# R24 MCA I SEM REGULAR EXAMINATIONS JAN./FEB. 2025 END EXAMINATION QUESTION PAPERS



**R24** 

### I MCA I Semester Regular Examinations, January-2025

DATA STRUCTURES

Time: 3 hours

Sub Code: R24MCA101

Max. Marks: 60

|      | Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12M                                                                          |           |          |          |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|--|--|--|
| Q.No | Questions                                                                                                                                          | KL        | CO       | M        |  |  |  |
|      | Unit-I                                                                                                                                             |           |          |          |  |  |  |
|      | i) Write a C program to check whether the given number is prime or not?                                                                            | <u>L3</u> | 1        | 6M       |  |  |  |
|      | a ii) Define loop? Explain the working of 'exit control loop' with suitable                                                                        | L2        | 1        | 6M       |  |  |  |
| 1    | example?                                                                                                                                           |           |          |          |  |  |  |
|      | i) What is an array? Briefly explain any two ways of initializing two                                                                              | L2        | 1        |          |  |  |  |
|      | b dimensional arrays with an example?                                                                                                              | كىل       | 1        | 6M       |  |  |  |
|      | ii) Distinguish among Array, Structure and Union.                                                                                                  | L4        | 1        | 6M       |  |  |  |
|      | Unit-II                                                                                                                                            |           |          |          |  |  |  |
|      | i) Distinguish between "call by value" and "call by reference"? Illustrate with an example.                                                        | L4        | 2        | 6M       |  |  |  |
|      | ii) Define Recursion? What are the essential characteristics of any recursive                                                                      | L1,       | 2        | 63.5     |  |  |  |
| _    | function? Briefly explain.                                                                                                                         | L2        | _        | 6M       |  |  |  |
| 2    | OR                                                                                                                                                 |           | ·        |          |  |  |  |
|      | i) Write a C program to create a text file, store information in it and read the                                                                   | L3        | 2        | C) f     |  |  |  |
|      | contents from file?                                                                                                                                |           |          | 6M       |  |  |  |
|      | b ii) What is pointer? Illustrate the process of declaring a pointer and accessing                                                                 | L1,       | 2        | 6M       |  |  |  |
|      | the value of a variable using that pointer?                                                                                                        | L2        |          | OIM      |  |  |  |
|      | Unit-III                                                                                                                                           |           |          |          |  |  |  |
|      | i) Write short note on the asymptotic notations that are used to represent                                                                         | L1        | 3        | 6M       |  |  |  |
|      | Worst Case and Best Case run time complexity of an algorithm ?                                                                                     |           |          | OIVI     |  |  |  |
|      | ii) Define Data Structure? Distinguish between 'linear' and 'non linear'                                                                           | L2        | 3        | 6M       |  |  |  |
| 3    | data structures? Give an example to each category of Data Structures                                                                               | İ         |          | OIVI     |  |  |  |
| J    | OR                                                                                                                                                 |           |          |          |  |  |  |
|      | i) Briefly discuss the advantages and limitations of Linked List                                                                                   | L2        | 3        | 6M       |  |  |  |
|      | b representation as compared to Array representation.                                                                                              |           |          | 01.12    |  |  |  |
|      | ii) Design an algorithm to reverse the double linked list.                                                                                         | L6        | 3        | 6M       |  |  |  |
|      | Unit-IV                                                                                                                                            | <b>!</b>  | <u> </u> | <u> </u> |  |  |  |
|      | i) Illustrate the application of Stack in expression evaluation with an example.                                                                   | L2        | 4        | 6M       |  |  |  |
|      | a ii)Define Stack. Write algorithms to perform PUSH and POP operations on                                                                          | L1        | 4        |          |  |  |  |
|      | Stacks.                                                                                                                                            |           |          | 6M       |  |  |  |
|      | OR                                                                                                                                                 |           |          |          |  |  |  |
| 4    | i) Create the Hash table with the following list of numbers using "%11" as                                                                         | L3        | 4        |          |  |  |  |
|      | hash function and follow 'linear probing' method to handle collisions:                                                                             |           |          | 6M       |  |  |  |
|      | b 23, 12, 40, 75, 78, 90, 35, 30, 10                                                                                                               |           |          |          |  |  |  |
|      |                                                                                                                                                    | L2        | 4        | <u> </u> |  |  |  |
|      | ii) What is hashing? Explain about <i>separate chaining</i> collision resolution                                                                   | 1.2       | 4        | 6M       |  |  |  |
| 5    | technique. Unit-V                                                                                                                                  | <u></u>   | ٠        | J        |  |  |  |
| J    |                                                                                                                                                    | L3        | 5        | l        |  |  |  |
| ı    | a   1) Sort the following list of numbers using Selection Sort method and clearly show the sequence of steps/iterations : 5,7,1,2,3,55,32,22,19,10 |           |          | 6M       |  |  |  |
|      | Show the sequence of steps/iterations . 5,7,1,2,0,00,02,22,10,10                                                                                   |           |          |          |  |  |  |
|      | ii) Design an algorithm to merge two sorted lists into a single sorted list                                                                        | L6        | 5        | 6M       |  |  |  |

