidirectional RNNs	KL4	CO5	
5		OR	100-		7M
ļ		i) Illustrate Deep Recurrent Networks	KL4	COF	
ļ	b	ii) Explain about Optimization for Long-Term Dependencies		CO5	7M
(I · Bloom	s Tay	Konomy Knowledge Level CO: Course Outcome M-Marks	KL4	CO5	7M_

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

1

NARASARA OPETA ENGINEERING COLLEGE

(AUTONOMOUS)

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20AM3203

DEEP LEARNING TECHNIQUES

Time: 3 hours

CSE(AIML)

Max. Marks: 70

All Ouestions Carry Equal Marks (5 X 14 = 70M)

		Note:	: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)	,		
Q.No			Questions	KL	CO	M
			Unit-I			
1		i)	Explain the key components of probabilistic models and how they are used in machine learning.	1	1	7M
	a	ii)	Describe the structure of a decision tree and discuss how it can be used for classification and regression tasks.	2	1	7М
			OR			
,	\vdash	i)	Differentiate between overfitting and underfitting in machine learning	2	1	7M
	b	-/ ii)	Apply the concept of gradient boosting machines to a real world scenario.	3	1	7M
	Н	/	Unit-II		<u>,, </u>	<u> </u>
	\vdash	i)	Explain the concept of biological and machine vision.	2	2	7M
2	а	ii)	Analyze the role of activation functions in the training of deep neural networks.	4	2	7M
_			OR		L	
	\vdash	i).	Describe the process of training deep networks:	2	2	7M
	b	ii)	Apply a feedforward neural network to classify images from a dataset.	3	2	7M
	-		THE PARTY OF THE P	٧.	<u> </u>	, 171
•	\vdash	`i)	What are Keras, TensorFlow, Theano and CNTK? Explain their basic	 .	···	· ·
	a		functionalities.	1	3	7M
		ii)	Implement a neural network using Keras to predict whether a movie review is positive or negative.	3	3	7M
3	Г		OR			
		i) i	Differentiate between a feedforward neural network and a recurrent neural network.	1	3	7M
:	Ь	ii)	How would you set up a deep learning workstation for training a neural network using TensorFlow	3	3	7M
	 	<u>. </u>	Unit-IV.			
		i).	Explain the concept of representation learning in neural networks.	2	4	7M″
!	ļ a	ii)	Explain how to implement multichannel convolution for color images.	-3	4	7M
	\vdash		OR :		1	1,-,-
4		i)	Discuss how you would set up and train an RNN in PyTorch for predicting future values based on time-series data.	3	4	7M:
	b	ii)	Analyze the impact of using a CNN compared to an RNN for image classification.	4	4.	7M
·	 	< 1	Unit-V.			
ľ		i)	Explain how GANs generates realistic images.	3	5	7M
	a	ii)	Oùtline the architecture and training process of a Deep Belief Network for		 	
		11)	classifying images.	3	5	7M
5			OR			
	1.	i)	Compare deep reinforcement learning with traditional reinforcement learning for real-time tasks.	4	5	7M
	b	ii)	Analyze how auto encoders can be used for both reducing data dimensions and removing noise.	4	5	7M
	-!	<u> </u>		<u></u>	4	

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20DS3201

DATA ANALYTICS & VISUALIZATION

Time: 3 hours (DS) Max. Marks: 70
Note: Answer All FIVE Questions: All Questions Carry Equal Marks (5 X 14 = 70M)

