R20 II B.TECH I SEM SUPPLEMENTARY EXAMINATIONS APRIL 2025

NARASARAOPETA ENGINEEERINGCOLLEGE::NARASARAOPET (AUTONOMOUS) II B.Tech I | Semester Supply Examinations: April-2025 (Branches: ME) HNVIRONMENTAL STUDIES Sub Code: R20CC21MC2 Max. Marks: 5x14=70M Time: 3 hours Date: 08-04-2025 Note: Answer All FIVE Questions. All Questions Carry Equal Marks 1. a) Define the environment? How would environmental awareness help to protect our Environment? What is the scope of environmental education? (CO1 K2 14M) b) Illustrate the process of ecological succession. (CO1 K2 14M) 2. a) Discuss the major uses of forests. How would you justify that ecological uses of forests surpass commercial uses? (CO2 K2 14M) b) Explain about the food resources! (CO2 K2 14M) 3. a) a) Comment upon Indian biodiversity with special reference as a mega diversity nation. (CO3 K2 14M) OR b) Explain various values in biodiversity? Explain in detail threats to biodiversity with suitable examples (CO3 K2 14 M) 4. a) Classified solid waste? What adverse effects can solid waste cause? How can the solid waste be managed? (CO4 K2 14M) b) What are the various sources, effects, & causes of water pollution? (CO4 K2 14M) 5. a) Explain environmental audit and environmental management plan? (CO5 K2 14M) OR

(CO5 K2 14M)

b) Discuss the concept of Ecotourism, its principles and merits.

Subject Code: R20CC2101

II B.Tech. - I Semester Supple Examinations, April-2025 NUMERICAL METHODS AND TRANSFORMATIONS

(CE,EEE,ME,ECE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions

		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 =70M)			
QNo			KL	CO	Marks
<u> </u>		Unit-I		!	
		· · · · · · · · · · · · · · · · · · ·	3	1	7M
	_	method correct to two decimal places (ii) Identify the Statement of Newton's Gregory Forward			
	a	Interpolation formula and Prove Newton's Gregory Forward	3	1	7M
		Interpolation formula.			
		OR			
1		(i) The following data gives the melting points of an alloy of lead and			
		zinc. Percentage of lead in the 50 60 70 80			
		alloy(p)	3	1	7M
	Ь	Temperature(QQQ) 205 225 248 274	•		
		Determine the melting point of the alloy containing 54% of lead,			
		using appropriate interpolation formula			
		· · · · · · · · · · · · · · · · · · ·	3	1	7M
		decimal places. Unit-II			
	-				1
		By applying Runge - Kutta fourth order method with $h=0.1$ to find $x(0.1)$ and $x(0.1)$	(0.2) w	here	14M
	a	$\frac{dy}{dx} = \frac{y-x}{x+y}$.			
2					
		OR		<u> </u>	
	h	By applying Modified Euler's method, find y(0.1) and y(0.2) for $\frac{dy}{dx} = x^2 - y$		2	14M
:	٦	and $y(0) = 1$.			
<u> </u>		Unit-III		1	
		(i) Estimate L(t ² Sin ³ 2t)	3	3	7M
	a	$\frac{1}{\cos 4t \cdot \sin 2t}$	3	3	7M
<u> </u>		(ii) Determine $L\left(\frac{\cos 4t \cdot \sin 2t}{ t }\right)$			
3		OR		,	1
}	1.	(i) Identify inverse Laplace transform of $\frac{s}{(s^2+1)(s^2+4)(s^2+9)}$	3	3	7M
	b	(ii) Identify inverse Laplace transform of s+3	3	3	7M
<u> </u>	-	s^2-3s+2 Unit-IV		<u> </u>	<u> </u>
	a	Construct the Fourier series expansion of x Cosx in $-\pi \le x \le \pi$	3	7	14M
4	-	OR		I	
-	-	(i) Construct the Fourier cosine series of $f(x) = \sin x$ in (0,).	3	4	7M
	b	(ii) Construct the Fourier cosine series of $f(x) = x^2$ in $(-\pi, \cdot)$.	3	4	7M
L					·

5		Unit-V		<u> </u>	
		(i) Apply Fourier transform technique to show $F\{f(x-a)\}=e^{ipa}$ F(p), where F(p) is the complex Fourier transform of f(x).	3	5	7M
	a	(ii) Apply Fourier integral representation, show that $\int_{0}^{\infty} \frac{\lambda Sinx\lambda}{\lambda^{2} + k^{2}} d\lambda = \frac{\pi}{2} e^{-kx}, x>0, k>0.$	at 3	5	7M
		OR	- 1		- !
		(i) Estimate the Fourier sine transform of 1/x	3	5	7M
	Ь	(ii) Estimate the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$	3	5	7M

(AUTONOMOUS)

Subject Code: R20CC2102

II B.Tech. - I Semester Supple Examinations, April-2025 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (CSE,IT,AI)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

QNo		All Questions Carry Equal Marks (5 X 14 = 70M) Questions	KL	CO	Marks
2110					
	<u> </u>	Unit-I	Tro	1 -	53.5
	a	i) Identify whether $(p\rightarrow q)\rightarrow r$, $p\rightarrow (q\rightarrow r)$ are logically equivalent or not.	K3	1	7M
1	"	ii) Explain pdnf, pcnf with suitable examples	K2	1	7M
1		OR			
		i) Show that $(P \rightarrow (Q \rightarrow R)) \le (P \rightarrow Q) \rightarrow (P \rightarrow R)$.	K2 .	1	7M
	Ъ	ii) Explain the tautology with example	К3	1	7M
	 '	Unit-II		1	
		i) Make use of mathematical influction prove that		1	
		$1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{n(n+1)}$	К3	2	7M
	a	integer 3, where n is a positive			
2		ii) Verify the validity of the following argument "every living thing is a	77.2	-	53.5
		planet or an animal. Joe's gold fish is alive and it is not a planet. All animals	К3	2	7M
		have hearts. Therefore Joe's gold fish has a heart".			
		OR			
	ь	i) Use the mathematical induction to prove that	K3	2	14M
	0	$1^3+2^3+\ldots+n^3=[(n(n+1))/2]^2$ whenever n is a positive integer.			
	<u></u>	Unit-III			
		i) Write the rules for constructing Hamiltonian paths and cycles.	K3	3	7M
	a	ii) What is Walk, Trail, Paths and circuit? Explain with suitable graphs examples.	K2	3	7M
3		OR		!	<u> </u>
,			К3	3	7M
		i) Write the difference between Hamiltonian graphs and Euler graphs			/11.
	ъ	ii) How to determine adjacency matrix for a graph. Explain properties of adjacency matrix by taking suitable graph with minimum 5 nodes and more	К3	3	7M
		than 5 edges			-
	1	Unit-IV		•	
		i) What is solution of the recuirence relation $a_n = a_{n-1} + 2 a_{n-2}$ with	K2	4	7M
		$a_0 = 2 \text{ and } a_1 \neq 7$	KZ	*	/1/1
	a			<u> </u>	<u> </u>
		ii) What is a Generating function and explain the operations on generating	K2	4	7M
4	ļ	functions	<u> </u>		1
		OR	1770	1.4	T == #
		i) Solve $a_n = a_{n-1} + n$ where $a_0 = \frac{1}{11}$ by substitution	К3	4	7M
	ь	ii) Solve the recurrence relation $2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$ for $n \ge 0$, with	W2	4	78/
		$a_0 = 0, a_1 = 1, a_2 = 2.$	K3	4	7M

	_	Unit-V			<u></u>		
	a	i) In how many ways can the letters of the word CORRESPONDENTS can be arranged so that I) There are exactly two pairs of consecutive identical letters? II) There are at least three pairs of consecutive identical letters?	K2	5	7M		
5		ii) Test for all x, y in a Boolean algebra B, (I) $(x\Lambda y)' = x'V y'$. (II) $(xVy)' = x'\Lambda y'$.	K4	5	7M		
	OR						
		i) Discover the disjunctive normal form of the Boolean function $f(x_1, x_2, x_3) = x_2(x_1x_3 + x_1)$	K4	5	7M		
	b	ii) Find the number of positive integer less than 10,000 and are divisible by 5 or 7	K2	5	7M		

Subject Code: R20CC2103

II B.Tech. - I Semester Supple Examinations, April-2025 OGPS THROUGH JAVA

(CSE,IT,AI,DS,CY &AIML)

Time: 3 hours

Max. Marks: 70

Note Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M)

		All Questions Carry Equal Marks (5 X 14 = 70M)						
QNo		Questions	KL	co	Mark			
. ,	1	Unit-I '	1	_ I				
	a	Interpret why JAVA is so important to Internet since inception? Also outline the need of JVM.	К2	CO1	7M			
4	l a	Discuss constructor overloading with an example program.	К2	CO1	7M			
1		OR		<u></u>	1			
		Outline and explain briefly the features of JAVA.	К2	CO1	7M			
	b	Infer the use of "this" key word in JAVA with an example program.	К2	CO1	7M			
	-	Unit-II	l .		<u> </u>			
		Develop the procedure of creating customized packages in JAVA.	КЗ	CO2	7M			
	a	Why JAVA does not support multiple inheritance through Classes. How this is achieved in JAVA with an example program.	КЗ	CO2	7M			
2		OR	ļ	1	!			
_	b	Make the use of super keyword to call the parent class constructor (parameterized) with an example program.	кз	CO2	7M			
		"A super class reference variable can refer to a sub-class object". Justify this statement with an example program.	КЗ	CO2	7M			
	Unit-III							
		Illustrate the use of finally block in exceptions with an example programs.	К2	CO3	7M			
	a	Illustrate the concept of synchronization of a method in JAVA with an example program.	К2	CO3	7M			
3		OR	•					
		Infer the procedure of creating customized exception in JAVA with an example program.	К2	соз	7M			
	b	Your Professor asked you "Write a JAVA application to create a thread to print 'NEC' for every 5 seconds". How you will proceed? Explain and write the program by using appropriate methods.	К2	соз	7M			
		Unit-IV	<u> </u>	1				
	a	Describe the advantages of streams in JAVA. List different types of byte and character stream classes in JAVA. Explain any two classes from each	К2	CO4	7M			
		Category. Illustrate the use of LinkedList class with an example program.	К2	CO4	7M			
4	-	<u> </u>	<u> </u>	l				
		Explain the HashSet with an example java program.	К2	CO4	7M			
	b	Suppose the input is '1 2 3 4 5 6 7 8 9 10'. Construct a JAVA program to print the sum of even numbers from the given input. Use appropriate methods of StringTokenizer class to divide the input into tokens.	КЗ	CO4	7M			

		· Unit-V				
	a	Explain the concept of parameter passing to Applets with an example program.	К2	CO5	7M	
		Illustrate the event delegation model in AWT with any event handling mechanism as an example.	K2	CO5	7M	
5	OR					
		Illustrate the uses of the following AWT components with examples: i. Button ii. Checkbox	К2	CO5	7M	
	b	Discuss the purpose of layout manages in JAVA. Illustrate any one manager with simple example.	K2	CO5	7M	

MEE ENGINEERING COLLEGE

(AUTONOMOUS)

