

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MCC101

RESEARCH METHODOLOGY & IPR

Max. Marks: 60

Time: 3 hours

(MD,CSE, STRE, PID, DECS, VLSI&ES)

Note: Answer All FIVE Questions. All Ouestions Carry Equal Marks (5 X 12M = 60M)

Q.No		All Questions Carry Equal Marks (5 X 12M = 60M) Questions	KL	CO	M
Q.MU		Unit-I			
		i) Explain Clearly the objectives of Research Problem	K2	1	6M
1	a	ii) Interpret different sources of research problem by giving suitable examples	K2	1	6M
		OR			····
	Ъ	i) Explain clearly research design process and steps to be followed	K2	1	12M
•		Unit-II			
		i) How do you design a research problem? Give an example to illustrate your answer	K2	2	6M
2	a	ii) Discuss various issues involved in selecting a research problem. Also elaborate important features of a good research design.	K2	2	6M
		OR		<u> </u>	
	Ъ	i) Differentiate between qualitative research and quantitative research	K2	2	12M
	U	Unit-III	<u> </u>	1	
		i) Explain the procedure to determine the size of sample and discuss on sampling size	K2	3	6M
3	a	ii) Explain the Concepts of Statistical Population	K2	3	6M
		OR			
	Ь	Explain different types of sampling techniques	K2	3	12M
		Unit-IV	,		
		i) Explain new developments in Intellectual Property Rights.	K2	4	6M
. 4	a	ii) Define intellectual property in research. Explain different types of intellectual property	K2	4	6M
7		OR			
		i) Contrast the purpose and functions of trademarks	K2	4	6M
	b	ii) Write notes on trade secrets, precautions and maintenance	K2	4	6M
	 	Unit-V			
		i) Exemplify the basic criteria of patentability of industrial designs	K2	5	6M
	a	ii) Explain the fundamentals of copyright laws	K2	5	6M
5	 	OR			
 		i) Describe briefly how the online patent data is organized	КЗ	5	6M
	Ъ	ii) Describe the structure and content of a patent document in general.	КЗ	5	6M

KL: Blooms Taxonomy Knowledge Level

CO: Course Outcome M: Marks

1

I M. Tech I Semester Regular Examinations, January-2025

Sub Code: R24MNC102

DISASTER MANAGEMENT

Time: 3 hours

(STRE, P&ID, MD,DECS,VLSI&ES and CSE)
Note: Answer All **FIVE** Questions.

Max. Marks: 60

All Questions Carry Equal Marks (5 \times 12 = 60 \times)

O No	1	All Questions Carry Equal Marks (5 X 12 = 60M)	1/1	CO	7. //
Q.No		Questions Unit-I	KL	CO	M
		i) Describe types of disasters with examples.	K2&K3	C01	CN/L
	a				6M
		ii)) Explain About The Disaster Management Cycle	K2&K3	C01	6M
		OR			
1		i) Explain how the Richter scale is used to measure the magnitude of an	K2&K3	C01	G3 5
		earthquake			6M
	b	ii) Discuss various types of natural disasters in India and highlight their	K2&K3	C01	
		effects			6M
		Unit-II	TZDO TZD	Gon	,
	a	Explain The causes of Floods and the effects of Floods in detail. Give one Case Study of The Floods.	K2&K3	C02	12M
2		OR		l	
		Explain The causes of earthquakes and effects of earthquakes in detail.	K2&K3	C02	
	b	Give one Case Study of The earthquake.			12M
			<u> </u>		
		i) Explain the Earthquake zones of India	K2&K3	C03	
		1) Explain the Earthquake 20lies of India	NZQNS	C03	6M
	a	ii) explain assessing risk and vulnerability	K2&K3	C03	
3			NZXNS	C03	6M
		OR	T		
	h	What is drought? Explain the types of droughts. Explain drought	K2&K3	C03	101/
	b	mitigation with an integration of technology and people.			12M
		Unit-IV	<u> </u>		
	a	i) what are the multimedia technologies of disaster risk management in	K2&K3	C04	12M
	La La	remote sensing			12111
4	<u> </u>	OR	1200 120	COA	
	1	i) what are the forewarning levels of disaster management	K2&K3	C04	6M
	b	ii) Explain About The Mass Media and disaster	K2&K3	C04	6M
		Management? Unit-V			
	<u> </u>	i) what are the disaster management acts and policies in India	K2&K3	C05	C3.4
	a				6M
5		ii) What are the steps for formulating a disaster risk reduction plan?	K2&K3	C05	6M
3		OR			
		What are favourable conditions for cyclone formation? How do you	K2&K3	C05	407.5
		estimate risk from cyclonic conditions and safety precautions to save lives?			12M
	1	HAC2:		<u></u>	l