	Note: Answer All FIVE Questions: All Questions Carry Equal Marks (5 X 14 = 70)	1)		
Q.No	Questions	KL	CO	M
	Unit-I	*		I — <u>.</u> .
	i) Explain the importance of data in modern applications.	2	1	7M
1	ii) Describe the fundamental concepts of the Pandas library.	2	1	7M
1	OR			7171
	i) Describe the different measures of dispersion in data analysis.	1	1	
	[b]		1	7M
<u> </u>	ii) Describe the various ways to visually represent data.	1	1	7M
	Unit-II	<u> </u>		
	i) Compare and contrast Logistic Regression and Linear Regression in terms of	2	2	
	application and methodology.			7M
2	ii) Explain the key assumptions of ANOVA and discuss their impact on statistical	2	2	 :
2	analysis.	-		7M
	OR			
	b i) Analyze the advantages and limitations of using ANOVA for hypothesis testing.	4	2	7M
	ii) Evaluate the importance of interaction effects in Two-Way ANOVA	5		
	Unit-III		2	7M
	i) Describe the four levels of validation in data analysis and their role in ensuring		·· <u> </u>	
	data accuracy.	2	3	7M
	a ii) Explain the purpose and interpretation of scatter plots and regression curves in		3.	
	data analysis	2	3	7M
3				
	OR			
	i) Explain the concepts of Dimensions and Measures in data visualization with	2	3	7M
	b suitable examples			1141
	ii) Compare bar charts and pie charts for categorical data visualization,	2	3	73.4
	highlighting their advantages and limitations.	- 1		7M
-	Unit-IV			-
i	i) Analyze the differences between K-means and hierarchical clustering methods.	4	4	7M
ŀ	al ii) Evaluate the release visualistical at			/ 101
_ , }	ii) Evaluate the role of visualizing cluster analysis in understanding data patterns.	5	<u>4</u>	7M
4	OR			
Ī	i) List and explain scalar and point visualization techniques with suitable	1	4	73.6
	b examples			7M
	ii) Explain how different data visualization tools aid in decision-making and data	2	4	
	interpretation		- 1	7M
].	Unit-V			
	a i) Explain the key features of Power BI	2	5	7M
	a ii) Describe the role of DAX logical functions in data analysis and reporting.	2	5	7M
_	OR		L_	
5	i) Discuss the use of Mathematical and Trigonometric functions in Power BI data	2	5	
	modeling.	_		7M
	b			
1	ii) Compare different statistical functions in Power BI and their impact on data-	2	5	
	driven decision-making.			7M
KL: Bloor	ns Taxonomy Knowledge Level CO: Course Outcome M:Marks			
	\$ 16			

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20DS3202

PRINCIPLES OF MACHINE LEARNING

Time: 3 hours

(DS)

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

0.37		All Questions Carry Equal Marks (5 X 14 = 70M)	7/1	CO	7/			
Q.No		Questions	KL	СО	M			
Unit-I								
		i)Explain the concept of a well-posed learning problem. How does it help in	4	1	7M			
	a	designing effective learning systems?						
ļ		ii) Describe the Find-S algorithm. How does it work, and in what scenario is	2	1	7M			
1		it most useful in concept learning? OR	<u> </u>					
		i)What is inductive bias in machine learning? Discuss its importance in	2	1				
		concept learning and how it influences the learning process.	~	1	7M			
	Ъ	ii)Explain the Candidate Elimination algorithm. How does it systematically	4	1				
		eliminate hypotheses to converge to the correct concept?	"	1	7M			
	-	Unit-II	<u>'</u>	,				
		i)Describe the basic decision tree learning algorithm. What are the steps	2	2	-> /			
i	a	involved in building a decision tree from a set of training data?			7M			
2		ii)Explain Appropriate problems for decision tree learning.	4	2	7M			
_		OR						
	ь	i) Discuss about the Issues in decision tree learning.	2	2	7M			
		ii)Explain Inductive bias in decision tree learning	4	2	7M			
		Unit-III			/ 147			
	-	i)Illustrate Estimating hypothesis accuracy	2	3	7M			
	a		<u> </u>					
3		ii) Explain Basics of sampling theorem with example	4	3	7M			
3		OR						
		i) Describe General approach for deriving confidence intervals	4	3	7M			
-	b	ii) Discuss the difference in grror of two hypothesis	2	3	7M			
		Unit-IV	<u>i·</u>		7111			
	<u>.</u>	i)Discuss Models of learnability	2	4				
	a			7	7M			
<u> </u>	"	ii) Explain the probably approximately correct (PAC) learning	4	4	7M			
4		OR						
		i) Illustrate Sample complexity for infinite hypothesis spaces	2	4	7M			
1	b	ii)Discuss Vapnik-Chervonenkis dimension.	4	4				
		I I			7M			
		Unit-V	· · · · · · · · · · · · · · · · · · ·					
	_	i)Determining Naive Bayes learning algorithm	3	5	7M			
	a	ii) Differences between Generative vs. discriminative training	2	5	7M			
5		OR	L	<u> </u>				
		i)Illustrate Logistic regression	4	5	73.5			
	ь			<u> </u>	7M			
		Ii) Explain with example k-rearest neighbor learning	4	5	7M			

