

(AUTONOMOUS)

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MCC101

RESEARCH METHODOLOGY & IPR

Max. Marks: 60

R24

Time: 3 hours

(MD,CSE, STRE, PID, DECS, VLSI&ES) Note: Answer All **FIVE** Questions.

All Ouestions Carry Equal Marks (5 X 12M = 60M)

Q.No		All Questions Carry Equal Marks (5 X 12M = 60M) Questions	KL	CO	M
Q.110	,	Unit-I			
		i) Explain Clearly the objectives of Research Problem	K2	1	6M
1	a	ii) Interpret different sources of research problem by giving suitable examples	K2	1	6M
		OR			,
	b	i) Explain clearly research design process and steps to be followed	K2	1	12M
		Unit-II		ı	
		i) How do you design a research problem? Give an example to illustrate your answer	K2	2	6M
2	a	ii) Discuss various issues involved in selecting a research problem. Also elaborate important features of a good research design.	K2	2	6M
		OR			
	Ъ	i) Differentiate between qualitative research and quantitative research	K2	2	12M
	-	Unit-III			
	a	i) Explain the procedure to determine the size of sample and discuss on sampling size	K2	3	6M
3	a	ii) Explain the Concepts of Statistical Population	K2	3	6M
ļ		OR			
	b	Explain different types of sampling techniques	K2	3	12M
		Unit-IV		,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	a	i) Explain new developments in Intellectual Property Rights.	K2	4	6M
4		ii) Define intellectual property in research. Explain different types of intellectual property	K2	4	6M
		OR			
		i) Contrast the purpose and functions of trademarks	K2	4	6M
	b	ii) Write notes on trade secrets, precautions and maintenance	K2	4	6M
		Unit-V	I		.l.,
		i) Exemplify the basic criteria of patentability of industrial designs	K2	5	6M
	a	ii) Explain the fundamentals of copyright laws	K2	5	6M
5	-	OR		1	
		i) Describe briefly how the online patent data is organized	K3	5	6M
	b	ii) Describe the structure and content of a patent document in general.	КЗ	5	6M

KL: Blooms Taxonomy Knowledge Level

CO: Course Outcome M: Marks

I M. Tech I Semester Regular Examinations, January-2025

Sub Code: R24MNC102

DISASTER MANAGEMENT

Time: 3 hours

(STRE, P&ID, MD,DECS,VLSI&ES and CSE) Note: Answer All **FIVE** Questions. Max. Marks: 60

All Ouestions	Carry	Equal	Marks ($(5 \times 12 = 60M)$

ONT	$\overline{}$	All Questions Carry Equal Marks (5 X 12 = 60M)	177	CO	
Q.No		Questions Unit-I	KL	CO	<u>M</u>
:		i) Describe types of disasters with examples.	K2&K3	C01	6M
	a	ii)) Explain About The Disaster Management Cycle	K2&K3	C01	
			NZQNS	COI	6M
1		OR	Troc Tro	604	
1		i) Explain how the Richter scale is used to measure the magnitude of an	K2&K3	C01	6M
	١.	earthquake			OIVI
	b	ii) Discuss various types of natural disasters in India and highlight their	K2&K3	C01	
-		effects			6M
		Unit-II			
		Explain The causes of Floods and the effects of Floods in detail. Give one	K2&K3	C02	
	a	Case Study of The Floods.			12M
2		OR			
		Explain The causes of earthquakes and effects of earthquakes in detail.	K2&K3	C02	103.6
	b	Give one Case Study of The earthquake.			12M
		Unit-III	<u> </u>	1	<u> </u>
		i) Explain the Earthquake zones of India	K2&K3	C03	
	a				6M
3		ii) explain assessing risk and vulnerability	K2&K3	C03	6M
		OR		<u> </u>	
		What is drought? Explain the types of droughts. Explain drought	K2&K3	C03	
	b	mitigation with an integration of technology and people.		 	12M
ļ	<u> </u>	Unit-IV			
		i) what are the multimedia technologies of disaster risk management in	K2&K3	C04	
	a	remote sensing			12M
4		OR			
		i) what are the forewarning levels of disaster management	K2&K3	C04	6M
	b	ii) Explain About The Mass Media and disaster	K2&K3	C04	6M
	ļ	Management?			OIM
	<u> </u>	Unit-V	1220-122	COF	
	a	i) what are the disaster management acts and policies in India	K2&K3	C05	6M
5		ii) What are the steps for formulating a disaster risk reduction plan?	K2&K3	C05	6M
) 5		OR			
		What are favourable conditions for cyclone formation? How do you	K2&K3	C05	453.5
		estimate risk from cyclonic conditions and safety precautions to save lives?			12M
<u> </u>	1	114C2:	<u>I</u>		