|   | OR                                                                                                                                                                        |           | Į. |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|----|
| b | <ol> <li>Define Binary Search Tree? Construct a Binary Search Tree with<br/>the following numbers and traverse it in Inorder.<br/>27,10,24,37,18,59,20,51,63,2</li> </ol> | L1,<br>L3 | 5  | 6M |
|   | ii) Define AVL tree? Briefly explain different kinds of Rotations needed to balance the AVL tree with examples.                                                           | L1,<br>L2 | 5  | 6M |

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks



(AUTONOMOUS)

# I MCA I Semester Regular Examinations, January-2025

Sub Code: R24MCA102

COMPUTER ORGANIZATION

R24

Time: 3 hours

Max. Marks: 60

| Note: A                                                                                                        | : Answer All FIVE Questions.  All Questions Carry Equal Marks (5 X 12M = 60M) |                                                                                 |                                   |                     |            |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|---------------------|------------|--|--|--|
| Q.No                                                                                                           |                                                                               | Questions Questions                                                             |                                   |                     | 2.0        |  |  |  |
|                                                                                                                |                                                                               | Unit-I                                                                          | KL                                | CO                  | M          |  |  |  |
|                                                                                                                | a                                                                             | i)Explain the functional units of Computer with most about                      | 2                                 | 1 1                 | Car        |  |  |  |
| 1                                                                                                              | La                                                                            | ii) Explain the parameters to measure the performance of computer               | 2                                 | 1                   | 6M         |  |  |  |
| 1                                                                                                              |                                                                               | OR                                                                              | 1 2                               | 1                   | 6M         |  |  |  |
|                                                                                                                | Ь                                                                             | i) Compare and Contrast RISC and CISC                                           | <del></del>                       | T 4                 | T 67.6     |  |  |  |
| . N. 1864                                                                                                      | ט                                                                             | ii) Compare and Contrast multi processors and multi computers                   | 4                                 | 1                   | 6M         |  |  |  |
| 12 Tr. 12 Tr |                                                                               | Unit-II                                                                         | 4                                 | 1_1                 | 6M         |  |  |  |
|                                                                                                                |                                                                               | i) Perform the arithmetic operations below with binary numbers and with         | <del></del>                       | 1 5                 | Τ          |  |  |  |
|                                                                                                                |                                                                               | negative numbers in signed 2's complement. Use seven bit to accommodate         | 3                                 | 2                   | 200        |  |  |  |
|                                                                                                                |                                                                               | each number together with its sign. i) -35 + -40 ii) -35 + +40                  | 1                                 |                     | 6M         |  |  |  |
| 2                                                                                                              | a                                                                             | ii) Perform the following:                                                      | <del> </del>                      | <u> </u>            |            |  |  |  |
| -                                                                                                              |                                                                               | i) (110.101) 2 = ()10 ii) (1.10101)2 = ()10                                     | 3                                 | 2                   |            |  |  |  |
| •                                                                                                              | <u>.</u>                                                                      | iii) (11010.1)2 = ()10                                                          |                                   |                     | 6M         |  |  |  |
|                                                                                                                |                                                                               | OR                                                                              |                                   |                     |            |  |  |  |
|                                                                                                                | b                                                                             | i) Explain the different types of addressing modes in detail                    | T-5-                              |                     | Γ          |  |  |  |
|                                                                                                                | Ť                                                                             |                                                                                 | 2                                 | 2                   | 12M        |  |  |  |
|                                                                                                                | -                                                                             | Unit-III                                                                        |                                   |                     |            |  |  |  |
|                                                                                                                |                                                                               | i) Explain the interrupts for handling multiple device                          | 2                                 | 3                   | 6 <b>M</b> |  |  |  |