KL: Blooms Taxonomy Knowledge Level

CO: Course Outcome M:Marks

III B.Tech II Semester Regular Examinations, April-2025 DS3205 ETL PRINCIPLES

Sub Code: R20DS3205

Time: 3 hours

(DS)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions	Carry Equa	l Marks 🕠	(5 X 14 = 70M)

Q.No	<u> </u>	Questions Questions	KL	CO	M
<u> </u>	-	Unit-I		<u> </u>	
		i) Explain the role of staging areas in ETL. When should staging be used, and	2	1	7M
		when can it be avoided?			/101
	a	ii) Describe the differences between relational tables and dimensional data models	2	1	7M
1		in ETL systems.			/ 1/11
		OR			
		i) What are fact tables and dimerision tables? How do they contribute to data	2	1	7M
	b	warehousing?			/ 101
		ii) Discuss the purpose and significance of surrogate key mapping tables in ETL.	2	1	7M
		Unit-II			
		i) Explain the key components of a Logical Data Map and their importance in data	2	2	7M
		extraction.			/141
	a	ii) Discuss the challenges of extracting data from heterogeneous sources such as	2	2	7M
2		XML files, web logs, and ERP systems.		}	/171
4		OR			
		i) What is the role of business rules in ETL extraction? Explain their significance	2	2	7M
	b	with examples.			/141
		ii) Describe the data discovery phase and content analysis in the ETL extraction	2	2	7M
		process.			7 147
		Unit-III			
		i) Analyze the role of conformed dimensions in ensuring data consistency across	4	3	7M
	a	multiple data sources.			
		ii) Explain how column nullity, column numeric ranges, and column length	4	3	7M
3		restrictions impact data quality in ETL.	<u> </u>		
		OR			
		i) Given a dataset with missing and inconsistent values, determine the best	4	3	7M
	ь	approach for data cleaning and justify your choice.			
		ii) Compare explicit valid values and explicit invalid values in data cleaning. Why	4	3	7M
		is each important for maintaining data integrity?			
		Unit-IV		1	
		i) Apply the concept of incremental loading to a business scenario and explain its	3	4	7M
	a	benefits over full data loading.			
		ii) Demonstrate how managing partitions and indexes improves ETL performance	3	4	7M
4		in fact table delivery.	<u> </u>		
'		OR	1 ^	1	
		i) Explain the differences between transaction grain, periodic snapshot, and	3	4	7M
	ь	accumulating snapshot fact tables with real-world examples.	_		
		ii) Illustrate how factless fact tables can be used to capture event occurrences in an	3	4	7M
		ETL system.			
	<u> </u>				
		i 9 ∎			

				- 11	
5		Unit-V			
		i) Apply ETL performance tuning appraoches to improve efficiency in large-scale data warehousing.	3	5	4M
	a	ii) Demonstrate how scheduling and monitoring ETL processes help in minimizing load failures.	3	5	10M
		OR		#	
	1	i) Explain how measuring ETL-specific performance indicators can help optimize system performance.	3	5	7M
	Ь	ii) Illustrate the importance of ETL system security and describe best practices to protect data integrity.	3	5	7M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