Subject Code: R20CC2104

II B.Tech. - I Semester Supple Examinations, April-2025 pATA STRUCTURES

Time: 3 hours

Max. Marks: 70

)	1.00	Mark
	Questions	KL	со	Mark
	Unit-I	1	1	l == -
	i) Define Algorithm and Interpret in detail how to analyze an algorithm.	K4	CO2	7M
a	ii) Solve the following recurrence relation using Substitution Method	К2	CO2	7M
	1 0	l V2	CO2	7M
		NZ	CO2	7101
	algorithm			
	Algorithm sum(a,n)			
a	[{	К4	CO2	7M
	1			
	return s;			
	Truit II	<u> </u>		
		V2	CO1	7M
١,		NZ	601	/101
a	ii) Analyze divide and conquer algorithms with help of merge sort technique.	КЗ	CO1	7M
	OR			
	i) Compare and contrast linear search, binary search, and Fibonacci search in	кз	CO1	7M
l <u>.</u>	terms of efficiency and complexity.			}
b	ii) Sort the following elements using Quick sort technique {10; 80; 30; 90;	К2	CO1	7M
	40; 50; 70; 60}.			
	Unit-III			
	Define a stack and List out various applications of stack.	К2	CO2	7M
a	Compare and contrast the Queue and Circular Queue and implement insert	I/A	coa	7M
	and delete operations on queue	174	1002	/
	OR	!		l
	i) Illustrate the result of each operation in the sequence PUSH(S, 4), PUSH(S,	V2	CO2	7M
		KZ	CO2	1101
b		VA.	CO2	7M
		174	CO2	/141
	b a	i) Define Algorithm and Interpret in detail how to analyze an algorithm. ii) Solve the following recurrence relation using Substitution Method T(n) = 4T(n/2) + n2 T(n) = 2T(n/2) + n OR i) Differentiate Big-Oh, Theta, Omega notations. ii) Calculate time complexity for the given Iterative sum of n numbers algorithm Algorithm sum(a,n) { s:=0; for i:=1 to n do s:s+a[i]; return s; } Unit-II i) Sort the following elements using insertion sort technique a = { 2;8;7;1;3;5;6;4 } ii) Analyze divide and conquer algorithms with help of merge sort technique. OR i) Compare and contrast linear search, binary search, and Fibonacci search in terms of efficiency and complexity. ii) Sort the following elements using Quick sort technique {10; 80; 30; 90; 40; 50; 70; 60}. Unit-III Define a stackiand List out various applications of stack. Compare and contrast the Queue and Circular Queue and implement insert and delete operations on queue i) Illustrate the result of each operation in the sequence PUSH(S, 4), PUSH(S, 1), PUSH(S; 3), POP(S), PUSH(S, 5), and POP(S) on an initially empty stack	i) Define Algorithm and Interpret in detail how to analyze an algorithm. ii) Solve the following recurrence relation using Substitution Method	i) Define Algorithm and Interpret in detail how to analyze an algorithm. Interpret In

		Unit-IV					
	a	i) Compare singly and circular linked list while performing insertion and deletion operations.	К2	CO2	7M		
4	l a	ii) Write an algorithm to insert a new node into a Singly Linked List at the beginning, middle, and end positions.	K2	CO2	7M		
4		OR	î.				
	b	i) Explain the procedure with example for specific node deletion in a doubly linked list.	К2	CO2	7M		
	מ	ii) Explain the steps for inserting a node into a circular linked list with example.	K2	CO2	7M		
		Unit-V	i				
		i) What is a Binary Search Tree? Write an algorithm for inserting and deleting a node in a Binary Search Tree.	К³	соз	7M		
5	а	ii) Illustrate the step by step process of Dijkstra's algorithm to find shortest path for the give graph.	К4	CO4	7M		
	OR						
	 -	i) Explain the process of finding the minimum and maximum elements of the Binary Search Tree.	К3	CO3	7M		
	b	ii) Illustrate the process Kruskal's algorithm to find the minimum cost of spanning tree with an example.	K4	CO4	7M		

Subject Code: R20CC2105

II B.Tech. - I Semester Supple Examinations, April-2025 FRONT END WEB TECHNOLOGIES

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry	Equal Marks	(5 X 14 =70M)

	All Questions Carry Equal Marks (5 X 14 = 70M)	·		
QNo	Questions	KL	CO	Marks
	Unit-I			
	Create a webpage that displays student information as a part of online student management system. The table should present details such as the student's Roll No., name, age, grade, and marks in different subjects. Additionally, you need to ensure the table is well-structured and easy to read. Also use footer that shows some summary data like the total number of students.	3	1	7M
]	Illustrate the process of embedding audio and video content in a web page with an example.	2	1	7M
1	OR		<u> </u>	
	Design a HTML page for your department. The page includes different sections such as "Home (brief description about the department)," "Programs Offered" and "Department Achievements". You make it easy for users to navigate to each section by clicking on text-based links at the top of the page. Additionally, include a link to your college official website as an external reference.	3	1	7M
	Create an HTML page with a canvas element that draws a colored rectangle and circle.	2	1	7M
	Unit-II			
	Define CSS. What are the various types of CSS? Explain each with the help of an example.	1	2	7M
2	Create a styled blog post using a combination of CSS properties such as font-family, text-transform, letter spacing, and text-align to make the content more readable and visually appealing.	2	2	7M
	OR		1. ———	
-	Explain how to use the <can vas=""> element to create a circle. What methods are required to define and draw a circle on a canvas?</can>	2	2	7M
· ·	Explain the different types of gradients available in CSS with examples.	1	2	7M
	Unit-III	i	1	
f	List and explain the features of JavaScript.	1	3	7M
	Explain different types of mouse events supported by JavaScript.	2	3	7M
	OR		•	
<u>,</u>				•
3	Define Regular Expression. Discuss how regular expressions can be used to validate user input, such as email addresses and phone numbers?	2	3	7M

		Unit-IV				
4		Define jQuery. Explain its significance and how it simplifies event handling in web development.	2	4	7M	
	a	Explain the purpose of following methods i. addEventListener() ii. removeEventListener() iii. stopPropagation() iv. preventDefault()	2	4	7M	
		OR	k i	71		
	b	Define the Selectors API and explain its purpose in the context of DOM manipulation.	2	4	7M	
		Discuss the concept of event delegation and provide an example demonstrating how it can simplify event management.	2	4	7M	
		Unit-V				
5		Explain the essential functions and events required for drag-and-drop functionality, and provide an example implementation.	2 \	5	7M	
	a	Discuss the available animation options for opening and closing dialogs with examples.	2	5	7M	
		OR				
		Explain the options available for customizing the Sortable widget.	2	5	7M	
	b	Illustrate the process of creating an accordion UI component using jQuery UI.	2	5	7M	

—II B.Tech I Semester Supple. Examinations, April-2025

Sub Code: R20CC2106

PROBABILITY & STATISTICS

Time: 3 hours

GSE (CS, AIML, DS)

Max. Marks: 70

Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M) $\overline{\mathrm{KL}}$ CO Q.No Questions M Unit-I i)Find the median salary of the following distribution 40-50 50-60 60-70 Salary in (\$) 20-30 30 - 403 1 7M No. of 3 20 10 5 5 workers ii) Calculate the mean and Standard deviation for the following table giving the weight (in a kg) distribution of 542 members Weight 20-30 30-40 40-50 50-60 60-70 70-80 80-90 3 1 7M (in kg) 1 3 132 No. of 61 153 140 51 2 Members OR i)Calculate the Karl Pearson coefficient for the following distribution. Also, calculate quartile coefficient of skewness. 3 1 7M Group 6-10 16-20 21-25 26-30 1-5 11-15 31-35 b Frequency 3 4 68 ,30 10 6 2 ii)Compute skewness and kurtosis if the first four moments of a frequency distribution 3 1 7M f(x) about the value x=4 are respectively 1,4,10, and 45. i) Calculate the correlation coefficient for the following heights in inches of the fathers (χ) 3 2 and their sons (v)7M 68 69 65 66 67 | | 67 70 72 X 67 68 65 11 68 72 72 69 71 a ii) Obtain the rank correlation coefficient for the following data which give the I.Q. of a 3 2 group of 6 persons who sat in an examination. 7M 110 120 $I.Q(\chi)$ 100 140 80 90 Marks (y)70 60 | | 80 60 10 20 OR i)A new drug was tested on mice to determine its effectiveness in reducing canceros 3 2 2 tumors. Tests were run on 10 mice, each having a tumor of size 4 grams, by varying the amount of the drug used and then determining the resulting reduction in the weight of the tumor. The data were as follows Coded amount 1 2 6 8 10 7M of drug Tumor weight 0.5 0.9 1.2 1.35 1.50 1.6 1.53 1.38 1.21 0.65 b reduction Estimate the maximum expected fumor reduction and the amount of the drug that attains it by fitting a quadratic regression equation. ii) Fit a curve $v = a e^{bx}$ for the following data 3 2 4 1 2 5 6 7M 1 3 1 7 8 1.0 2.5 3.6 4.7 9.1 1.2 1.8 6.6 Unit-III i) A manufacturing firm employs three analytical plans for the design and development of a particular product. For cost reasons, all three are used at varying times. In fact, plans 1, 3 2, and 3 are used for 30%, 20% and 50% of the products, respectively. The defect rate is different for the three procedures as follows: $P(D/P_1)=0.01$, $P(D/P_2)=0.03$, 3 3 a 7M $P(D/P_3)=0.02$