(AUTONOMOUS)

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MVL102

RTL SIMULATION & SYNTHESIS WITH PLDS

R24

Time: 3 hours

ECE (VLSI-ES)

Max. Marks: 60

Note: Answer All FIVE Questions.

	т	All Questions Carry Equal Marks (5 X 12M = 60M)			
Q.No	 	Questions	KL	CO	M
	<u> </u>	Unit-I			
	a	i)Describe various issues in HDL Coding.	2	1	6M
1		ii) Differentiate the Top-Down and Bottom-Up design methodologies.	2	1	6M
	<u> </u>	OR			
•	b	i) State the merits of HDLs over the traditional schematic-based designs.	2	1	6M
		ii) Illustrate the lexical conventions used in Verilog HDL.	2	1	6M
	<u> </u>	Unit-II			
	a	i)Design a logic circuit to perform the addition of two BCD numbers.	3	2	6M
2		ii) Derive an algorithm to perform the unsigned binary multiplication.	4	2	6M
_		OR			
	Ъ	i) Design a Binary divider.	3	2	6M
		ii) Implement a sequence detector using finite-state machines.	4	2	6M
	ļ	Unit-III			
		i) Explain the key stages of the ASIC design flow. How does the RTL-to-	4	3	6M
	a	GDSII flow ensure the manufacturability and functionality of an ASIC?			OIVE
		ii) Describe the objectives of clock tree synthesis in the ASIC design flow.	2	3	6M
-		How do skew and latency impact overall chip performance?			OIAT
3		OR			
İ	İ	i) What are the challenges associated with the design closure (timing, power,	2	3	
.		and area) in the ASIC design flow? Illustrate the techniques to mitigate			6M
	b	these challenges.			
		ii) Why is functional verification considered a bottleneck in ASIC design?	2	3	
		Discuss the role of simulation, formal verification, and emulation in ensuring a bug-free design.		-	6M
					· · · · · · · · · · · · · · · · · · ·
		i) What is the difference between Static Timing Analysis and dynamic			
		timing analysis? Why is STA the preferred method for timing	2	4	~~ #
	a	verification in modern ASIC design?		1	6M
	-	ii) Explain the key factors influencing gate delay and interconnect delay in	2		
1		STA. How do process variations affect these delays?	2	4	6M
4		OR			
Ī		i) Define setup and hold timing checks. Why are these constraints critical	4	4	
		for ensuring correct functionality in synchronous circuits?	7	7	6M
	Ъ		- }		OZIZ
.		ii) Describe the four types of timing paths analyzed in STA. How does the	2	4	C7 5
		analysis of clock-to-output paths differ from that of input-to-register paths?			6M
5		Unit-V			
ŀ	a	i) Implement the following Boolean functions using PLA.	4	5	
		$f_1 = \sum_{i=1}^{n} m(7,8,9,10,11,12,13,14,15)$	l		6M
		$f_2 = \sum m(1,3,8,12,13)$ $f_3 = \sum m(0,2,3,4,5,6,7,8,10,11,15)$			
		ii) Implement a programmable logical device that determines the cube of a	3	5	6M
	ļ	given 3-bit number, using PAL		5	OTAT
					l

b	i) Design 16×8 PROM, to implement the Boolean functions $f_1 = \sum_{i=1}^{n} m(2, 8, 10, 15)$ $f_2 = \sum_{i=1}^{n} m(1, 3, 8, 12)$	4	5	6M
	ii) Design a BCD to Excess3 code converter, using PLA.	3	5	6M