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MDE102

DIGITAL SYSTEM DESIGN

Time: 3 hours

(DECS)

Max. Marks: 60

Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12M = 60M)

a step pro ii) M method 1 i) Com minimi b ii) S map:f(A minimi 2 i) Desc and its ii) Expl (SSMs)	Questions Unit-I in the tabular method for minimizing switching functions with a step-by- cedure. inimize the given Boolean function using the K-map $f(A,B,C,D)=\prod M(1,3,5,7,9,11,13,15)$. OR upare and contrast the K-map and Quine-McCluskey algorithm for cation of switching functions. implify the Boolean function using a 4-variable K- A,B,C,D)= $\sum m(0,2,4,8,9,10,12,14$. Draw the K-map and identify the ced expression. Unit-II ribe the passport-checking process in Phase-II of the CAMP-I algorithm role in determining solution prime cubes (SPC). ain the concept of compatibility (CSC) and secondary state minimizations	K2 K3 K3 K3	1 1 1 1 2 2	6M 6M 6M
a step pro ii) M method 1 i) Com minimi b ii) S map:f(A minimi 2 i) Desc and its ii) Expl (SSMs)	in the tabular method for minimizing switching functions with a step-by-cedure. Sinimize the given Boolean function using the K-map of $(A,B,C,D)=\prod M(1,3,5,7,9,11,13,15)$. OR Apare and contrast the K-map and Quine-McCluskey algorithm for exation of switching functions. Simplify the Boolean function using a 4-variable K-(A,B,C,D)= $\sum m(0,2,4,8,9,10,12,14)$. Draw the K-map and identify the exact expression. Unit-II Tribe the passport-checking process in Phase-II of the CAMP-I algorithm role in determining solution prime cubes (SPC).	K3 K3	1 1	6M 6M
a ii) Monethod iii) Monethod ii) Comminimi b ii) S map:f(A minimi ii) Description and its iii) Explosure (SSMs)	inimize the given Boolean function using the K-map of $(A,B,C,D)=\prod M(1,3,5,7,9,11,13,15)$. OR Inpare and contrast the K-map and Quine-McCluskey algorithm for exation of switching functions. Implify the Boolean function using a 4-variable K-A,B,C,D)= $\sum m(0,2,4,8,9,10,12,14)$. Draw the K-map and identify the exact expression. Unit-II Tribe the passport-checking process in Phase-II of the CAMP-I algorithm role in determining solution prime cubes (SPC).	K3	1	6M
i) Comminiming b ii) S map:f(A minimi ii) Desc and its ii) Expl (SSMs)	apare and contrast the K-map and Quine-McCluskey algorithm for zation of switching functions. implify the Boolean function using a 4-variable K-A,B,C,D)= $\sum m(0,2,4,8,9,10,12,14)$. Draw the K-map and identify the zed expression. Unit-II Tribe the passport-checking process in Phase-II of the CAMP-I algorithm role in determining solution prime cubes (SPC).	К3	1	
i) Descrated and its ii) Explosus (SSMs)	zation of switching functions. implify the Boolean function using a 4-variable K-A,B,C,D)= $\sum m(0,2,4,8,9,10,12,14)$. Draw the K-map and identify the zed expression. Unit-II ribe the passport-checking process in Phase-II of the CAMP-I algorithm role in determining solution prime cubes (SPC).	К3	1	
i) Desc and its ii) Expl (SSMs)	$A,B,C,D) = \sum_{i=1}^{n} m(0,2,4,8,9,10,12,14)$. Draw the K-map and identify the zed expression. Unit-II ribe the passport-checking process in Phase-II of the CAMP-I algorithm role in determining solution prime cubes (SPC).			6M
a and its ii) Expl (SSMs) i) Disc	ribe the passport-checking process in Phase-II of the CAMP-I algorithm role in determining solution prime cubes (SPC).	K2	2	
a and its ii) Expl (SSMs) i Disc	role in determining solution prime cubes (SPC).	K2	2	
2 (SSMs)	ain the concept of compatibility (CSC) and secondary state minimizations			6M
i) Disc	in the CAMP-I algorithm.	K2	2	6M
i) Disc	OR			
the solu	ass the steps involved in the CAMP-II algorithm for the determination of ation cube and how cube-based operations are performed.	K2	2	6M
ii) Disc	cuss the determination of selected cubes in a switching function using used algorithms.	K3	2	6M
	Unit-III			•
i) Desc a (PLA).	ribe the architecture and block diagram of a Programmable Logic Array	K3	3	6M
ii) Exp	lain the IISc algorithm for PLA minimization.	K2	3	6M
3 11) 2.4	OR		-	
	uss the advantages of using the IISc algorithm for PLA minimization over mal methods such as K-map or QM algorithms.	K2	3	6M
	vide an overview of Programmable Logic Arrays (PLAs).	K3	3	6M
	Unit-IV			
a signific	lain the concept of Algorithmic State Machine (ASM) charts and their cance in digital system design.	K2	4	6M
ii) Ext	lain how an ASM chart is realized in a digital circuit.	K2	4	6M
4	OR			
1 1.1	scribe the control implementation in digital systems using ASM charts.	K2	4	6M
	scuss the various digital system design approaches using Field-mmable Gate Arrays (FPGAs).	K2	4	6M
5	Unit-V		,	 _
a i) Dis	cuss the steps involved in the fault diagnosis and testing process for national circuits.	1	5	6M
ii) Exp	plain the concept of Design for Testability (DFT) schemes. How do these	K2	5	6M