				
	Where $P[D/P_j]$ is the probability of a defective product, given plan j . If a random product was observed and found to be defective, which plan was most likely used and thus responsible?			
	ii) Let X be an exponential random variable with parameter λ . Determine mean and variance of X.	3	3	7M
	OR			<u> </u>
	i)In 800 families with 4 children each, how many families would be expected to have 2 boys and 2 girls, at least 1 boy, no girl, at least 2 girls, Assuming that equal probabilities for girls and boys.	3	3	7M
b	ii)If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001. Find the probability that out of 2000 individuals exactly, more than 2	3	;3	7M
				<u> </u>
	i) A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car, and she wants to be able to assert with 95% confidence that the mean of her sample is off by at most 0.50 minute. If she can presume from past experience that	5	4	7M
a	ii) Suppose that X is a random variable with mean μ and variance σ^2 . Let $X_1, X_2, X_3,, X_n$ be a random sample of size n from the population represented by X. Prove that the sample mean $\bar{\chi}$ and sample variance S^2 are unbiased estimators of μ and σ^2 respectively. Also find the standard error of the sample mean.	5	4	7M
	OR			<u> </u>
b	i) X_1, X_2 , and X_3 is a random sample of size 3 from a population with mean value μ and variance σ^2 , T_1, T_2 , T_3 are the estimators used to estimate mean value μ , where $T_1 = X_1 + X_2 - X_3, T_2 = 2X_1 + 3X_3 - 4X_2, \text{ and } T_3 = (\lambda X 1 + X_2 + X_3)/3$ (i) Are T_1 and T_2 unbiased estimators? (ii) Determine the value of λ such that T_3 is unbiased estimator for μ . (iii) With this value of λ is T_3 a consistent estimator? (iv) Which is the best estimator?	5	4	7M
	ii) A random sample of size $n=100$ is taken from a population with $\sigma=5.1$. Given that the sample mean is $\bar{\chi}=21.6$, construct a 95% confidence interval for the population mean μ .	5	4	7M
	Unit-V			
•	i) Write the procedure for testing of Hypothesis.	3	5	7M
a	ii) The mean height of 80 boys, who participated in the athletic competition in a college was 167 cm with a standard deviation of 9 cm. The mean height of the remaining 160 boys who did not participate in the athletic competition was 163 cm with a standard deviation of 10cm. Test the hypothesis at 5% level of significance, whether the	3	5	7M
	OR		-	
b	i)The pulsality index (P.I.) of 11 patients before and after contracting a disease are given below. Test at 0.05 level of significance whether there is a significant increase of the mean of P.I. values Before 0.4 0.45 0.44 0.54 0.48 0.62 0.48 0.60 0.45 0.46 0.35 After 0.5 0.60 0.57 0.65 0.63 0.78 0.63 0.80 0.69 0.62 0.68	3	5	7M
	ii)If 57 out of 150 patients suffering with certain disease are cured by allopathy and 33 out of 100 patients with same disease are cured by homeopathy. Test whether there is reason to believe that allopathy is better than homeopathy at 0.05 level of significance.	3	5	7M
	b	product was observed and found to be defective, which plan was most likely used and thus responsible? ii) Let X be an exponential random variable with parameter λ. Determine mean and variance of X. OR i)In 800 families with 4 children each, how many families would be expected to have 2 boys and 2 girls, at least 1 boy, no girl, at least 2 girls, Assuming that equal probabilities for girls and boys. ii)If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001. Find the probability that out of 2000 individuals exactly, more than 2 individuals, none of them suffer from bad reaction. Unit-IV i) A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car, and she wants to be able to assert with 95% confidence that the mean of her sample is off by at most 0.50 minute. If she can presume from past experience that σ=1.6 minutes, how large a sample will she have to take? a ii) Suppose that X is a random variable with mean μ and variance σ². Let X _n X ₂ , X ₂ ,, X _n be a random sample of size n from the population represented by X. Prove that the sample mean x̄ and sample variance S² are unbiased estimators of μ and σ² respectively. Also find the standard error of the sample mean. OR i) X ₁ , X ₂ , and X ₃ is a random sample of size 3 from a population with mean value μ and variance σ². T ₁ , T ₂ , T ₃ are the estimators used to estimate mean value μ, where T ₃ = X ₁ + X ₂ - X ₃ , T ₂ = 2X ₁ + 3X ₃ - 4X ₃ , and T ₃ = [λX 1 + X ₂ + X ₃]/3 (i) Are T ₁ and T ₂ unbiased estimators? ii) Determine the value of λ such that T ₃ is unbiased estimator for μ. (iii) With this value of λ is T ₃ a consistent estimator? (iv) Which is the best estimator? ii) A random sample of size n = 100 is taken from a population with σ = 5, 1. Given that the sample mean is x̄ = 21, 6, construct a 95% confidence interval for the remaining 160 boys who did not participate in the athletic competition in a college was 167 cm with	product was observed and found to be defective, which plan was most likely used and thus responsible? ii) Let X be an exponential random variable with parameter λ. Determine mean and variance of X. OR i) In 800 families with 4 children each, how many families would be expected to have 2 boys and 2 girls, at least 1 boy, no girl, at least 2 girls, Assuming that equal probabilities for girls and boys. iii) If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001. Find the probability that out of 2000 individuals exactly, more than 2 individuals, none of them suffer from bad reaction. Unit-IV i) A research worker wants to determine the average time it takes a mechanic to rotate the tree of a car, and she wants to be able to assert with 95% confidence that the mean of her sample is off by at most 0.50 minute. If she can presume from past experience that σ = 1.6 minutes, how large a sample will she have to take? aii) Suppose that X is a random variable with mean μ and variance σ². Let X _D , X _S , μ,, X _c be a random sample of size n from the population represented by X. Prove that the sample mean π and sample variance S² are unbiased estimators of μ and σ² respectively. Also find the standard error of the sample mean. OR i) X ₁ , X ₂ , and X ₃ is a random sample of size 3 from a population with mean value μ and variance σ². T ₁ , T ₂ , T ₃ are the estimators used to estimate mean value μ, where T ₁ = X ₁ + X ₂ - X ₃ - X ₂ = 2 X ₁ + 3 X ₃ - 4 X ₂ and T ₃ = (λX 1 + X ₂ + X ₃)/3 (i) Are T ₁ and T ₂ unbiased estimators? (ii) With this value of λ is T ₃ a consistent estimator? (iii) With this value of λ is T ₃ a consistent estimator? (iv) Which is the best estimator? ii) A random sample of size n = 100 is taken from a population with σ = 5, 1. Given that the sample mean is π = 21, 6, construct a 95% confidence interval for the population mean μ. Unit-V i) Write the procedure for testing of Hypothesis. ii) The mean height of 80 boys, wh	product was observed and found to be defective, which plan was most likely used and thus responsible? ii) Let X be an exponential random variable with parameter λ . Determine mean and variance of X. OR ii) Ros families with 4 children each, how many families would be expected to have 2 boys and 2 girts, at least 1 boy, no girl, at least 2 girts. Assuming that equal probabilities for girls and boys. iii) If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001. Find the probability that out of 2000 individuals exactly, more than 2 individuals, none of them suffer from bad reaction. Unit-IV i) A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car, and she wants to be able to assert with 95% confidence that the mean of her sample is off by at most 0.50 minute. If she can presume from past experience that $\sigma = 1.6$ minutes, how large a sample will she have to take? a ii) Suppose that X is a random variable with mean μ and variance σ^2 . Let $X_1, X_2, X_3, \dots, X_n$ be a random sample of size n from the population represented by X. Prove that the sample mean π and sample variance S^2 are unbiased estimators of μ and σ^2 respectively. Also find the standard error of the sample mean. OR i) X_1, X_2, X_3 and X_3 is a random sample of size π from a population with mean value μ and variance σ^2 . $X_1, X_2, X_3, X_3, X_4, X_4, X_4, X_4, X_4, X_4, X_4, X_4$

Subject Code: R20CE2102

II B.Tech. - I Semester Supple Examinations, April-2025 FLUID MECHANICS

(CE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

	All Questions	darry Equal Marks	(5 X 14 =70M)
--	---------------	-------------------	---------------

QNo		Questions Questions (5 X 14 = 70M)	KL	СО	Marks
	-				
1		What is capillarity? Derive an expression for the capillary rise of water in a glass tube.	К1	1	7M
	a	An inverted U-tube differential manometer is connected to two points of pipes A & B through which water is flowing. The vertical distance between the centres of these pipes is 30 cm with B below A. Oil (S = 0.8) is used in the manometer. The level of manometer liquid in the two limbs is 35 cm above the centres of the respective pipes. Determine the difference in pressure between the pipes.	кз	1	7M
		OR	•		
	b	A plate 0.05 nm distance from a fixed plate moves at 600 mm/s and requires a force of 3 N per unit area to maintain this speed. Determine the fluid viscosity between the plates. Also, find the specified weight of the above fluid if the kinetic viscosity of the fluid is 0.003x 10 ⁻⁴ m ² /s.	кз	1	7M
		Derive an expression for total pressure and position of the centre of pressure on a vertically immersed plate surface. Show that the centre of pressure lies below CG.	К2	1	7M
		Unit-II			
		Derive 3D continuity equation in differential form.	K1	2	7M
! 	a	The velocity component for a wo-dimensional incompressible flow is given by $u = 3x - 2y$ and $v = -3y = 2x$. Show that the velocity potential exists. Determine the velocity potential function and stream function.	КЗ	2	7M
		OR			
2		Differentiate between (i) Uniform and non-uniform flow (ii) Steady and unsteady flow.	К2	2	4M
	b	Calculate the unknown velocity components so that they satisfy the continuity equation: (a) $u = 2x^2$; $v = xyz$; $w = ?$ (b) $u = (2x^2 + 2xy)$; $w = (z^3 - 4xz - 2yz)$; $v = ?$	К4	2	10M
3		Unit-III		.1.	
		Derive the Euler's equation of motion and then obtain Bernoulli's equation.	К2	3	7M
	a	Obtain the condition for maximum efficiency in the transmission of power through a pipeline.	К2	3	7M
		OR			
	b	Prove that the equation of the free jet of liquid is given by the expression, $y = x \tan\theta - \frac{g x^2}{2U^2} \sec^2\theta$	Кз	3	7M
		where x,y = coordinates of a point on the jet; $U = velocity$ of issuing jet; $\theta = inclination$ of the jet with horizontal.	· · · · · · · · · · · · · · · · · · ·		

	A 20 cm X 10 cm venturimeter measures the flow of water in a horizontal pipe. The pressure at the inlet of the venturimeter is 17.658 N/cm ² , and the vacuum pressure at the throat is 30cm of mercury. Find the discharge of water through the venturimeter, assuming $C_d = 0.98$.	К4	3	7M
	Unit-IV	•	'	
	Water flows over a rectangular weir 1.0m wide at a depth of 150mm and afterwards passes through a triangular right angles weir, taking the coefficient of discharge for the rectangular and triangular weir as 0.62 and 0.49, respectively. Find the depth of water over the triangular weir.	К4	4	7M
4	Explain the classification of orifice and mouthpiece based on their shape, size, sharpness and discharge.	К2	4	7M
	OR			
	Define an orifice and mouthpiece. What are hydraulic coefficients? Explain them.	К2	4	7M
	Derive an expression for discharge through a V-notch.	К2	4	7M
	Unit-V	· · · •	l	1
5	Derive the Darcy-Weisbach equation for head loss due to friction in pipes.	К2	5	7M
	Derive an expression for mean velocity for laminar flow (i) through a pipe (ii) between parallel plates.	К2	5	7M
	OR			
	What do you understand by hydrodynamically smooth and rough pipes?	К2	5	7M
	When a sudden contraction from 60 cm diameter to 30 cm is introduced in a horizontal pipeline, the pressure drops from 100 kPa upstream of the contraction to 80 kPa downstream. Assuming a coefficient of contraction of 0.65, (i) Estimate the flow rate in the pipe and (ii) the loss of head due to sudden contraction.	K 4	5	7M
	<u></u>		!	1

Subject Code: R20CE2103

II B.Tech. - I Semester Supple Examinations, April-2025 STRENGTH OF MATERIALS-I

(CE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)					
QNo		Questions Questions	KL	СО	Marks		
		Unit-I	!	1	l		
		Explain with a stress-strain diagram for mild steel, indicating the elastic limit,	К1	1	7M		
		yield point, ultimate strength, and fracture point.	•••	-			
	a	A circular rod of diameter 20 mm and length 500 mm is subjected to a tensile					
1		load of 30 kN. Calculate the stress, strain, and elongation of the rod. Assume	K2	1	7M		
		Young's modulus for the material is 200 GPa.					
1		OR					
		Prove the relationship between Young's modulus (E), Shear modulus (G), and	К1	1	7M		
		Poisson's ratio (v). Given E $\frac{1}{2}$ 200 GPa and v = 0.25, calculate G.					
	b	A bar of length 1 m and cross-sectional area 100 mm ² is subjected to a tensile	1/2	,	78.4		
		load of 50 kN. Calculate the strain energy stored in the bar. Young's modulus	K2	1	7M		
	<u> </u>	= 200 GPa.	ļ		<u> </u>		
	<u></u>	Unit-II					
		Explain the concept of shear force and bending moment in beams. Derive the	K1	2	7M		
		relationship between shear force, bending moment, and the rate of loading.		1	ļ		
	a	Draw the shear force and bending moment diagrams for a simply supported	КЗ	2	7M		
		beam of length 10 m subjected to a uniformly distributed load of 4 kN/m over	100	•			
	<u> </u>	the left half of the span and a point load of 20 kN at midspan.		J .	<u> </u>		
2	<u> </u>	OR		1	1		
		What is a point of contra flex re? Explain its significance in the analysis of	К1	2	7M		
		bending moments in beams					
	b	Draw the shear force and bending moment diagrams for a simply supported	-				
		beam of length 10 m subjected to a uniformly varying load of 2 kN/m at the	КЗ	2	7M		
		left end increasing to 8 kN/m at the right end.					
	<u></u>						
		Unit-III		-1	· · · · · · · · · · · · · · · · · · ·		
		Calculate the shear stress at various points for a rectangular beam 200 mm	К2	3	7M		
		wide and 400 mm deep subjected to a shear force of 20 kN.					
	a	Derive the bending equation M/I=f/y=E/R and explain the assumptions made	К3	3	7M		
3		in the theory of simple bending.	N3	3	/14		
	OR						
J	-	Calculate the section modulus for a hollow circular section with an outer	К1	3	7M		
		diameter of 200 mm and an inner diameter of 100 mm.	I/T	3	7.5		
	_	A T-section beam with flange 200 mm wide and 20 mm thick, and a web 300	К3				
	b	mm high and 15 mm thick is subjected to a bending moment of 80 kNm.		3	7M		
				Calculate the bending stresses at the top flange and at the junction of the		•	1
		flange and the web.					
		Unit-IV			<u></u>		
		A cantilever beam of length 4 m carries a point load of 20 kN at the free end.					
4		Determine the slope and deflection at the free end using the double integration	КЗ	4	7M		
	а	method. Assume EI=50×10 N·m ²					
	ĺ	************************************	l	Ī	1		