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MVL103

MICRO CONTROLLERS AND PROGRAMMABLE DIGITAL SIGNAL PROCESSORS

Time: 3 hours

ECE (VLSI-ES)

Max. Marks: 60

R24

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 12M = 60M)

			All Questions Carry Equal Marks (5 X 12M = 60M)	777	1 00 1	3.5
Q.No			Questions	KL	CO	<u>M</u>
			Unit-I			
		i)	Explain how the ARM Cortex-M3 processor achieves a balance	2	1	
			between high performance and low power consumption. Provide			6M
			examples of applications where this tradeoff is crucial.			
	a	ii)	Illustrate the ARM Cortex-M3's register set with its purpose and	4	1	
			organization. How does this design enhance the processor's			6M
1			performance for embedded programming?			
1			OR			
		i)	Discuss the advantages of the ARM Cortex-M3's memory	2	1	
		·	protection unit. Provide an example of how the MPU can be used			6M
	,		to isolate tasks in an embedded system.			
	b -	ii)	Detail the ARM Cortex-M3's Thumb-2 instruction set. How does	2	1	
		,	it improve code density and execution efficiency compared to the			6M
			original ARM instruction set?			
			Unit-II			
	$\vdash T$	i)	Explain the role of the Nested Vectored Interrupt Controller	2	2	
		-)	(NVIC) in the ARM Cortex-M3. Provide a programming			6M
	a		example demonstrating its usage in handling multiple interrupts.			
	"	ii)	Describe the exception model of the ARM Cortex-M3 processor.	2	2	
	1	11)	How does it differ from traditional processor architectures?	_		6M
2	\vdash		OR		<u> </u>	
2	-	i)	Discuss the significance of deterministic interrupt latency in real-	2	2	
		1)	time applications. How does the ARM Cortex-M3 architecture			
			ensure this, and in which real-world scenarios is this most			6M
	b		beneficial?			
	-		Analyze the role of the Fault exceptions in ensuring system	4	2	
		ii)	robustness. Provide scenarios where each fault type might occur.	T		6M
			Unit-III		1	<u> </u>
		•		2	3	I
		i)	Describe the memory hierarchy of the LPC17xx microcontroller.		3	6M
			How does the internal memory architecture contribute to its			0,147
	a		performance in embedded applications?	4	3	
		ii)	Write a program to configure Timer 0 in the LPC17xx	4	3	6M
_			microcontroller to generate an interrupt every 1 millisecond.			OIV
3			Explain the calculation of the pre-scale value.			i
	<u></u>		OR		1 2	1
		i)	Discuss the significance of the LPC17xx microcontroller's	2	3	
		l	Memory Mapping Control (MEMMAP) register. How does it			6M
	b		influence the behaviour of internal memory regions?	-		ļ. —
		ii)	Write a program to simultaneously configure LPC17xx Timer 0	4	3	6M
	1 1		and Timer 1 for independent periodic event generation.]

			Unit-IV			
	a	i)	Explain the architectural features of a Programmable DSP processor that differentiate it from general-purpose processors. How do these features enhance signal processing efficiency?	2	4	6M
4	a	ii)	Describe the role of pipelining and parallelism in improving the performance of P-DSP processors. How are these concepts implemented in modern DSP architectures?	2	4	6M
			OR		-	
	b	i)	Discuss the significance of the Multiply-Accumulate (MAC) unit in DSP processors. How does it support real-time digital signal processing applications?	2	4	6M
		ii)	Evaluate the impact of barrel shifters on the execution speed of multiply-accumulate (MAC) operations in P-DSP processors.	4	4	6M
		Г	Unit-V			
	a	i)	Explain the core principles of VLIW architecture. How does it differ from traditional superscalar and pipelined architectures?	2	5	6M
	a	ii)	Discuss the concept of instruction-level parallelism (ILP) in VLIW architecture.	2	5	6M
5			OR	-	l <u></u>	<u>. </u>
·	1	i)	Describe the importance of dual data paths in the TMS320C6000 architecture. How do they contribute to the efficient execution of arithmetic and logical operations?	3 /	5	6M
	b	ii)	Analyze the purpose and functionality of cross paths in the TMS320C6000 series. How do they facilitate efficient data movement within the processor?	4	5	6M