|                                                                                                                | a                                                                             | ii) Explain the method of DMA transfer. How does a DMA controller               | 2                                 | 3                   |            |  |  |  |
| Terigon.                                                                                                       |                                                                               | improve the performance of a computer                                           |                                   |                     | 6M         |  |  |  |
|                                                                                                                |                                                                               | OR OR                                                                           |                                   |                     |            |  |  |  |
|                                                                                                                | Ъ                                                                             | i) Discuss about ARM interrupt structure                                        | 2                                 | 3                   | 6M         |  |  |  |
|                                                                                                                |                                                                               | ii)Explain about standard interfaces                                            | 2                                 | 3                   | 6M         |  |  |  |
|                                                                                                                | Unit-IV                                                                       |                                                                                 |                                   |                     |            |  |  |  |
|                                                                                                                |                                                                               | i) Explain ROM and RAM with respect to their block diagrams                     | 2                                 | 4                   | 6 <b>M</b> |  |  |  |
|                                                                                                                | a                                                                             | 11) How to map a virtual address to physical address? Explain address           | 2                                 | 4                   | <u>-</u> - |  |  |  |
|                                                                                                                |                                                                               | mapping with pages and associative memory page table                            |                                   | •                   | 6M         |  |  |  |
| 1                                                                                                              |                                                                               | OR                                                                              | <del></del>                       | <u>-</u> <u>-</u> - |            |  |  |  |
| 4                                                                                                              |                                                                               | i)The access time of a cache memory is 100 ns and that of main memory           | 3                                 | 4                   |            |  |  |  |
|                                                                                                                |                                                                               | 1000 IS. It is estimated that 80 percent of the memory requests are for read    |                                   | 7                   |            |  |  |  |
|                                                                                                                |                                                                               | and the remaining 20 percent for write. The hit ratio for read accesses only is |                                   |                     |            |  |  |  |
|                                                                                                                | Ъ                                                                             | U.S. A Write-unrough procedure is used it What is the average access time of    |                                   |                     | 12M        |  |  |  |
|                                                                                                                |                                                                               | the system considering only memory read cycle? ii) What is the average          | • • • • • • • • • • • • • • • • • | · _55               | TETAT      |  |  |  |
|                                                                                                                | - 1                                                                           | access time of the system for both read and write requests? iii) What is the    |                                   | İ                   |            |  |  |  |
|                                                                                                                |                                                                               | hit ratio taking into consideration the write cycles?                           |                                   |                     |            |  |  |  |
| -                                                                                                              |                                                                               | Unit-V                                                                          | <del></del>                       |                     |            |  |  |  |
|                                                                                                                | a -                                                                           | i)Discuss about multistage interconnection networks                             | 2                                 | 5                   | 6M         |  |  |  |
| 5                                                                                                              |                                                                               | ii) Explain the instruction pipeline with neat sketch                           | 2                                 | 5                   | 6M         |  |  |  |
| -                                                                                                              |                                                                               | OR                                                                              |                                   |                     | OIAT       |  |  |  |
|                                                                                                                | Ъ                                                                             | i)Explain the solutions of cache coherence problem                              | 2                                 | 5                   | 4.DX =     |  |  |  |
| KL: Bloor                                                                                                      |                                                                               | axonomy Knowledge Level CO: Course Outcome M.Marks                              |                                   |                     | 12M        |  |  |  |