		A simply supported beam of span 9 m is subjected to a uniformly distributed load of 5 kN/m over the middle 3 m length. Calculate the slope at the supports and the maximum deflection using Macaulay's method. Assume EI=95×10 ⁶ N·m ²	КЗ	4	7M
		OR			
	b	An overhanging beam of total length 8 m has 2 m overhangs on each end. It carries a point load of 15 kN at the free end of one overhang. Determine the slope and deflection at the free end using the double integration method. Assume EI=50×10 ⁶ N·m ²	КЗ	4	7M
		A simply supported beam of span 10 m is subjected to a uniformly varying load of 5 kN/m at one end to 10 kN/m at the other end. Determine the slope and deflection at midspan using Mohr's theorems. EI=90×10 ⁶ N·m ²	 K3	4	7M
		Unit-V			
	a	Derive the expressions for longitudinal and circumferential stresses in a thin cylindrical shell subjected to internal pressure. A cylindrical shell of diameter 1 m and thickness 10 mm is subjected to an internal pressure of 2 MPa. Calculate the longitudinal and circumferential stresses.	К2	5	7M
5	a	A compound cylinder is formed by shrinking a cylinder of external diameter 150 mm and internal diameter 100 mm onto another cylinder of external diameter 200 mm and internal diameter 150 mm. If the interface pressure is 8 MPa, determine the radial and hoop stresses at the interface.	КЗ	5	7M
		OR		•	
		Derive Lame's equations for thick-walled cylinders subjected to internal and external pressures. Explain the assumptions made in the derivation.	К2	5	7M
	b	A thick-walled cylinder of internal diameter 0.3 m and external diameter 0.6 m is subjected to an internal pressure of 2 MPa and an external pressure of 1 MPa. Calculate the radial and hoop stresses at various points across the wall thickness using Lame's equations.	кз	5	7M

Subject Code: R20CE2104

II B.Tech. - I Semester Supple Examinations, April-2025

SURVEYING AND GEOMATICS (CE)

Time: 3 hours

Max. Marks: 70

Note: Answer All **FIVE** Questions la Questions Carry Equal Marks (5 X 14 = 70M)

ONo	T				
Q. III		Questions	KL	CO	Marks
	L	Unit-I	— <u>—</u> _		<u>L </u>
2 3	-	What are the instruments used in chain surveying? How is a chain survey			
	a	executed in the field?	2	1	7M
1		Explain about local attraction and how to check		-	
	L	OR	2	1	7M
	1	Write the principles of surveying			
	b	Define the terms	2	1	7M
	_ _	a. Bearing b. Meridian c. Types of bearing and meridian	2	1	7M
		I I I I I I I I I I I I I I I I I I I			
2	a	Define benchmark, line of collimation, reduced level and back sight.	7	7	
2	Ľ	Define Contours. What are the characteristics of contours?			
		OR			<u>-7M</u>
	Ъ	Discuss the height of instrument & rise and fall methods of computing at	 _		
	L	levels. Discuss the merits and demerits of each.	2	2	14M
	<u></u>	Imit-III		<u> </u>	
	a	How would you measure a horizontal angle by reiteration method? Explain	721	2	
3	L	Describe the any two types of Theodolite			
	<u> </u>	OR	<u></u>	3	
	ь	How would you measure a horizontal angle by repitition method? Explain	7	2	PTB #
		Explain the temporary adjustments in theodolite			
	Ĺ.,	Unit-IV	1 4	3	71 VI
	a	Write any four features of Total station	79 1	4	573.5
		What are the advantages of EDM's when compared to other instruments?			
4		OP	1 2	4	
		What is a tacheometer? What are the different systems of tacheometric	Т		
	b	measurement?	2	4	7M
		Write the procedure for setting out a compound curve.	s of bearing and meridian Unit-II pation, reduced level and back sight. OR & rise and fall methods of computing the merits of each. Unit-III patal angle by reiteration method? Explain OR OR OR OR OR OR OR OR OR O		
		Tinit.V		4	7M
ł	a	Explain about the principles of subsea surveying and geometics	7		
_		How do you determine the scale of an aerial photograph?		-	
5		OR		ם	<u>/WI</u> _
1	\prod	What is terrestrial photogrammetry? What are the types of terrestrial			
1	ע ע	motogrammetry?	2	5	7M
		Define focal length, ground nadir point and oblique photograph.	-	_	71/4
				ا ق	/ IVI

KL: Blooms Taxonomy Knowledge Level

Subject Code: R20CE2105

II B.Tech. - I Semester Supple Examinations, April-2025 CONCRETE TECHNOLOGY

(CE)

Time: 3 hours

Max. Marks: 70

Note: Answer All **FIVE** Questions Carry Equal Marks (5 X 14 = 70M)

QNo	Questions	KL	СО	Marks
QITO	Unit-I			11201110
1				F
	Describe the significance of different grades of cement.	2	1	7M
	Explain about manufacture of Portland cement by dry process	2	1	7M
_	OR			
	Explain about High alumina cement	2	1	7M
	Discuss about Sulphate resisting cement	2	1	7M
	Unit-II		<u> </u>	
	What is Workability and discuss the factors affecting workability	2	2	7M
2	Explain the Vee-bee method of determining workability with neat sketches	2	2	7M
	OR			
	b Explain the significance of the tests on concrete at fresh state while we are interested only in concrete at hardened state?	2	2	14M
	Unit-III			
	Write the Effect of mineral admixtures on strength and durability of concrete.	2	3	7M
3	Explain about silica fume its advantages and disadvantages	2	3	7M
	OR			
	Write the Effect of mineral admixtures on fresh and hardened concrete	2	3	7M
	Explain any two types of chemical admixtures	2	3	7M
	Unit-IV	1	'	
	What is Sulphate attack and explain any one method of controlling Sulphate attack	2	4	7M
	Explain about the Effect of height/diameter ratio on compressive strength	2	4	7M
4	OR			-
	Discuss the Factor's affecting modulus of elasticity and Poisson's ratio	2	4	7M
	Explain different moduli of elasticity of concrete and explain their practical significance	2	4	7M
	Unit-V	7		
5	Design mix proportions with the following data using IS code method. Characteristic compressive strength of concrete 30 Mpa. 20mm Maximum size of round aggregate. Moderate degree of workability. Specific gravity of concrete 3.15. specific gravity of coarse and fine aggregates 2.65. Zone III	3	5	14M

	OR	ne Proportioning of Concrete Mixes ail how high performance concrete is prepared? What are its		
	Write about the Proportioning of Concrete Mixes	2	5	7N
b	Discuss in detail how high performance concrete is prepared? What are its applications and advantages?	2	5	7IV

MEC ENGINEERING COLLEGE

(AUTONOMOUS)

Subject Code: R20EE2102

II B.Tech. - I Semester Supple Examinations, April-2025 ELECTRICAL CIRCUIT ANALYSIS-II

(EEE)

Time: 3 hours

Max. Marks: 70

		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)			
QNo		Questions	KL	co	Marks
		Unit-I	•		
		Draw the circuit diagram and analyze the 3 phase 4 wire supply connected to	2	1	7M
		balanced star connected load?			
	a	A balanced 3 phase star connected load is fed from a 212V 3 phase supply.	3	1	7M
		Each leg of the load has a resistance of 32 ohms. Find the power factor, the	3	1	7141
1		total power, the phase currents and the line currents of the systems?	ļ,		
-		OR			T
		Draw the circuit diagram and analyze the 3 phase 3 wire supply connected to	2	1	7M
	.	balanced delta connected load?		<u> </u>	
	b	1	3	1	7M
		connected to a 440V 3 phase 3 wire supply. Calculate the line currents if one		*	'''
ļ <u>.</u>	-	conductor is short circuited?		Į]
	<u></u>	Unit-II	1	1	<u> </u>
		Explain the three watt meter method for the three phase power measurement	2	2	7M
2		with circuit diagram? The power input to a load was measured by two watt meter method. The		1	
	a	readings are 780W and 390W, the next reading is obtained after reversing the	3	2	7M
		potential coil connections. Determine the power and power factor of the load?			
		OR	<u> </u>	i	
	\vdash	Explain the power factor measurement by using two watt meter method? Also	1	1	1
2		draw the circuit diagram?	4	2	
		diaw the cheat diagram:			
		Three un equal non reactive resistances are mesh connected to a 410V,			
	b	symmetrical three phase system. If the line currents are 48A, 72A and 102A.			14M
		Find the total load? If two wait meters are connected in the circuit to measure		2	
		the power input, find the reading on each instrument. The current coils are	į		
		connected in the lines carrying 48A and 102A?			
	<u> </u>	I II YY I YY		<u> </u>	<u> </u>
		Unit-III	· -	<u> </u>	
		Analyze the staedy state response of R-L-C circuit excited with D.C input	3	3	7M
	a	with necessary equations?		ŀ	
3	"	A 17V source is applied to a capacitive circuit has an impedance of (8-j22)	4	3	7M
3		ohms. Calculate the current and the power in the circuit?	_		
		OR			
		Analyze the transient response of R-C circuit excited with A.C input with	2	3	7M
	١,	necessary equations?			
	b	A 4600 ohms resistor and 314 micro farad capacitor are connected in paralle	3	3	7M
		across a 215V 50Hz supply Find the circuit impedance and the line current?	<u> </u>		<u> </u>
		Unit-IV			,
		Derive and analyze the parallel connection of two port networks with	4	4	7M
4	a	equivalent circuit diagram?	-	-	
	1	· · · · · · · · · · · · · · · · · · ·		<u> </u>	l

		Derive the inverted transmission line parameters of two port network with circuit diagram?	2	4	7M
		OR			_
	b	Derive and analyze the cascade connection of two port networks with equivalent circuit diagram?	4	4	7M
		Derive the inverted h- parameters of two port network with circuit diagram?	2	4	7M
		Unit-V	1		
5	a	Discuss in detail about the basic synthesis procedure and assumptions made with relevant to electrical networks?	2	5	7M
		Compare the properties of RC impedance and RL admittance functions?	2 }	5	7M
		OR			
	b	Explain the role and properties of positive real function with relevant expressions?	3	5	7M
	"	Compare the properties of RL impedance and RC admittance functions?	2	5	7M

Subject Code: R20EE2103

II B.Tech. - I Semester Supple Examinations, April-2025 **ELECTRICAL MACHINES-I**