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MVL106

VLSI SIGNAL PROCESSING

ECE (VLSI&ES)

Max. Marks: 60

R24

Time: 3 hours

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 12M = 60M)

~ 3 -		All Questions Carry Equal Marks (5 X 12M = 00M)	T/T	CO	Ъ.Л
Q.No_		Questions Unit-I	KL	CO	M
:			3	1	
		i) Explain the role of the dataflow graph (DFG) in representing the DSP	3	1	6N/I
		algorithm. Convert $y[n]=0.5y[n-1]+x[n]+2x[n-1]$ into a DFG and			6M
	a	analyze its critical path.	2	1	
		ii) Describe the benefits of DSP algorithms in modern communication	2		6M
1		systems.			
_		OR		1 1	
		i) Analyze how the programmability and flexibility of DSP algorithms	4	$\begin{vmatrix} 1 \end{vmatrix}$	6M
		enable their use in adaptive systems.		1	
	b	ii) Discuss the role of pipelining in meeting the constraints of real-time DSP	2	$\begin{vmatrix} 1 \end{vmatrix}$	<i>-</i> 2.5
		systems. Highlight the challenges and solutions associated with latency,			6M
.,-		synchronization, and resource utilization.			
		Unit-II			
		i) Explain the significance of register minimization techniques in the design	2	2	6M
	a	of VLSI systems for signal processing.			
	l a	ii) Analyze the effect of the folding factor on register usage in a folded DSP	4	2	6M
2		system.			
		OR			
		i) Discuss the interplay between retiming and folding transformations for	2	2	6M
	b	register minimization.			
		ii)How does retiming help reduce register count in folded architectures?	4	2	6M
		Unit-III			
		i) Construct the systolic architecture for the systolic array designed for the	3	3	
		convolution operation:			6M
		$y[n] = \sum_{k=0}^{3} h[k] \cdot x[n-k]$			Olvi
	a	$y[n] - \sum_{k=0}^{\infty} n[k] \cdot x[n - k]$			
		ii) Design a systolic array for the matrix-vector multiplication $y=A$. x	3	3	6M
3		where A is a 4×4 matrix and x is a vector of size 4.			Ulvi
		OR			
		i) A systolic array is used for a 1D FIR filter with 5 coefficients:	3	3	
		$y[n] = h_0 x[n] + h_1 x[n-1] + h_2 x[n-2] + h_3 x[n-3] + h_4 x[n-4].$			6M
	b	Design a systolic architecture for the given filter.			
		ii) For the above question, derive the data mapping schedule for input x[n]	3	3	(A)
		and coefficients h[k] across the array.	1		6M
4	-	Unit-IV	1	1	
•	<u> </u>	i)The Cook-Toom algorithm for fast convolution splits a 4-point	3	4	6M
	l a	11) THE COOK-TOOM algorithm for tast convolution spines a . point	1 -	1 .	I

		of x[n] and h[n], where both sequences have 4 points: $x = \{x_0, x_1, x_2, x_3\}$ and			
		$h = \{h_0, h_1, h_2, h_3\}$. Also, show how the polynomial representation of the			
		sequences is used to compute the result efficiently.			
		ii) Design a 3-point Cook-Toom convolution for upsampling a signal by a	4	4	
		factor of 2. Compare the result with the direct convolution method and analyze the computational savings.			6M
		OR			ľ
		i) Analyze the application of the Winograd algorithm in real-time signal processing systems.	4	4	6M
	b	ii) The Winograd $F(4,3)$ algorithm is applied to compute the convolution of a 4-point input $x[n]$ and a 3-point filter $h[n]$. Calculate the number of multiplications and additions required for this convolution.	3	4	6M
		Unit-V	·	<u> </u>	1
		 i) Consider a second-order lattice filter with the following parameters: a₁=0.5, a₂=0.3 b = 0.7 b = 0.4 	3	5	
	a	 b₁=0.7, b₂=0.4 Input signal x[n] = {1,2,3,4}. Derive the difference equations for the lattice filter. Also, calculate the output y[n] for the given input signal x[n] using the lattice structure. 			6M
5		 ii) Design a second-order lattice filter with the following specifications: Passband frequency: 0.2 Hz 	3	5	,
		 Stopband frequency: 0.5 Hz Sample rate: 1 Hz 			6M
		 Desired attenuation: 40 dB in the stopband. 			
			I	l	
		i) Discuss various power reduction techniques in CMOS circuits.	2	5	6M
	b	ii) Derive an expression for the dynamic power consumption of a CMOS gate in terms of switching activity.	3	5	6M