		OR			
		i) Discuss the principles of Built-In-Self-Test (BIST) in combinational circuits.	K2	5	6M
	b	ii) Using the Kohavi algorithm, determine whether a fault is detectable in a given	К3	5	6M
L		circuit. Explain each step of the process.			OIVI

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

* * *

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MDE103 DIGITAL DATA COMMUNICATIONS

Max. Marks: 60

Time: 3 hours

ECE (DECS)

Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12M = 60M)

┰	Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12M = 60M)			
igspace		KL	CO	M
<u></u>				
a	i) Sketch the QPSK waveform for the sequence 1101010010, assuming the carrier frequency equal to bit rate. What is the difference between BPSK and QPSK?	3	1	6M
	ii) Draw the block diagram, Explain the base band decoder used to recover the signal in a BPSK system i.e, DPSK decoder?	3	1	6M
	OR			
b	i) Determine the bandwidth required for M-ary FSK system. Draw the geometrical representation of M-ary FSK signals and find out the distance between the signals.	3	1	6M
	ii) Draw and explain the signal space representation of the QPSK. List the advantages of it.	2	1	6M
<u></u>	Unit-II			
a	communication system.	2	2	6M
	ii) What are the functions of a DTE-DCE? Explain with one example.	2	2	6M
L	OR			
b	versa?	3	2	6M
	ii) Explain how I2C facilitates communication between microcontrollers and peripheral devices.	2	2	бМ
L	Unit-III	<u></u>	I	
a			3	6M
	ii) What is CRC? If the generating polynomial for CRC code is $x^4 + x^3 + 1$ and message word is 11110000, determine check bits and codeword.	3	3	6M
<u> </u>	OR			
	A memory less source emits six messages with probabilities 0.3, 0.25, 0.15, 0.12, 0.1 and 0.08. Find the Huffman code. Determine its average word length, the efficiency and the redundancy.	3	3	12M
<u></u>				
a		2	4	6M
Ш		2	4	6M
ļ.,				
b	window flow control.	2	4	6М
Ш		2	4	6M
-	······································			
a		2	5	6M
Ш		2	5	6M
 				
b	1) Compare and contrast circuit switching and packet switching techniques	4	5	6M
Ш.	m) what is Alona and explain about carrier sense multiple access.	2	5	6M
	a b a b	Questions	Questions Unit-I	Questions

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MDE105

VLSI TECHNOLOGY & DESIGN

Time: 3 hours

ECE (DECS)

Max. Marks: 60

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 12M = 60M)