# I MCA I Semester Regular Examinations, January-2025

Sub Code: R24MCA103 Time: 3 hours

DATABASE MANAGEMENT SYSTEMS

6M

Max. Marks: 60 Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12M = 60M) Q.No Questions CO M Unit-I i)Explain in-detail about three levels of architecture With neat diagram and 2 1 6M ii) What is an ER diagram? Draw an ER diagrams for the entity set, relationship 1 2 1 set and a ternary relationship set? 6M. OR i)List and explain different database languages in-detail. 2 1 ii) Construct an ER diagram for banking enterprise 6M 1 6MUnit-II i) What are the integrity constraints over relations? Explain briefly with suitable 2 2 examples. 6M ii) With a suitable example, explain the division and set operator of Relational 2 2 algebra 2 6M OR i) Differentiate between Procedural and Declarative Query languages with 2 2 suitable examples. 6M ii) What is JOIN operator in DBMS? Explain all the variations of the JOIN 2 2 operation in relational algebra with a suitable example 6M Unit-III i) What are triggers in DBMS? How triggers are used to enforce complex 2 3 a integrity constraints in DBMS? 6M ii) Distinguish working principles of 3NF and BCNF in normalization. 3 2 3 6M i) What are the aggregate operations used in SQL? Explain with suitable queries? b ii) What is dependency preservation property for decomposition? Explain why it 6M 2 3 is important 6M Unit-IV i) Explain the steps followed for schema refinement in database design? 2 ii) Explain the Two-Phase Locking protocol and its variants **6M** 6M 4 i) Explain various anomalies that arise due to interleaved execution 2 4 of transactions with suitable examples 6M ii) Explain the need of commit, rollback and save point operations in transaction 2 management. 6M 5 Unit-V i) Discuss briefly about primary and secondary indexes? Explain their role in indexing the tables with suitable example. 2 6M ii) Write the significant differences between B-Trees and B+ Trees for creating dynamic indexes in DBMS. 2 5 6MOR b | i) How to use hash-based indexing? Explain briefly and differentiate it from other indexing mechanisms. 5 6M ii) Discuss in-detail about Indexed Sequential Access Method 5



### I MCA I Semester Regular Examinations, January-2025 Sub Code: R24MCA104

OPERATING SYSTEMS

Time: 3 hours

Max. Marks: 60 All Questions Carry Equal Marks (5 X 12M = 60M)