(EEE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

	All Questions Carry Equal Marks (5 X 14 = 70M)			
QNo	Questions	KL	СО	Marks
	Unit-I	•	•	_
	i] Draw the OCC characteristics of DC shunt generator and explain how to find critical resistance of DC Generators.	K1	1	7M
1	ii] The terminal voltage of a separately excited DC Generator with constant a excitation is constant and is equal to 250 V. Determine the percentage reduction in speed when the load changes from 250 KW to 150 KW. The armature resistance is 0.050 and total contact drop at brushes = 2.2 V. Neglect armature reaction.	КЗ	1	7M
	OR			
	b	К2	1	7M
		К2	1	7M
	Unit-II			
	i] Derive the torque equation of DC motor?	K2	2	7M
	a ii] A 230V DC shunt motor lakes 5A when running at no-load. The armature resistance is 0.2Ω and field resistance is 115Ω . For an input current of 72A, calculate the shaft output and efficiency. Also calculate the armature current at which the efficiency is maximum.	кз	2	7M
2	OR		. 1	
	i] Explain the significance of back EMF in a DC machine.	K1	2	7M
	ii] A 4 pole, 220V DC shunt generator has armature and field resistances of 0.2Ω and 220Ω respectively. The armature has 520 conductors lap wounded. The machine runs at 1600 rpm. Find the generated EMF and flux developed per pole	КЗ	2	7M
•	Unit-III	-	<u>-</u>	
	i] Explain various methods for speed control of DC motors.	К2	3	7M
3	a ii] The armature of a 6-pole lap wound dc shunt motor takes 400 A at a speed of 350 rpm. The flux per pole is 80 mWb's, the number of turns is 600 and 3% of torque is lost in friction and iron losses. Calculate the brake horse power, back emf and supply voltage if armature resistance is 0.1 Ω.	кз	3	7M
	OR			
	i] How can the efficiency of a DC shunt motor be predetermined? Explain with circuit diagram and relevant calculations. Discuss the merits and demerits of this test	К2	3	7M
	ii] Explain Hopkinson's test with its advantages and disadvantages.	K2	3	7M
	Unit-IV			
		К2	4	7M

		ii] The primary winding of a 50-Hz transformer has 480 turns and is fed from a 6400V supply. Determine (a) the peak value of the flux in the core, and (b) the secondary voltage if the secondary winding has 20 turns.	КЗ	4	7M
 		OR			
		i] Derive an expression for the saving of copper in an autotransformer as compared to an equivalent two winding transformer.	K1	4	7M
	b		1		
		Open circuit test (LV side): 200 V, 1.2 A, 90 W Short circuit test (HV side): 50 V, 5 A, 110 W. Compute the parameters of approximate equivalent circuit referred to LV side.	K 3	4	7M
		Unit-V	1	<u> </u>	
	a	i]) With the help of neat sketch, explain in detail about parallel operation of single phase transformers.	K2	5	7M
5	l a	 ii] Explain with the help of connection diagrams the operation of off – load and on – load tap changers. 	К2	5	7M
		OR			:
	b	i] It is desired to transform 2400 V,500 kVA three-phase power to two-phase power 600 V by scott-connected transformers. Determine the voltage and current rating of both primary and secondary of each transformer. Neglect the transformer no load currents.	К2	5	7M
		ii] What is the significance of Y-Y, Y-delta and Delta-Y, Delta-Delta connections in 3-phase transformers?	К2	5	7M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

Subject Code: R20EE2104

II B.Tech. - I Semester Supple Examinations, April-2025 ELECTROMAGNETIC FIELDS

(EEE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

	All Questions Carry Equal Marks (5 X 14 = 70M)	1		1
QNo	Questions	KL	СО	Marks
	Unit-I	-1		
1	Derive the expression for the capacitance of a spherical capacitor. A parallel plate capacitor has a plate area 1.5 <i>m</i> ² and the separation of 5mm. There are two dielectrics in between the plates. The first dielectric has a thickness of 3mm with relative permittivity of 6, second dielectric has a thickness of 2mm with relative permittivity of 4. Find the capacitance.		1	14M
	OR	-l		<u> </u>
	i) Derive relation between electric potential and field intensity.	КЗ	1	7M
	ii) Derive an expression for electric potential due to an electric dipole.	КЗ	1	7M
	. Unit-II			
	i) Derive Laplace and Poisson's equations.	КЗ	2	7M
	a ii) Define polarization and explain the behavior of a perfect conductor in an electric field.	КЗ	2	7M
o .	OR			
2	If $\mathbf{D} = (2y^2 + z)\mathbf{a}_x + 4xy\mathbf{a}_y + x\mathbf{a}_z$ C/m². Find: i). The volume charge density at (-1, 0, 3) ii). If the flux through the cube defined by $0 \le x \le 1$, $0 \le y \le 4$, $0 \le z \le 1$. Find the total charge enclosed by the cube.	КЗ	1	14M
	Unit-III			
	i) State and explain Biot-Savart's law.	К2	3	7M
0	a ii) Derive H at the center of the current carrying square loop placed in xyplane.	КЗ	3	7M
3	OR			.!
	i) State and explain Ampere's circuital law.	К2	3	4M
	ii) Derive an expression for H of a straight current carrying conductor.	КЗ	3	10M
	Unit-IV			
	i) Derive an expression for magnetic force between two neighbouring current carrying conductors.	кз	4	7M
4	a ii) An electron with velocity $(3a_x + 12a_y - 4a_z)$ m/s experiences no net force at a point in a magnetic field $(10a_x + 20a_y + 30a_z)$ mWb/m². Find electric field intensity at that point.		4	7M
	OR	<u>.L</u>	_1	1
	i) Derive an expression for torque experienced by magnetic dipole.	КЗ	4	7M
	ii) Derive an expression for energy stored in a magnetic field.	КЗ	4	7M
	1 _1			

		Unit-V			
		i) Define static and rotational induced emfs	K1	5	4M
_	a	ii) Derive Maxwell's equations for time varying fields.	КЗ	5	10M
5		OR		1	
		i) Explain the electromagnetic wave propagation in dielectrics.	K2	5	7M
	b	ii) State and prove Poynting theorem.	K2	5	7M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome

M:Marks

Subject Code: R20EE2105

II B.Tech. - I Semester Supple Examinations, April-2025 ANALOG ELECTRONICS

(EEE)

Time: 3 hours

Max. Marks: 70

	T 11111	e: 3 nours Max. Mark	ks: /U						
		Note: Answer All FIVE Questions.							
QNo	1	All Questions Garry Equal Marks (5 X 14 = 70M) Questions	KL	CO	Marks				
	-	Unit-I	<u> </u>	<u> </u>	<u> </u>				
			L3	CO1	7M				
		What are the advantages and disadvantages of negative amplifier in detail?		COI	/ IVI				
	a	Show that for a current series feedback amplifier the input and output	L3	CO1	7M				
		resistances are increased by a factor if (1+Aβ) with feedback.							
1	L	OR							
		Explain with the help of mathematical expressions, how the negative feedback	L2	COI	7M				
	Ь	in amplifiers increases amplifier bandwidth and reduces distortion in amplifiers.							
		An amplifier has a midband gain of 125 and a bandwidth of 250KHz. If 4%	L3	COI	7M				
	<u> </u>	negative feedback is introduced, find the new bandwidth and gain.							
	<u> </u>	Unit-II							
2		Explain the response of RC Low pass circuit for a square wave input under	L2	CO2	7M				
	a	different time constants.							
		With the help of a circuit diagram, explain the operation of shunt clipper.	L2	CO2	7M				
		OR	<u>'</u>	l.,	I				
		Prove that RC high pass circuit generates impulses at low time constants when	L3	CO2	14M				
	Ъ	the square wave is given as input.			14171				
	ן ט	Explain the operation of practical clamper circuit for varying input amplitude.	L2	CO2					
					<u> </u>				
		Unit-III	ı 	1					
		Explain the dual input balanced output differential amplifier with a circuit	L2	CO3	7M				
		diagram.							
	a	Design a differentiator to differentiate an input signal that varies in frequency	L4	CO3	7M				
		from 10 Hz to about 1 kHz.	۷.		' ' '				
3		OR							
		Draw a neat circuit of an integrator circuit. Explain the functioning with the	L2	CO3	7M				
		input-output Waveforms.	_						
	b	The op-amp non-inverting summing circuit has the following parameters V_{CC} =	12	CO3	7M				
		$+15 \text{ V}, \text{ V}_{EE} = -15 \text{ V}, \text{ R} = \text{R}_1 = 1 k\Omega, \text{ R}_1 = 2 \text{ k}\Omega, \text{ V}_1 = +2 \text{ V}, \text{ V}_2 = -3 \text{ V}, \text{ V}_3 = +4 \text{ V}.$	L3		/1/1				
		Determine the output voltage V.		-					
		Unit-IV		<u> </u>	ì				
		Explain the operation of Bistable Multivibrator with the help of a circuit	L2	CO4	7M				
		diagram.							
	a	If $R_A = 6.8 \text{ K}\Omega$, $R_B = 3.3 \text{ K}\Omega$, $C = 0.1 \mu\text{F}$ in 555 Astable Multivibrator. Calculate	L3	CO4	7M				
4		(i) thigh (ii) t _{Low} (iii) Free running frequency							
		OR							
		Explain in which the 555 timer can be used as monostable multivibrator.	L2	CO4	7M				
•	b	•		COA					
		Design a bistable multivibrator to meet the following specifications: $V_{CC} = V_{BB}$	L3	CO4	7M				
	-	$= 12 \text{ V}, I_{\text{C(sat)}} = 6 \text{ mA}, h_{\text{FE(min)}} = 25, \text{ maximum trigger frequency} = 25 \text{ kHz}.$		<u> </u>	<u> </u>				
		ı							

5		Unit-V				
		Draw and explain the frequency response of Band pass and Band reject filters	L2	CO5	7M	
	a	Illustrate the working of successive approximation type A/D converter with a diagram.	L2	CO5	7M	
	OR					
3		Explain the operation of first order low pass butter worth filter and derive the expression for filter gain.	L2	CO5	7M	
	b	With sketch explain the working principle of Weighted resistor DAC using Op- Amp.	L2	CO5	7M	

(AUTONOMOUS)

Subject Code: R20ME2102

II B.Tech. - I Semester Supple Examinations, April-2025 FLUID MECHANICS AND HYDRAULIC MACHINERY

(ME)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

	,	All Questions Carry Equal Marks (5 X 14 = 70M)			
QNo		Questions	KL	CO	Marks
		Unit-I	•	1	<u> </u>
		State the following fluid properties: Mass Density, weight density, specific volume and specific gravity of a fluid and mention their SI units.	2	1	7M
	a	An oil film of thickness 1.6 mm is used for lubrication between a square plate of size 0.8 m × 0.8 m and an inclined plane having an angle of inclination 15°. The weight of the square plate is 390 N and it slides down the plane with a uniform velocity of 0.25 m/s. Find the dynamic viscosity of the oil.	3	1	7M
	<u> </u>	OR	ı	1	
		Explain about U-tube differential manometer and inverted U-tube differential manometer with neat sketches.	2	1	7M
1	b	In an inverted U tube differential manometer connected two pipes A and B containing water. The fluid in manometer is oil of specific gravity 0.8. For the manometer readings shown in the figure, determine the pressure difference between A and B. OIL Sp. gr. 0.8 WATER	3	1	7M
		Unit-II		· · · · · · · · · · · · · · · · · · ·	
		Distinguish between a) Laminar and Turbulent b) Steady and Unsteady c) Uniform and Non-Uniform d) Compressible and incompressible flow.	2	2	7M
2	а	A Water pipe changes in diameter from 400mm at section A to 800mm at section B which is 7 m above. The pressures at A and B are 100 kPa and 75 kPa respectively. The discharge is 400 litres/Sec. Find the direction of flow.	3	2	7M
		OR		,	
	b	Derive the continuity equation from fundamentals.	2	2	7M
		State assumptions and derive an expression for Bernoulli's theorem.	2	2	7M
		Unit-III			
3	a	Explain the Rayleigh's method and determine the time period (T) of a pendulum with length (L) and acceleration due to gravity (g) by using Rayleigh's method	3	3	7M
		Discuss the Buckingham Pi theorem and mention conditions for selecting repeating variables.	2	3	7M