III B.Tech II Semester Regular Examinations, April-2025

Sub Co	ode:	R20CY3203 ETHICAL HACKING			
Γime: 3 hours		ours (CY) Max. M	arks: 70		
Note: Answer All FIVE Questions.		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14	i = 70M)		
Q.No		Questions	KL	CO	M
		Unit-I			
		i)Explain Hacking technology and its types in detail	K2	C01	7M
4	a	ii) Explain How do penetration testers help in strengthening cybersecurity?	K2	CO1	7M
1		OR		•	•
	1.	i) Discuss the impact of emerging technologies on cybersecurity challenges.	K3	CO1	7M
	b	ii)Define backdoors, and how do hackers use them to gain unauthorized acce	ss? K2	CO1	7M
•		Unit-II			·
		i) If a hacker gathers employee social media data to launch a phishing attack,	. К3	CO2	73.4
		what preventive measures could have stopped this attack?		1	7M
	a	ii) Analyze types of sensitive information can attackers retrieve through dum	pster K3	CO3	
		diving?	^	İ	7M
_		OR		_!	1
2		i) Define sniffer, and how is it used in network security? Explain about the	K3	CO3	-
		different types of sniffing attacks? How can organizations protect their netwo			7M
		against packet sniffers?			1
	b	ii) A competitor is using publicly available job postings to learn about new	K3	CO2	
		technologies your company is adopting. How can you balance transparency i	1	002	7M
		hiring while protecting business intelligence?	_		/
		Unit-III	!		<u> </u>
	а	i) Suppose a website allows users to upload files. How can attackers exploit t	his K2	CO3	ŀ
		feature, and how should developers secure it?			7M
		ii) Illustrate how can a web application firewall (WAF) help mitigate SQL	K2	CO3	
3		injection attacks?	122	005	7M
		OR			<u> </u>
		i) Define a buffer overflow attack, and why is it dangerous? Explain how do	K2	CO1	
	ъ	attackers exploit buffer overflows to execute arbitrary code?			7M
		ii) Describe the primary security tisks associated with Linux systems?	K2	CO3	7M
		Unit-IV		1 000	71,1
	a	i)Differentiate between IDS and IPS in network security?	K2	CO4	7M
		ii)Explain briefly the role of blacklisting and whitelisting in web filtering?	K2	CO4	7M
		OR	132	1 00+	7141
4		i) Describe briefly about the role of mobile security apps play in protecting	K2	CO4	
	b	devices from hacking?		004	7M
		ii) Explain about the most common Bluetooth security vulnerabilities? Explain	in K2	CO4	
		how do attackers use BlueBorne to exploit Bluetooth-enabled devices?		004	7M
		Unit-V	l	<u>!</u>	
5		i) Illustrate the Computer Fraud and Abuse Act (CFAA) in detail	K3	CO5	7M
	a	ii)Explain about the potential ethical concerns when working as a freelance	K2	CO5	7171
		ethical hacker?	132		7M
		OR		!	
}	b	i) Explain the importance of using hacking tools responsibly and within the la	aw? K2	CO5	14M
		1) Deplete the importance of using flacking tools responsibly and within the R	W: KZ	T CO2	1-+1/1

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20CY3205 BLOCK CHAIN TECHNOLOGIES

Time: 3 hours (CY) Max. Marks: 70

Note: Answer All FIVE Questions (CY) All Questions Carry Equal Marks (5 X 14 = 70M)

	Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)			
Q.No	Questions	KL	CO	M
	Unit-I			_
	i) Summarize the origin and evolution of Blockchain technology.	2	1	7M
	a ii) Evaluate a real-world Blockchain application and discuss its impact on business operations.	4	3	7M
1	OR	·	.4	<u> </u>
	i) Explain the shortcomings of current transaction systems that led to the emergence b of Bitcoin.	2	1	7M
	ii) Analyze how Blockchain revolutionizes the traditional business network.	4	2	7M
	Unit-II	<u>!</u>	<u>. – .</u>	I
	i) Interpret the role of smart contracts in automating transactions in a Blockchain network.	4	3	7M
	a ii) Apply the concept of consensus mechanisms to ensure trust and security in Blockchain	3	5	7M
2	OR			
	i) Explain why Blockchain is called a "Blockchain" and how it maintains data integrity.	2	1	7M
	ii) Summarize the key characteristics that make Blockchain suitable for business applications.	2	1	7M
	Unit-III	_		
	i) Evaluate how Blockchain technology enables friction-free business networks.	4	3	7M
	a ii) Summarize how Blockchain thansforms ecosystems by increasing visibility.	2	4	7M
3	OR			
	i) Interpret how Blockchain can ease interaction frictions in financial transactions.	4	3	7M
	b ii) Apply Blockchain principles to improve supply chain transparency and reduce fraud.	3	5	7M
	Unit-IV		1	
	i) Demonstrate how Blockchain can streamline healthcare payments and a preauthorization processes.	3	5	7M
	ii) Summarize how Blockchain is applied in financial services and trade finance.	2	1	7M
4	OR	J	<u> </u>	!,
·	i) Apply Blockchain-based solutions to improve transparency in the insurance	3	5	7M
	ii) Interpret the benefits of using Blockchain for electronic medical records in healthcare.	4	3	7M
	Unit-V	1	1	·
	i) Apply knowledge of Blockchain scalability issues to propose potential solutions.	3	5	7M
5	a ii) Discuss case studies of failed cryptocurrencies and analyze the factors leading to their downfall.	4	2	7M
	OR		.1	1
	i) Analyze the role of Hyperledger Fabric in enterprise Blockchain development.	4	2	7M
	b ii) Summarize the vision and objectives of Hyperledger as a Linux Foundation project.	2	4	7M
·	1 1 2 2			

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20AM3204

SOFT COMPUTING CSE(AIML)

Max. Marks: 70

Time: 3 hours

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

	11			
Q.No	Questions	KL	CO	M
	Unit-I			
	i)Explain uncertainty and evidence with suitable examples.	K2	CO1	7M
1	ii) Explain the importance of Bayesian networks with example	K4	CO1	7M
1	OR			
	b i)Explain random sets and mass assignments with examples.	K2	CO1	7M
	ii)Illustrate about fuzzy measures, and aggregation operators.	K2	CO1	7M
	Unit-II			
	i)Demonstrate Bayesian network learning algorithms with a suitable example.	К3	CO2	7M
2	a ii)Explain decision tree induction and rule induction algorithms.	K3	CO2	7M
2	OR		<u> </u>	
	i)Compare supervised and unsupervised learning with examples.	K3	CO2	7M
	ii)Illustrate about evolutionary algorithms? Explain their working.	K2	CO2	7M
	Unit-III			
	i)Illustrate about Adaptive Networks.	K2	CO3	7M
3	a ii)Explain about fuzzy control in Neural Networks.	K2	CO3	7M
3	OR		<u> </u>	
	b i)Demonstrate about Fuzzy set theory.	K2	CO3	7M
	ii)Explain about Reinforcement Learning with an example.	K2	CO3	7M
	Unit-IV			· · · · · · · · · · · · · · · · · · ·
	i)Analyze the concept of neuro fuzzy systems with an example.	К3	CO4	7M
4	a ii)Explain about the role of Genetic Algorithm in Neural networks.	K2	CO4	7M
4	OR			
	b i)Analyze the importance of back-propagation networks in Neural networks.	K3	CO4	7M
	ii)Explain about Genetic Algorithm based weight determination applications.	K2	CO4	7M
	Unit-V			
	i)Illustrate about Fitness functions in Neural networks.	K2	CO5	7M
5	a ii)Illustrate about GA in fuzzy logic controller design.	K2	CO5	7M
	OR			
	i)Illustrate about Fuzzy Genetic Algorithms.	K2	CO5	7M
	b ii)Analyze the role of Neural networks with examples from the Medical		``	
	Domain.	K3	CO5	7M -
KI : Bloo	ns Taxonomy Knowledge Level CO: Colurse Outcome M:Marks		<u>_</u>	