| Note: A     | newe                                                             | r All FIVE Questions. All Questions Carry Equal Marks (5 X 12)                          | $\sqrt{1} = 601$ | (1)                                               |            |  |  |  |
|-------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|---------------------------------------------------|------------|--|--|--|
| Q.No        | 113 W C                                                          | Questions                                                                               | KL               | CO                                                | M          |  |  |  |
| Q.INU       |                                                                  | Unit-I                                                                                  |                  | , **                                              |            |  |  |  |
| 4           |                                                                  | i)Explain different types of operating systems                                          | <u>2</u> +       | 1                                                 | 6M         |  |  |  |
| 1           | a                                                                | ii) What is an Operating system? Describe the Operating-System Functions.               | 2                | 1                                                 | 6M         |  |  |  |
| 1           | 1                                                                | OR                                                                                      |                  |                                                   |            |  |  |  |
|             | - <del></del>                                                    | i) Explain different categories of System calls with suitable examples                  | 2                | 1                                                 | 12M        |  |  |  |
|             | b                                                                | Unit-II                                                                                 |                  |                                                   |            |  |  |  |
|             | <u>├</u> ─¬                                                      | i) What are the advantages of inter-process communication? How communi-                 | 2                | 2                                                 | 6M         |  |  |  |
|             |                                                                  | cation takes place in a shared-memory environment? Explain.                             | l                |                                                   | OTAT       |  |  |  |
|             | a                                                                | ii) Explain the steps involved in process creation and process termination.             | 2                | 2                                                 | 6M         |  |  |  |
| 0           |                                                                  | OR                                                                                      |                  |                                                   |            |  |  |  |
| 2           |                                                                  | i) Write about i) Process Control Block ii) CPU scheduling algorithm                    | 2                | 2                                                 | 6M         |  |  |  |
|             | }                                                                |                                                                                         |                  |                                                   | OIAI       |  |  |  |
|             | Ъ                                                                | evaluation ii) Explain the Round Robin and priority scheduling algorithm with a         | 3                | 2                                                 | 6M         |  |  |  |
|             |                                                                  |                                                                                         |                  |                                                   | DIAT       |  |  |  |
| <del></del> | <del> </del>                                                     | suitable example Unit-III                                                               |                  |                                                   |            |  |  |  |
|             | ļ                                                                | i) Give a solution to Readers-Writers problem using Monitors                            | 3                | 3                                                 | 6M         |  |  |  |
|             | a                                                                | ii) What are the semaphores? How do they implement mutual exclusion?                    | 2                | 3                                                 | 6M         |  |  |  |
| 3           | OR                                                               |                                                                                         |                  |                                                   |            |  |  |  |
|             | i) What is a deadlock? How deadlocks are detected? Explain       | 2                                                                                       | 3                | 6M                                                |            |  |  |  |
|             |                                                                  | 1) What is a deadlock? How dedulocks are detected: Explain                              | 2                | 3                                                 | 6M         |  |  |  |
|             | b ii) Explain how to recover the system from a deadlock. Unit-IV |                                                                                         |                  | <del>, , , , , , , , , , , , , , , , , , , </del> |            |  |  |  |
|             |                                                                  | i) Explain various types of memory Allocation techniques with advantages                | 2                | 4                                                 | 1          |  |  |  |
| ļ           | a                                                                |                                                                                         |                  | Ì                                                 | 6M         |  |  |  |
|             |                                                                  | and disadvantages  ii) Explain the concept of demand paging in detail with neat diagram | 2                | 4                                                 | 6M         |  |  |  |
| 4           | <u> </u>                                                         | OR                                                                                      |                  |                                                   | . <u> </u> |  |  |  |
| į           | <b> </b>                                                         |                                                                                         | 2                | 4                                                 | 1          |  |  |  |
|             | b                                                                | i)Explain FCFS and SSTF Disk Scheduling schemes and also Discuss                        | -                | '                                                 | 12M        |  |  |  |
| ł           |                                                                  | the Indexed File allocation method with an example                                      |                  |                                                   | <u> </u>   |  |  |  |
|             | +-                                                               | Unit-V                                                                                  |                  |                                                   |            |  |  |  |
| 1           | a                                                                | i)Explain the kernel modules and process management in Linux system                     | 2                | 5                                                 | 12M        |  |  |  |
| 5           | a                                                                | OR                                                                                      |                  |                                                   |            |  |  |  |
|             | b                                                                |                                                                                         | 2                | 5                                                 | 12M        |  |  |  |
| 10 DI       | _                                                                | Tayonomy Knowledge Level CO: Course Outcome M:Marks                                     |                  |                                                   |            |  |  |  |

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks



(AUTONOMOUS)