		OR		- 1	ī			
	b	Derive an expression for the momentum thickness.	3	3	7M			
	ь	For the given velocity profile $\frac{u}{U_{Max}} = \left(\frac{y}{\delta}\right)$, Determine 1) Displacement thickness. 2) Momentum thickness. 3) Energy thickness.		3	7M			
		Unit-IV	<u> </u>					
		Derive the equation for impact of jet striking a moving inclined plate in the direction of jet.	2	4	7M			
4	a	A jet of water of diameter 40 mm moving with a velocity of 30m/sec strikes a curved fixed symmetrical plate at the center. Find the force exerted by the water on the plate, if the jet is deflected through an angle of 120 degrees at the outlet of the curved plate.	3	4	7M			
•		OR	,					
		Explain the classification of turbines.	2	4	7M			
	b	A Pelton wheel is to be designed for the following specifications: Shaft power = 11,772 kW; Head = 380 meters: speed = 750 r.p.m; overall efficiency = 86%; jet diameter is not to exceed one-sixth of the wheel diameter, Determine (i) The wheel diameter. (ii) The number of jets required.	3	4	7M			
		Unit-V			,			
		Discuss the working principle of single stage centrifugal pump with neat sketch.	2	5	7M			
5	a	A centrifugal pump delivers water against a net head of 10 m at a designed speed of 800 rpm. The vanes are curved backwards and make an angle of 30° with the tangent at the outer periphery. The impeller diameter is 30cm and has a width of 5cm at the outlet. Determine the discharge of the pump, if the manometric efficiency is 85%.	3	5	7M			
	OR							
		Discuss the working principle of a reciprocating pump? Explain its working with the help of an indicator diagram	2	5	7M			
	b	A single acting reciprocating pump running at 50 r.p.m delivers 0.01 m ³ /sec. The diameter of the piston is 20cm and stroke length is 40cm. Find the (i) coefficient of discharge (ii) slip and percentage of slip of the pump.	3	5	7M			

Narasaraopeta Engineering College (Autonomous) Kotappakonda Road, Yellamanda(P.O), Narasaraopet – 522601, Gunturn District, A.P.

Subject Code:R20ME2103

II B.Tech. - I Semester Supple Examinations, April-2025 METROLOGY & INSTRUMENTATION

Time: 3	3 Hours	Max	.Marks:60.	Branch: ME.
		1 5	ote: Answer All FIVE Que	
1.	_	- - - - - - - - - - - -	stems of fits with necess	•
		e significance ve assembly.	of the following terms w	ith suitable examples: interchange ability
	I		OR	
	B) I) State the c	ondition when	the shaft based system	is used for limits and fits
	II) Bring out t	the salient feat	res of British standard	and ISO systems of limits and fits.
2.	A) I) Mention 1	few application	is of bevel protractors.	
	II) Explain w	ith neat sketch		ars and their applications
			OR	
			ne Standard and End Sta	
	II) Explain w	ith a neat skete	th the working mechanis	m of gear and pinion type dial indicator
3.	A) State and ex and plug gauge.	4 1	or's principle of gauge d	esign with neat sketch of Plug gauge
	una prag gaago.		OR	
	B) Explain the			oscope with a neat sketch.
4.	A) I) How do r	andom errors d	iffer from systematic en	rors?
			=	ristics of an instrument.
	:		OR	
	B) Explain with	the help of a	iagram and characteristi	ics the operation of LVDT
	A) Define Theroperation of The		various types of thermo	ocouples. With neat diagram explain the
			OR	
	B) Explain the	working of Mo	Leod pressure gauge wi	th neat sketch?

Subject Code: R20ME2104

II B.Tech. - I Semester Supple Examinations, April-2025 THERMODYNAMICS

(ME)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks	(5 X 14 =70M)

	,	All Questions Carry Equal Marks (5 X 14 =70M)			
QNo		Questions	KL	со	Marks
		Unit-I			
		i) Explain about thermodynamic path, how heat and work are different forms of energy.	K2	01	7M
	а	ii) Explain about Quasi-static process, how the work done during quasi static process can be treated as reversible.	K2	01	7M
		OR			
1		i) What is a constant volume gas thermometer? Why is it preferred to a constant pressure gas thermometer?	K2	01	7M
	b	ii) A new scale N of temperature is divided in such a way that the freezing point of ice 1000N and the boiling point is 4000N. What is the temperature reading on this new scale when the temperature is 160°C? At what temperature both the Celsius and the new temperature scale reading would be the same?	КЗ	01	7M
		Unit-II			
		i) What is first law of thermodynamics and explain first law for a process and a cycle.	K2	02	7M
2	а	ii) A piston-cylinder device operates 1 kg of fluid at 20 atm. Pressure. The initial volume is 0.04 m³. The fluid is allowed to expand reversibly following a process PV ^{1.4} = constant so that the volume becomes double. The fluid is then cooled at a constant pressure until the piston comes back to the original position. Keeping the piston unaltered, heat is added reversibly to restore it to the initial pressure. Calculate the work done in the cycle	K4	02	7M
		OR		1	
	b	Derive the Steady flow energy equation for an open system and write its applications for turbine and compressor.	КЗ	02	14M
		Unit-III			
		i) State and prove Clausius theorem; Explain Clausisus inequality from the assumptions.	КЗ	03	7M
	a	ii) One kg of ice at -0°C is exposed to the atmosphere which is at 20°C. Ice melts and comes into thermal equilibrium with the atmosphere. Determine the entropy increase of the universe.	К3	03	7M
3		OR			
	b	A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine drives a reversible refrigerator which operators between reservoirs at temperatures 40°C and -20°C. The heat transfer to the heat engine is 2000 kJ and the network output of the combined engine refrigerator plant is 360 kJ Evaluate the heat transfer to the refrigerator and the net heat transfer to the reservoir at 400C	K4	03	14M
		Unit-IV			
4		Explain the phase equilibrium diagram of water with ice at -10°C to Steam at 250°C, using P-V, T-S, H-\$ diagrams. Mention the importance of critical	K4	04	14M

		OR			
	b	Water is heated at a constant pressure of 0.7 MPa. The boiling point is 164.97°C. The initial temperature of water is 0°C. The latent heat of evaporation is 2066 kJ/kg. Find the increase of entropy of water if the final temperature is steam.	К3	04	14M
		Unit-V			}
	а	With a neat sketch explain the working of Otto cycle and derive the expression for its thermal efficiency and mean effective pressure	К3	05	14M
5		OR			,
	b	With a neat sketch explain the working of simple Rankine cycle and derive the expression for its thermal efficiency. Discuss the methods to improve the thermal efficiency	К3	05	14M

Subject Code: R20ME2105

II B.Tech. - I Semester Supple Examinations, April-2025

MECHANICS OF SOLIDS

(ME)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 14 = 70M) ONo ΚL CO Marks **Questions** Unit-I i) Draw stress-strain curve for a mild steel rod subjected to tension and explain KL2 CO1 **7M** about the salient points on it ii) Determine the young's modulus and Possion's ratio of a metallic bar of length 25cm breadth 3cm depth 2cm when the beam is subjected to an axial KL3 CO1 **7M** compressive load 240KN The decrease in length is given by 0.05cm and 1 increase in breadth 0.002cm OR i) Write the differences among Gradual, Sudden, Impact and Shock loadings with KL2 CO1 7M the help of expressions. ii) A steel bar 320 mm long and 40 mm wide 30 mm thickness is subjected to a KL3 CO1 **7M** pull of 250KN in the direction of its length. Determine the change in volume. Unit-II Sketch the S.F. &B.M. diagrams for an Overhanging beam ABCDE shown. Mark all the salient points with respective values. 14M A = 27 + 111 + 10 + 10 + 111 + KL3 CO₂ a 2 OR Derive the relation between shear force, bending moment and loading for beam KL3 CO2 14M b carrying uniformly distributed load. **Unit-III** A simply supported beam having span 4 m is subjected to a UDL of 30 kN/m 14M over whole span. The cross section of beam is T section. The dimensions of flange are 120mmx10mm and that of web are 200mmx15mm. Draw shear stress CO3 KL3 a distribution across the depth of cross-section marking the values at salient points. 3 OR A steel beam of I – section 200mm deep and 160mm wide has 16 mm thick 14M flanges and 10mm thick web. The beam is subjected to a shear force of 200 KN. KL3 **CO3** b Determine the shear stress distribution over the beam section if the web of the beam is kept horizontal. **Unit-IV** A simply supported beam span 14m, carrying concentrated loads of 12KN and 14M 8KN at two points 3mts and 4.5m from the two ends respectively. Moment of KL3 **CO4** Inertia I for the beam is 160 x10 mm and E = 210KN/mm. Calculate deflection of the beam at points under the two loads by macaulay's method. 4 14M A simply supported beam of 8m carries a partial uniform distributed load of KL3 **CO4** intensity 5KN/m and length 2m, starting from 2m from the left end. Find slope at left support and central deflection. Take E= 200Gpa and I=8×108mm⁴.

		Unit-V			
	a	A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected to internal pressure of 1.2 MPa. If the thickness of the sheet is 12mm, find the circumferential stress, longitudinal stress, changes in diameter, length and volume. Take E=200 GPa and μ = 0.3.	KL3	CO5	14M
5		OR		1	
		i) Derive torsion equation with assumptions.	KL2	CO5	10M
	b	ii) Find the angle of twist per metre length of a hollow circular shaft of 100 mm external and 60 mm internal diameter, if the shear stress is not to exceed 35 M Pa. Take C = 85 G Pa.	KL3	CO 5	4M

II B.Tech. - I Semester Supple Examinations, April-2025 ELECTRONIC DEVICES AND CIRCUITS

(ECE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M) **Ouestions** KLCO M Q.No Unit-I i) List the current component of PN junction diode and define diode current 1 1 7M equation. а ii) Explain the semiconductors, insulators and metals classification using 2 1 7M energy band 1 OR i) Deduce the expression for Concentration of Hole and Electron in an i intrinsic semiconductor and also prove the Fermi level position in intrinsic 7M 4 b semiconductor ii) **Define** transition capacitance in a diode and derive the expression for it. 3 1 7M Unit-II **Deduce** the expression for ripple factor of a full-wave rectifier with 4 2 7M capacitor filter a ii) **Explain** the working of Zener diode and its V-I characteristics. And what is the sufficient condition for regulation. 2 2 7M 2 i) Explain the construction and working of Varactor diode with the help of 3 2 7M V-I characteristics. 2 2 ii) Write short notes on the principle of LED. 7M **Unit-III** i) Analyze about input and dutput characteristics of a transistor when it is 4 3 7M connected in common base configuration. a ii).Show that transistor acts as a switch and explain briefly about its 4 3 7M switching times. 3 OR i) Compare CE, CB and CC configurations. 3 3 7M ii) Justify why does the CE configuration provide large current amplification while the CB configuration does not 3 7M 4 **Unit-IV** i)) What is the need for blasing what are the factors effecting the operating 2 4 7M point in BJT? 4 a ii) Find the operating point and stability factor in a silicon transistor with a 7M 4 4 fixed bias, Vcc= 9 V, Rc= $3 \text{ k}\Omega$, RB= $8 \text{k}\Omega$, β = 50, VBE= 0.7V.