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

III B.Tech II Semester Regular & Supple. Examinations, April-2025

Sub Code: R20AI3206

NATURAL LANGUAGE PROCESSING

Time: 3 hours

CSE (AI)

Max. Marks: 70

Note: Answer All FIVE Questions.

All Ouestions Garry Equal Marks $(5 \times 14 = 70M)$

C NT.	Γ	All Questions Garry Equal Marks (5 X 14 = 70M) Questions	KL	CO	M
Q.No		Unit-I	1113		
		i) Compare and contrast the foundational concepts of Natural Language	K2	CO1	7M
	a	Processing (NLP) with its practical applications across diverse domains ii) Explain the challenges associated with Natural Language Processing	K2	CO1	
1	a	(NLP), focusing particularly on the concept of ambiguity within linguistic			7M
		data.		<u>_</u>	
		OR	770	001	-
	ь	Describe the key phases involved in Natural Language Processing (NLP) and provide examples to illustrate each phase.	K2	CO1	14M
		Unit-II			
	_	Discuss the strengths and limitations of both N-gram and neural language	K2	CO2	14M
2	a	models, and provide examples of scenarios where each approach might be more suitable.			
		OR			
	ъ	Describe the architecture and functioning of Neural Language Models.	K2	CO2	14M
		Unit-III	,	,	
		i) How POS tagging using HMMs works	K4	CO3	_7M
	a	ii) How POS tagging using Neural Model.	K4	CO3	7M
3		OR			
3		i) Explain the concept of Parts of-Speech (POS) tagging and its significance in Natural Language Processing (NLP).	K2	CO3	7M
<u>.</u>	b	ii) Describe the process of POS tagging using Hidden Markov Models (HMMs)	K2	CO3	7M
	<u> </u>	Unit-IV	<u> </u>	1	
	 	Compare and contrast top-down and bottom-up parsing strategies,	K2	CO4	
4	a	highlighting their respective advantages and limitations in parsing syntactic structures.			14M
~		OR	•		
	ь	Explain Probabilistic Context Free Grammar (PCFG) and Probabilistic CKY Parsing of PCFGs.	K2	CO4	14M
		Unit-V		· · · · · · · · · · · · · · · · · · ·	
	a	i) Explain the concept of vector semantics in Natural Language Processing (NLP).	K2	CO5	7M
	"	ii) Describe Semantics with dense vectors	K2	CO5	7M
5		OR	1		
	ь	Describe the concept of word embeddings learned from prediction methods in Natural Language Processing (NLP), with a focus on Skip-gram and	K2	CO5	14M
		Continuous Bag of Words (CBOW) models	<u> </u>		

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

III B.Tech II Semester Regular & Supple. Examinations, April-2025 AGILE METHODOLOGIES

Sub Code: R20IT3202

(IT)