# I MCA I Semester Regular Examinations, January-2025

Sub Code: R24MCA105 MATHEMATICAL & STATISTICAL FOUNDATIONS

R24

Time: 3 hours

Max. Marks: 60

Note: Answer All FIVE Questions

All Questions Carry Equal Marks (5 X 12M = 60M)

|      | 12 M GY                                                              | All FIVE Questions. All Questions Carry Equal Marks (5 X 12M                                                                                       | TET | COL       | 7.0      |  |  |  |
|------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|----------|--|--|--|
| Q.No |                                                                      | Questions                                                                                                                                          | KL  | CO        | M        |  |  |  |
|      |                                                                      | Unit-I                                                                                                                                             |     |           |          |  |  |  |
| .    |                                                                      | i)A five figure number is formed by the digits 0, 1, 2, 3, 4 without repetition. Find the probability that the number formed is divisible by 4.    | 3   | 1         | 6M       |  |  |  |
| ļ    | ,                                                                    | ii) A problem in mechanics is given to three students A, B and C whose                                                                             | 2   | 1         |          |  |  |  |
|      | a                                                                    | chances of solving it are 1/2, 1/3 and 1/4 respectively. What is the                                                                               |     |           | 6M       |  |  |  |
| İ    |                                                                      | probability that the problem will be solved.                                                                                                       |     |           |          |  |  |  |
| -    |                                                                      | OR                                                                                                                                                 |     |           |          |  |  |  |
|      |                                                                      | A random variable X has the following probability function:                                                                                        | 3   | 1         |          |  |  |  |
| 1    | Ì                                                                    | X 0 1 2 3 4 5 6                                                                                                                                    |     |           |          |  |  |  |
|      | l                                                                    |                                                                                                                                                    |     |           | C 3 15   |  |  |  |
|      |                                                                      | P(x) K 3k 5k 7k 9k 11k 13k                                                                                                                         |     |           | 6M       |  |  |  |
|      | b                                                                    | Determine i) k ii) $p(x<4)$ , $p(x \ge 4)$ , $p(0 < x < 5)$ and $p(0 \le x \le 4)$ iii) the                                                        |     |           |          |  |  |  |
|      |                                                                      | Determine 1) K 11) $p(x < 4)$ , $p(x < 4)$ , $p(x < 4)$ , $p(0 < x < 5)$ and $p(0 < x < 4)$ in the distribution function of x iv) mean v) variance |     |           |          |  |  |  |
|      |                                                                      |                                                                                                                                                    |     |           |          |  |  |  |
|      |                                                                      | ii) A die is tossed thrice. A success is getting 1 or 6 on a toss. Find the                                                                        | 4   | 1         | 6M       |  |  |  |
|      |                                                                      | mean and variance of the number of successes.                                                                                                      |     |           | 0111     |  |  |  |
|      |                                                                      | Unit-II                                                                                                                                            |     |           |          |  |  |  |
|      |                                                                      | A population consists of five numbers 2,3,6,8,11. Consider all possible                                                                            | 4   | 2         | 12       |  |  |  |
|      |                                                                      | samples of size two which can be drawn with replacement from this                                                                                  |     |           | M        |  |  |  |
| ł    | a                                                                    | population. Identify a) the mean of the population b) the standard deviation                                                                       |     |           |          |  |  |  |
|      | "                                                                    | of the population c) the mean of the sampling distribution of means d) th                                                                          |     |           |          |  |  |  |
|      |                                                                      | standard deviation of the sampling distribution of means                                                                                           |     | İ         |          |  |  |  |
| 2    | OR                                                                   |                                                                                                                                                    |     |           |          |  |  |  |
| 2    | <u> </u>                                                             | i)In 256 sets of 12 tosses of a coin, in how many cases one can expect 8                                                                           | 3   | 2         |          |  |  |  |
|      |                                                                      | heads and 4 tails.                                                                                                                                 |     |           | 6M       |  |  |  |
|      |                                                                      |                                                                                                                                                    |     |           |          |  |  |  |
| ]    | ь                                                                    | ii) Find 99% confidence limits for the mean of a normality distributed                                                                             | 3   | 2         |          |  |  |  |
|      |                                                                      | population from which the Following sample was taken                                                                                               |     |           | 6M       |  |  |  |
|      |                                                                      | 15,17,10,18,16,9,7,11,13,14                                                                                                                        |     |           |          |  |  |  |
|      | ļ                                                                    | Unit-III                                                                                                                                           | L   | <u>-L</u> | <u> </u> |  |  |  |
| 3    |                                                                      | i)The means of simple samples of sizes 1000 and 2000 are 67.5 and 68.0 cm                                                                          | 4   | 3         |          |  |  |  |
|      |                                                                      | respectively. Can the samples be regarded as drawn from the same                                                                                   |     |           | 6M       |  |  |  |
|      |                                                                      | population of S.D.2.5cm.                                                                                                                           |     |           |          |  |  |  |
|      | a                                                                    | ii) A manufacturer claims that only 4% of his products are defective. A                                                                            | 3   | 3         |          |  |  |  |
|      | random sample of 500 were taken among which 100 were defective. Test |                                                                                                                                                    |     | 6M        |          |  |  |  |
|      |                                                                      | the hypothesis at 0.05 level.                                                                                                                      |     |           |          |  |  |  |
|      | OR                                                                   |                                                                                                                                                    |     |           |          |  |  |  |
|      | b                                                                    | i)In a random sample of 60 workers, the average time taken by them to get                                                                          | 5   | 3         | 6M       |  |  |  |
|      | "                                                                    | to the work is 33.8 minutes with a standard deviation of 6.1 minutes.                                                                              |     |           |          |  |  |  |
|      |                                                                      | Inspect can we reject the null hypothesis $\mu$ =32.6 minutes in favour of                                                                         |     |           |          |  |  |  |
|      | i                                                                    | alternative hypothesis $\mu$ >32.6 at $\alpha$ =0.05 level of significance.                                                                        | I   | i         | ı        |  |  |  |