2

(AUTONOMOUS)

R24

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MVL110

CAD OF DIGITAL SYSTEM

Time: 3 hours

ECE (VLSI-ES)

Max. Marks: 60

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 12M = 60M)

0.5.		All Questions Carry Equal Marks (5 X 12M = 60M)	T/T	00	7. //
Q.No		Questions Unit-I	KL	CO	M
		i) Explain the various stages of the VLSI design flow, from system	2	1	
			2		6M
٠	a	specification to layout generation.	4	1	
		ii) Analyze the design rules in the context of VLSI design and explain their	4	1	6M
		importance.		<u> </u>	·
1		OR		1	
		i) Discuss the impact of process variations on the design layout and the steps	2	1	6M
		taken to mitigate these effects in modern VLSI design.			
	b	ii) What is the importance of technology scaling in VLSI fabrication?	4	1	
		Analyze how it affects the design process, focusing on CMOS scaling and			6M
		its limitations.			
		Unit-II			
		i) Explain how graphs, trees, and linked lists are used in different stages of	2	2	
		VLSI design			6M
			4	2	
	a	ii) Analyze how algorithms such as greedy algorithms and dynamic	4	2	
2		programming algorithms are applied in VLSI design tasks like placement			6M
į		and routing.			
		OR			
		i) Discuss in detail about Heuristic Algorithms.	2	2	6M
	b	ii)Analyze the computational complexity of simulated annealing algorithms.	4	2	6M
	-	Unit-III		_l	
		i) Discuss how graph partitioning can be applied to combinational	2	3	
		optimization problems. Represent the problem as a graph G(V,E) where V	1		6M
İ	İ				0111
	a	represents tasks and E represents dependencies.			
	1	ii)Formulate a partitioning model for VLSI circuit design, where the	3	3	
		objective is to minimize the wire length while partitioning the layout into			6M
3.	1	sub-regions for efficient routing.			
		OR			
		i) Discuss the real-world applications of the Kernighan-Lin algorithm in	2	3	0.5
ļ		areas such as VLSI design and circuit partitioning.			6М
	Ъ	ii) Analyze the role of the gain function in the Kernighan-Lin algorithm.	4	3	
			-		6M
		How does it drive the optimization process?			
			٠		

•	l	Unit-IV					
		i) Explain the key principles of gate-level modeling in digital design. How does gate-level modeling differ from other levels of abstraction, such as behavioral and structural modeling?	2	4	6M		
	a	ii) Describe the optimization techniques used in logic synthesis. Compare their effectiveness in reducing circuit complexity and improving performance.	4	4	6M		
4		OR					
	ь	i) Discuss the significance of gate-level simulation in VLSI design and verification. What are its advantages, and in what scenarios is gate-level simulation preferred over higher-level simulations?	2	4	6M		
		ii) Explain the role of hardware models in high-level synthesis. How do these models bridge the gap between high-level specifications and hardware implementations?	2	4	6M		
		Unit-V		<u></u>	<u> </u>		
		i)Compare and Contrast various Multi Chip Modules.	2	5	6M		
5	a	ii) Analyze how hardware description languages like VHDL and Verilog are used in the design and implementation of Multi-Chip Modules (MCMs).	4	5	6M		
		OR					
	b	i) Explain about MCM Maze Routing.	2	5	6M		
		ii) Discuss in detail about Topological Routing.	2	5	6M		