Max. Marks: 70

Time: 3 hours

		Note: Answer All FIVE Questions.			
		All Questions Carry Equal Marks (5 X 14 = 70M)		1	
Q.No		Questions	KL	CO	M_
		Unit-I_			
		i) What is the working principle of Agile? What value is provided by Agile? Discuss	L2	CO1	7M
1	a	ii)Identify the technical differences among Agile manifesto and Agile principles.	L3	CO1	7M
		OR	<u></u>		
	b	i)What are the various various types of agile testing techniques? Explain Exploratory testing in detail	L2	CO1	7M
		ii)Explain the process used for Agile project managment	L2	CO1	7M
		Unit-II	·		
		i) What is meant by lean approach? How does it work	L3	CO2	7M
_	a	ii) What is Scrum? What is the need of Scrum. Explain	L5	CO2	7M
2		OR			
		i) Why extreme programming is called extreme? Write down values of XP	L3	CO2	7M
	b	ii) Explain in detail about adaptive software development.	L2	CO2	7M
	-	Unit-III			
	a	i) What way would you design the concept of Earl's school of KM? Explain in detail.	L3	CO3	7M
3		ii) Describe in detail about role of story card and story card Maturity Model	L2	CO3	7M
		OR	·		
		i) What are the different stages of institutional knowledge evoluation cycle	L3	CO3	7M
	b	ii) What approach would you use for the agile knowledge sharing	L2	CO3	7M
	-	Unit-IV			
		i) How to manage unstable requirements. Explain	L2	CO4	7M
	a	ii) How would you organize the agile prioritization techniques	L3	CO4	7M
4	OR				72,72
		i) Identify and narrate the different requirements elicitation	L3	CO4	7M
	b	ii) Analyze the agile requirements abstraction model	L4	CO4	7M
	_	Unit-V	22-7	<u> </u>	/ 447
5	 	i) Discuss in detail about throughput and value added in FDD	L2	CO5	7M
	a	ii) Explain the computation of metrics in both financial and production	L2	CO5	7M
		OR	1.2	CO3	1 111
		i) Explain in detail about test driven development	L2	CO5	7M
	Ъ	ii) Explain agile appraoch in global software development	L3	CO5	$\frac{7M}{7M}$
]	ii) Explain agric appraisen in giobal software development	ביד	COS	/ 1//1

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome

III B.Tech II Semester Regular Examinations, April-2025

Sub Code: R20AM3205 Time: 3 hours

SOFTWARE PROJECT MANAGEMENT
CSE(AIML)

	Time: 3 hours CSE(AIML) Max.	Marks:	70	
***************************************	Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70)		70	
.No	Questions	KL	CO	M
	Unit-I			
	i) Define the Waterfall model and explain its significance in conventional software management.	KL1	1	7M
	ii) Discuss how improving automation dan help reduce costs and improve the software development process in the long run.	KL2	1	7M
1	OR			<u>L</u>
1	i) How can improving software product size contribute to better software economics in a	KL3		
	project?	KLS		7M
	ii) List and explain at least two ways to improve software processes that can lead to better economic outcomes.	KL2	1	7M
	Unit-II	1		
,	i) What are the main phases in the software development life cycle, and what occurs during each phase?	KL1	2	7M
2	ii) Discuss how management artifacts and engineering artifacts contribute to the success of a software project.	KL3	2	7M
	OR			
	i) Evaluate the role of model-based software architectures from both a management per- spective and a technical perspective.	KL4	2	7M
	ii) What are the key differences between management artifacts and programmatic artifacts?	KL1	2	7M
	Unit-III			
9	ment project.	KL2	3	7M
3	ii) Analyze the significance of periodic status assessments in the software development lifecycle.	KL4	3	7M
	OR			
•	planning phase of a project.	KL3	3	7M
	ii) What are the primary goals of software process checkpoints, and how do they help ensure project alignment?	KL1	3	7M
•	Unit-IV	·	X	
,	i) What are the key components of process automation in software development?	KL1	4	7M
	a ii) How would you apply process automation to improve the efficiency of the software development process?	KL3	4	7M
4	OR	t	·l.	
i i i i i i i i i i i i i i i i i i i	managing software projects.	KL2	4	7M
	ii) List and explain which factors contribute to the successful automation of software development processes?	KL2	4	7M
-	Unit-V	<u> </u>	.انــــــــــا	
5	they important?	KL2	5	7M
	ii) Define process instrumentation and explain its significance in controlling software project outcomes.	KL1	5	7M
	OR	f		·
	b ii) Compare the effectiveness of using generic processes vs tailored processes in software development.	KL4	5	14M
			h-	