 _		All Questions Carry Equal Marks (5 X 12M = 00M)	KL	CO	M			
Q.No	\coprod	Questions Unit-I	IXL		747			
	<u> </u>		L2	1				
		i) Explain the significance of VLSI technology in modern electronic systems.	1.2	1	6M			
	a	Discuss its major applications.	L1	1	 			
		ii) What are the different stages involved in wafer fabrication? Explain each	17.1	1	6M			
1		stage briefly. OR		<u> </u>	<u> </u>			
	<u> </u>		L2	1				
	1	i) Describe the placement and routing stages in the physical design flow and	102	1	6M			
	Ъ	their significance.	L2	1				
		II) Discuss the critical design issues in vibor follows, personally	1.12	*	6M			
	ᆜ	area. Unit-II		<u> </u>	<u> </u>			
			L2	2	1			
	1 1	i) Describe the steps involved in the fabrication process of pMOS technology		-	6M			
	a	and highlight its applications.	L1	2	+			
		ii) What are lambda-based design rules, and why are they important in CMOS		-	6M			
2	\square	circuit design? OR	<u></u>	<u> </u>	<u> </u>			
_	<u> </u>		L3	2	т			
		i) Compare pMOS, nMOS, CMOS, and Bi-CMOS technologies based on power			6M			
	b	consumption, performance, and fabrication cost.	L2	2	+			
		ii) Explain the importance of communication interfaces in VLSI systems and	1.2	~	6M			
	describe their basic design principles. Unit-III							
	<u> </u>		L2	3				
		i) Discuss the importance of technology options VLSI Design process.	122		6M			
	a		L2	3	6M			
3		ii) Explain about the power calculations in VLSI Design process.	<u> </u>					
3		OR	1					
		i) What is the importance of mixed signal design in VLSI Design process.	L1	3	6M			
	Ъ		L2	3	+			
		ii) Explain the solutions for VLSI Design Issues.			6M			
<u> </u>	+	Unit-IV Unit-IV						
	-	i) Explain the concept of Basic electrical properties of MOS and BiCMOS	L2	4	6M			
		circuits.			OIA			
	a	ii) Discuss about the MOS and BiCMOS circuit design processes.	L2	4	6M			
4	- [J					
		OR	T. C					
		i) Explain the procedure for Scalable CMOS Design Rules.	L2	4	6M			
	ь		L2	4	63/			
	"	ii) Discuss the scaling of MOS circuits-qualitative and quantitative analysis.			6M			
5	+	Unit-V						
,	a		L2	5	6M			
1	a	1) Explain about the concept of second 1	1	 				
1		ii) Describe the procedure for Floor planning methods.	L3	5	6M			

				Ī
	OR		<u> </u>	<u>J.</u>
h	i) Explain the design of an ALU subsystem.	L2	5	6M
0	ii) What are the design methodologies in chip design and explain.	L1	5	6M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

I M.TECH I Semester Regular Examinations, January-2025

Sub Code: R24MDE109 OPTICAL COMMUNICATION TECHNOLOGY

R24

Time: 3 hours

ECE (DECS)

Max. Marks: 60

Note: Answer All FIVE Questions.
All Questions Carry Equal Marks (5 X 12M = 60M)

		All Questions Carry Equal Marks (5 X 12M = 60M)	TZT	1001	3 5		
Q.No		Questions	KL	CO	M		
		Unit-I		1			
•	a	i) Explain various approaches related to propagation of light in OFC	2	1	6M		
	_ a	ii) What is polarization of light, and how can light be polarized?	2	1	6M		
1		OR		· · · · · · · · · · · · · · · · · · ·			
		i) Explain various Scattering techniques in OFC	2	1	6M		
	b	ii) Explain about Four Wave Mixing and Principle of Solitons.	2	1	6M		
		Unit-II					
		i) What are the functions of optical switches? Explain?	3	2	6M		
0	a ii) Explain the prin	ii) Explain the principle of operation of optical amplifier.	1	2	6M		
2		OR					
		i)Explain about High Channel Count Multiplexer Architectures	2	2	6M		
	ь	ii) Explain the principle of operation of a Circulator	2	2	6M		
		Unit-III					
		i) Explain subcarrier modulation and multiplexing	3	3	6M		
	a	ii) Explain the Duobinary optical modulation scheme with necessary	3	3	63.5		
3.		diagrams.			6M		
	OR						
	b	i) Explain in detail about optical modulation schemes	1	3	12M		
	Unit-IV						
•		i)Explain about Ideal and Practical Receivers for Demodulation	1	4	6M		
	a	ii) What are the different types of error detection codes in optical system?	2	4	CAK		
	-	Explain.			6M		
4				·			
		i)Explain about Power Penalty in Transmitter and Receiver	2	4	6M		
	ь		4	4			
		ii) Find the expression for Bit Error Rate (BER) IN Ideal receivers and also	7	4	6M		
ļ	ļ	calculate the BER in Practical receiver with different noise impairments			<u> </u>		
		Unit-V	2	5	6M		
		i) Explain about WDM system and its principle with neat diagram?	2	5	OIVI		
	a	ii) Explain the wavelength stabilization against Temperature variations in an Optical Networks?	2	3	6M		
5		OR	<u> </u>	<u> </u>	1		
	-		3	<u> </u>	T T		
	b	Explain Overall System Design considerations i) Fiber Dispersion ii) Modulation iii) Non-Linear Effects iv) Wavelengths		5	12M		

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

1