		OR		i i	· · · · · · · · · · · · · · · · · · ·
	b	i) Make use of circuit diagram of Fixed bias circuit of CE amplifier and derive expression for S, S ¹ and S ¹¹	3	4	7M
		ii) How Thermal runaway occurs, explain in detail.	2	4	7M
,		Unit-V			
		i) Make use of Working of UJT in electronic circuits.	2	5	7M
5	a	ii). Define the pinch-off voltage Vp, sketch the depletion region before and after Pinch-off	2	5	7M
		OR	· I · · · · · · · · · · · · · · · · ·	l ·.	
	b	i) Explain the working of a depletion type MOSFET with a neat construction diagram and its characteristics.	3	5	7M
		ii)Compare JFET and MOSFET.	2	5	7M

KL: Blooms Taxonomy Knowledge Level

II B.Tech. - I Semester Supple Examinations, April-2025 SIGNALS AND SYSTEMS

(ECE)

Time: 3 hours

Max. Marks: 70

Note Answer All FIVE Questions.

QNo		Questions	KL	1.00				
		Queen la contraction de la con	`` -	со	Marks			
		Unit-I						
	а	i) Define and sketch the unit step function and Signum function? Bring out the relation between these two functions?	2	1	7M			
1		ii) Explain the relation between Cross and Auto Correlation?	2	1	7M			
		OR		·	· 4···			
	b	Explain the following i) Impulse Sampling ii) Natural and flat top Sampling?	2	1	7M			
	•	Unit-II			•			
		i) Explain the analogy of vectors and signals in terms of Orthogonally and evaluation of Constant?	2	2	7M			
	a	ii) Discover relation between Trigonometric Fourier series and Exponential Fourier series?	3	2	7M			
2		OR						
_		i) What are the properties of Fourier series?	2	2	7M			
	b	ii) Obtain the condition under which two signals $f_1(t)$ and $f_2(t)$ are said to be orthogonal to each other. Hence prove that Sin nw ₀ t and Cos mw ₀ t are orthogonal to each other for all integer values of m, n?	3	2	7M			
	Unit-III							
		i) Define Hilbert Transform What is its Significance?	2	3	7M			
3	a	ii) The Signal X(t) with Fourier transform $X(jw) = u(\omega + \omega_0) - u(\omega - \omega_0)$ can undergo impulse train sampling without aliasing, provided that the Sampling period $T < \Pi/\omega_0$. Justify	3	3	7M			
Ī		OR						
ľ		i) Compute the Fourier transform of the Signal $X(t) = e^{-at}$?	3	3	7M			
	b	ii) State and prove the time and frequency differentiation properties of Fourier transform?	3	3	7M			
		Unit-IV						
		i) State the properties of the ROC of LT?	3	4	7M			
_	a	ii) Find the Laplace transform of Coswt?	3	4	7M			
4	1	OR	L					
•		i) Derive the relation between Laplace transform and Fourier Transform?	3	4	7M			
	b	ii) Find the Z transform of the following sequence $X(u) = a^n u(n)$?	3	4	7M			

ĺ		Unit-V	l		il
5	a	i) Explain the Characteristics of an ideal LPF? Explain why can not be realised?	2	5	7M
		ii) Differentiate between signal bandwidth and system bandwidth?	3	5	7M
		OR			
	b	Explain the following i) Casual and non casual systems ii) HPF and BPF and its characteristics?	3	5	14M

KL: Blooms Taxonomy Knowledge Level

II B.Tech. - I Semester Supple Examinations, April-2025 SWITCHING THEORY AND LOGIC DESIGN

(ECE)

Time: 3 hours

Max. Marks: 70

	Note Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 14 = 70M)				
Q.No		Questions	KL	со	M
		Unit-I	l	<u> </u>	l
		i) Convert the following numbers into decimal numbers	3	1	7M
	a	i) 101101110111011102 ii) A0CB.EE 16			
4		ii) Represent (199) ₁₀ in the following code: a) Binary b)BCD c) 2421	2	1	7M
1		OR			
		i) Given the 8-bit data word 10111001, generate the 12-bit composite word for the Hamming code that corrects and detects signals error.	3	1	7M
	Ъ	ii) Write the following binary numbers in signed 1's complement form and signed 2's complement form using 16 bit registers. (i) +1001010 (ii) -11110000 (iii) -110011001 (iv) +100000011.111	2	1	7M
		Unit-II			
		<u> </u>			
	a	i) Realize a 2 input EX-OR gate using minimum number of 2 input NAND gates.	3	2	7M
		ii)) Prove the following Boblean theorems (a) AB+A'C = (A+C)(A'+B) (ii) AB+A'C+BC = AB+A'C	4	2	7M
2		OR			
	ь	i) For the given function $F(A, B, C, D, E) = \Sigma(0,1, 2, 3, 4, 5, 9, 10, 16, 17, 18, 19, 20, 22, 25, 26) + \Sigma d(7, 11, 12, 13, 15, 23, 27, 28, 29, 30). Obtain minimal SOP expression using KMap.$	2	2	7M
		ii) For the given Boolean function F=x y' z + x' y' z +w' x y + w x' y + w x y a) Simplify the function to minimal literals using Boolean algebra. b) Construct the logic diagram using only NOR gates	4	2	7M
		Unit-III			
		i). Design a 4 bit carry look ahead adder circuit.	4	3	7M
3	a	ii) Implement the following function with multiplexer F(A,B,C,D)=(0,1,3,4,8,9,15)	3	3	7M
		OR			•
	 b	i) Design a 1:8 demultiplexer using two 1:4 demultiplexer	3	3	7M
	ט	ii) Implement full adder using decoder and OR gates.	3	3	7M
	_		·	-	•

		Unit-IV							
		i)Distinguish between Mealy and Moore machines	3	4	7M				
	a	ii) Design a 4 bit ring counter using D flip-flops and explain its operation with the help of bit pattern	3	4	7M				
4	OR								
	b	i) Draw the circuit diagram of positive edge triggered JK flip-flop with NAND gates and explain its operation using truth-table .How race around condition is eliminated?	3	4	7 <u>M</u>				
		ii).Draw and explain 4-bit universal shift register	4	4	7M				
,	Unit-V								
		i) Design a BCD to Excess-3 code converter using PROM	4	5	7M				
5	a	ii) Develop the following four Boolean functions using PAL. F1(w,x,y,z) = \sum m(1,2,3,7,9,11) F2(w,x,y,z) = \sum m(0,1,2,3,10,12,14) F3(w,x,y,z) = \sum m(4,5,6,7,9,15) F4(w,x,y,z)= \sum m(1,2,3,10,13,15)	3	5	7M				
			1	1					
	Ъ	i) Compare PROM, PLA and PAL	2	5	7M				
		ii) Write a brief note on Architecture of PLDs	1	5	7M				

KL: Blooms Taxonomy Knowledge Level

II B.Tech. - I Semester Supple Examinations, April-2025 LINEAR CONTROL SYSTEMS

(ECE)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.

		All Questions Carry Equal Marks (5 X 14 = 70M)	1 22 2	1	1				
QNo		Questions	KL	CO	Marks				
	\top	Unit-I	!	.!	1				
	a	i)Determine the transfer function V(s)/F(s), for the system show in below figure M, Tv T(t) Tv T(t) Tv T(t) Tv T(t) Tv Tv Tv Tv	II	1	7M				
1		ii) Contrast and compare the open loop and closed loop systems with suitable examples	IV	1	7M				
		OR			l				
	ь	i) Develop the transfer function of following signal flow graph of feedback system using Mason's gain formula? G ₅ G ₆ G ₇ G ₈	m	1	9M				
		ii) Make use of controlled device to explain the temperature controlled closed loop control system in detail	Ш	1	5M				
	Unit-II								
	a	A unity feedback control system has the forward transfer function, $G(s)=25/S^2+8S+25$. Determine the response, rise time, peak time and the maximum peak over shoot for unit step input.	IV	2	14M				
2		OR							
	b	Examine the transient response of under damped second order closed loop system for i. Unit-step input. ii) Ramp input	III	2	14M				
		Unit-III		1	1				
		i) Develop Routh array and determine the stability of the system whose characteristic equation is $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$.	Ш	3	6M				
3	а	ii)A unity feedback system has an open loop function G (s) =k/s(s+1)(s+2), Build a root locus plot by determining the following (i) Centroid, number and angle of asymptotes,(ii) Breakaway points if any, (iii)points of intersection with jw axis and (iv) maximum value of k for stability	v	3	8M				

		ii) Construct basic Routh Hurwitz table and explain stability of the system.	III	3	5M			
	b	ii)A single loop feedback system has open loop transfer function G(s)H (s) K (s 1) (s 2)/s(s+3)(s+4). Build the root locus as a function of K, find the range of K for which system is stable and also find the K for which purely imaginary roots if exists and their roots?	III	3	9M			
		Unit-IV						
		Explain about gain crossover frequency and phase cross over frequency.	II	4	7M			
	a	ii) Sketch the polar plots of typical Type 0, 1 and 2 systems and explain the salient features of these plots	II	4	7M			
4		OR						
7		i)By using bode plot, Find the value of K for which the following open loop transfer function is having gain margin 15 dB and phase margin is 600?	I	4	7M			
	b	G(s)H (s) s 101 s)(1+s)						
		ii) Develop the Bode plot for a system $G(s) = 15(s+5)/(s^2+16s+100)$ and determine the stability of the system.	III	4	7M			
	Unit-V							
	a	i) What are the characteristics of Lead compensation? When lead compensation is employed?	I	5	7M			
	a	ii) Solve the transfer function of lag compensator.	III	5	7M			
	-	OR			I			
_		i) Obtain a state model for a system characterized by the differential equation	,					
5	b	is $\frac{d^{3}y}{dt^{2}} + 6\frac{d^{2}y}{dt^{2}} + 11\frac{dy}{dt} + 6y + u = 0.$	ш	5	7M			
		ii) Interpret the concept of controllability and Observability with an example.	II	5	7M			

KL: Biooms Taxonomy Knowledge Level

CO: Course Outcome

M:Marks

Subject Code: R20AI2101

II B.Tech. - I Semester Supple Examinations, April-2025 DATA SCIENCE

(AI)