|           |          |                                                                                                                       | i        |          |      |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------|----------|----------|------|
|           | -        | ii)Experience had shown that 20% of a manufactured product is of the top                                              | 3        | 1 3      | 1    |
|           | Ì        | quality. In one day's production of 400 articles only 50 are of top quality.                                          |          |          | 6M   |
|           |          | Test the hypothesis at 0.05 level                                                                                     |          |          | 0171 |
| ľ         |          | Unit-IV                                                                                                               | <u> </u> | <u> </u> |      |
|           | a        | i) Find the values of u and v such tat gcd(24,36)=24u+36v                                                             | 3        | 4        | 6M   |
| i         | a        | ii)Using prime factorisation find the gcd, lcm (35,46)                                                                | 2        | 4        | 6M   |
| 4         |          | OR                                                                                                                    |          | 1 -      | OIVI |
|           |          | i) Show that the set of all fourth roots of unity forms and abelian group with                                        | 4        | 4        |      |
|           | b        | respect to the binary operation of multiplication                                                                     | <b>-</b> | 7        | 6M   |
|           | <u> </u> | ii) Find the prime numbers less than or equal to 100.                                                                 | 3        | 4        | 6M   |
|           |          | Unit-V                                                                                                                |          | 4        | OIVI |
|           |          | i)Show that the following graph is Hamiltonian Graph. Verify is it Eulerian.                                          |          | 5        | ,    |
| 5         | a        | ii) Give an example of a graph which is both Hamiltonian and Eulerian                                                 |          |          | 6M   |
|           |          |                                                                                                                       | 1        | 5        | 6M   |
|           | -        | i)Define the necessary and make its                                                                                   |          |          |      |
|           | ь        | i) Define the necessary and sufficient conditions to specify that two graphs are isomorphic? Explain with an example. | 1        | 5        | 6M   |
| 1// 51    |          | ii)Give an example of a graph which is Eulerian but not Hamiltonian.                                                  | 4        | 5        | 6M   |
| KI . KIOO | mr T     | Woney Knowled to the second                                                                                           |          | 1        | V414 |

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M: Marks