Time: 3 hours

Max. Marks: 70

Examine the panda's library architecture with neat sketch OR Explain a) Reindexing, b) Dropping entries from an axis, c) Indexing, d) selection, e) filtering, f) Sorting and g) ranking Write a program to write data string data into .csv file Illustrate the process of reading ISON data, OR Examine the process of loading IDF5 data into dataframe Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 1 Unit-IV Illustrate the process of combining and merging datasets.	7M 7M 7M 7M
Explain the process of creating ind arrays Choose various operations that can be applied on array. By Choose various operations. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be applied on array. By Choose various particulars that can be ap	7M 7M 7M
Choose various operations that can be applied on array. OR Illustrate the process of Expressing Conditional Logic as Array Operations Examine the data scientist role in the data science? Unit-II Implement different data structures and convert into data frames Examine the panda's library architecture with neat sketch OR Explain a) Reindexing, b) Dropping entries from an axis, c) Indexing, d) selection, e) filtering, f) Sorting and g) ranking Write a program to write data string data into .csv file Illustrate the process of reading ISON data, OR Examine the process of loading IDF5 data into dataframe Define Web API and illustrate different types of web Api's Illustrate the process of combining and merging datasets. K3 1 Vinit-IV Illustrate the process of combining and merging datasets. K3 3 7	7M 7M 7M
Choose various operations that can be applied on array. OR	7M 7M
OR	7M
Examine the data scientist role in the data science? Unit-II	7M
Examine the data scientist role in the data science? Unit-II	
Implement different data structures and convert into data frames Examine the panda's library architecture with neat sketch OR Explain a) Reindexing, b) Dropping entries from an axis, c) Indexing, d) selection, e) filtering, f) Sorting and g) ranking Write a program to write data string data into .csv file Illustrate the process of reading JSON data. OR Examine the process of loading JDF5 data into dataframe Define Web API and illustrate different types of web Api's Vinit-IV Illustrate the process of combining and merging datasets. R3 1 Value Vinit-IV Illustrate the process of combining and merging datasets. R3 2	784
Examine the panda's library architecture with neat sketch OR Explain a) Reindexing, b) Dropping entries from an axis, c) Indexing, d) selection, e) filtering, f) Sorting and g) ranking Write a program to write data string data into .csv file Illustrate the process of reading JSON data, OR Examine the process of loading IDF5 data into dataframe Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 1 Value Unit-IV Illustrate the process of combining and merging datasets.	784
Examine the panda's library architecture with neat sketch OR Explain a) Reindexing, b) Dropping entries from an axis, c) Indexing, d) selection, e) filtering, f) Sorting and g) ranking Unit-III Write a program to write data string data into .csv file Illustrate the process of reading ISON data. K3 2 OR Examine the process of loading IDF5 data into dataframe Define Web API and illustrate different types of web Api's Illustrate the process of combining and merging datasets. K3 2 Unit-IV Illustrate the process of combining and merging datasets. K3 3 7	141
Begin and Reindexing, b) Dropping entries from an axis, c) Indexing, d) selection, e) filtering, f) Sorting and g) ranking Unit-III	7M
Unit-III Write a program to write data string data into .csv file Illustrate the process of reading JSON data, Correctly by Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 1 K3 2 K3 2 K3 2 Instruction of the process of loading Index of the process of web Api's of we	
Unit-III Write a program to write data string data into .csv file Illustrate the process of reading ISON data, OR Examine the process of loading IIDF5 data into dataframe Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 2 Unit-IV Illustrate the process of combining and merging datasets. K3 3	14M
Write a program to write data string data into .csv file Illustrate the process of reading JSON data, OR Examine the process of loading HDF5 data into dataframe Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 2 1	•
3 Illustrate the process of reading JSON data, OR Examine the process of loading IDF5 data into dataframe Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 2 3	
Illustrate the process of reading JSON data, OR Examine the process of loading HDF5 data into dataframe Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7M
Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7M
Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 2	
Define Web API and illustrate different types of web Api's Unit-IV Illustrate the process of combining and merging datasets. K3 2 7	7M
Illustrate the process of combining and merging datasets. K3 3	7M
	7M
Examine the process of removing duplicates and replacing values. K3 3 7	M
OR	
b Explain Ticks, Labels, Legends, Annotations, Markers and Line Styles. K2 4 7	M
Unit-V	·
Examine various Group By operations K3 5 7	M
Explain the process of grouping with dicts and series. K3 5 7	М
5 OR	
Explain Data Aggregation (Column-wise and Multiple Function Application, Returning Aggregated Data in "unindexed" Form) K3 5	—— М
Illustrate the process of Filling Missing Volume with Commence is Av. 1	
KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks	M

II B.Tech. - I Semester Supple Examinations, April-2025 COMPUTER ORGANIZATION

(CSE,IT,AIML,DS & CY)

Time: 3 hours

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Garry Equal Marks (5 X 14 = 70M)

ONTO	All Questions Garry Equal Marks (5 X 14 = 70M)									
QNo	- -	Questions	KL	CO	Marks					
	-	Unit-I								
	1.	Draw 4 bit arithmetic logic shift unit and explain same unit in detail	L3	CO1	7M					
	a	Construct bus system for four registers with a neat diagram using multiplexers.	L2	CO1	7M					
1		OR		<u> </u>	<u></u>					
_	Г	Mention the different types of Shifts. Discuss any two types with relevant	Τ	1	1 -					
	Ь	examples.	L2	CO1	7M					
		What is register transfer language? Explain the basic symbols used in register transfer	L2	CO1	7M					
	士	Unit-II								
		Draw a flowchart for interrupt cycle and explain with an example.	L3	CO ₂	7M					
2	a	Demonstrate the concept of input-output configuration.	L2	CO2	7M					
2		OR	<u> </u>		/ 1/1					
	Ъ	Explain in detail about Register Reference Instructions & Memory Reference	Τ							
		Instructions.	L2	CO2	14M					
		Unit-III	<u>.l</u>	!	<u> </u>					
	a	Illustrate the Program interrupt with suitable example.	L3	CO3	7M					
		Illustrate about RISC & CISC Characteristics.	L3	CO3	7M					
3		OR	<u></u>							
	ь	Interpret an arithmetic statement using three and two Addressing Instructions.with your own.	L3	CO3	7M					
		Explain about data manipulation instructions.	L2	CO3	7M					
		Unit-IV		003	1111					
		Apply the step-by-step multiplication process using Booth algorithm for the								
	a	binary numbers (+15) X (-13).	L3	CO4	7M					
		Describe in detail associative memory with a neat block diagram.	L2	CO4	7M					
4	<u> </u>	OR								
4		A block set associative cache consists of a total of 64 blocks divided into 4-								
		block sets. The main memory contains 4096 blocks each of 128 words.								
	ь	i. How many bits are there in each of the TAG, SET and WORD fields?	L3	CO3	7M					
		ii. How many bits are there in main memory address?			:					
		Explain about Auxiliary memory and Main Memory.	.L4	CO4	7M					
		Unit-V								
	a	Explain asynchronous data transfer with Handshaking method.	L4	CO5	7M					
إ		Explain in detail about Direct Memory Access with neat Sketch.	L4	CO4	7M					
5		OR								
	ь	Explain about I/O vs Memory Hus with neat sketches.	L4	CO ₆	7M					
		Discuss about daisy chaining priority interrupt		CO6	7M					
KL: Bl	oom:	s Taxonomy Knowledge Level CO: Course Outcome M:Marks								

(AUTONOMOUS)

II B.Tech I Semester Supple. Examinations, April-2025

DATABASE MANAGEMENT SYSTEMS Sub Code: R20DS2105

Max. Marks: 70

R20

Time: 3 hours

(DATA SCIENCE)

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

		All Questions Carry Equal Marks (5 X 14 = 70M)			
Q.No		Questions	KL	CO	M
Q.NO_		Unit-I			
	 	i)Explain the structure of Database Management System with neat sketch	2_	1	7M_
	a	ii) Explain the levels of data abstraction?	2	1	7M
1	├─┴	OR OR			
	├─_т	i) Explain the applications of database system	2	1	_7M_
	b	ii) Discuss the functionality of storage manager	2	1	7M
		Unit-II			
	\vdash	i) Discuss about the Conceptual Design with the ER-Model?	2	2	7M
	a	ii) Construct an Entity Relationship diagram for a university	2	2	7M
		II) OR			
2	-	i) How we can convert relationship sets with key constraints into	2	2	7M
	ļ '	tables? Explain		<u> </u>	7171
	Ъ	ii) Explain the Division operator of Relational algebra with a suitable	2	2	7M
	1				7171
	-	example. Unit-III			
	<u> </u>	i) How would you use the operators IN, EXISTS, UNIQUE, ANY and ALL	2	3	7M
	1	in writing nested queries? Explain with an example.			/101
	a	ii) What is the usage of 'group by' and 'having' clauses in SQL?	2	3	7M
3		Explain with example			/1/1
	-	OR OR			
<u> </u> 	-	i) Discuss about Complex integrity constraints in SQL	2	3	7M
	b	ii) Define null value? Describe the effect of null values in database	2_	3	7M
<u> </u>		Unit-IV			
	<u> </u>	i) Illustrate redundancy and the problems that it can cause	2_	4	7M
	a	ii) Explain the 1NF and 2 NF with example	2	4	7M
	-				
	-	i) Given Relation, R=(A,B,C,D,E,F,G) and Functional Dependencies	3	4	
4		1) Given Relation, $R = \{A, B\} \rightarrow \{C\}$, $\{A, C\} \rightarrow \{B\}$, $\{A, D\} \rightarrow \{E\}$, $\{B\} \rightarrow \{D\}$, $\{B, C\} \rightarrow \{A\}$,			
		1 (p)			14M
	Ъ	Chack whether the following decomposition of R into			1427
	1	R1=(A,B,C), R2=(A,C,D,E) and R3=(A,D,F) is satisfying the lossless	ļ		
		Decomposition property.	<u> </u>		<u>. </u>
<u> </u>	\dashv	Unit-V	,		
-	-	i)Explain ACID properties and illustrate them through examples?	2	5_	7M
	a	ii)Explain various anomalies that arise due to interleaved execution of trans-	2	5	7M
5	a	actions with suitable examples	<u> </u>		
'	-	OR			
		i) How does a B tree differ from a B+ tree? Why is a B+ tree usually pre-	2	5	14M
1	b	ferred as an access structure to a data file? Explain.	<u> </u>		
L	L	Terred us an access serial CO: Course Outcome M:Marks			

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

(AUTONOMOUS)

II B.Tech I Semester Supple. Examinations, April-2025

Sub Code: R20AC2105

SOFTWARE ENGINEERING

Time: 3 hours

(AIMI &CYBER SECURITY)

Max. Marks: 70

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 14 = 70M)

<u> </u>		All Questions Carry Equal Marks (5 X 14 = 70M)			
Q.No		Questions	KL	CO	M
ļ	1 1 2 2 2 2	Unit-I			
	a L	volution of Software Engineering Methodologies.	1	2	7M
1	ii) Discuss cl	assical waterfall model?	1	2	7M
*		OR			
	ъ I	ftware engineering? Explain	1	2	7M
	ii) What are t	he elements of software process?	1	2	7M
		Unit-II			
	a L	ctional and non-functional software requirements.	2	2	7M
	ii) Discuss th	e importance of SRC in software development.	2	2	7M
2	-	OR			
	i) Distinguish	between business requirements and user requirements in	2	2	
	b software deve	elopment process.			7M
	ii) Explain R	equirements Validation.	2	2	7M
		Unit-III	— I v-		
2	, , , , , , , , , , , , , , , , , , ,	ne Characteristics of Good Software Design?	3	2	7M
	a ii) Explain ob	ject oriented design methodology.	3	2	7M
3		OR		l	
		upling and cohesion in software development.	3	2	7M
	b ii) Give the ir	nportance of data flow diagram in software development.	3	2	7M
		Unit-IV	·		
4	i i	ucture programming? Explain	4	2	7M
	ii) What is so	ftware testing? Explain	4	2	7M
		OR			
	1. I	ding principles.	4	2	7M
	b Ii) Explain W	hite Box Testing	4	2	7M
		Unit-V			
	a L'	ftware Metrics and measurements	5	2	7M
5	a ii) What are the	he Software Quality Factors? Explain	5	2	7M
ر ا		OR			
	h -	OCOMO cost models.	5	2	7M
KI . Dia am	ii) Compare a	and Contrast CMM vs ISO.	5	4	7M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks