

R23

II B.Tech I Semester Regular Examinations, December-2024

Sub Code: R23EC2101 PROBABILITY THEORY & STOCHASTIC PROCESS

Time: 3 hours

(ECE) Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

Q.No		Questions	KL	CO	M
	a	State the axioms of probability.	3	1	2M
	b	Mention two properties of the Gaussian distribution.	2	1	2M
	c	Define skewness and its significance.	2	2	2M
	d	What is a monotonic transformation of a continuous random variable?	2	2	2M
	e	State two properties of the joint distribution function.	3	3	2M
1	f	Define joint central moments.	2	3	2M
	g	Differentiate between wide-sense stationarity (WSS) and strict-sense stationarity (SSS).	3	4	2M
	h	Define the Poisson random process.	2.	4	2M
İ	i	State two properties of the power spectrum.	3	5	2M
	j	Define the autocorrelation function in terms of the power spectrum.	2	5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** (5 x 10M = 50M)

		Answer either a or b from each question of PAR1-B (5 x 10M \equiv 50M)			
Q.No	J	Questions	KL	CO	M
		Unit-I			
		i) Derive the total probability theorem with a practical illustration.	3	1	5M
	a	ii) Write and explain the properties of the Rayleigh distribution.	2	1	5M
		OR		· · ·	
2		i) Discuss the exponential distribution, its properties, and applications.	2	1	5M
		ii) The lifetime of a device follows an exponential distribution with a mean of	3	1	
	b	10 years. Find the probability that the device lasts:			53.4
		a. Between 3 and 8 years.			5M
		b. At least 5 years			
3		Unit-II			
	_	i) State and prove Chebyshev's inequality.	3	2	5M
	a	ii) Let X be a continuous random variable with PDF $f_X(x)=2x$, $0 \le x \le 10$. Find:	3	2	5M
		a. E[X] b. Var(X).			JIVI
		OR			
	b	i) Discuss the properties and applications of the characteristic function of a	2	2	5M
		random variable.			JIVI
		ii) Derive the moments of a random variable X that follows an exponential	3	2	5M
		distribution with rate λ.			

1	ı				
	-	Unit-III		:	
	a	i) Discuss the properties of jointly Gaussian random variables in the two-variable case.	1	3	5M
4		ii) Describe the steps involved in the linear transformation of Gaussian random variables.	2	3	5M
	<u> </u>	OR	<u> </u>	1 11	<u> </u>
		i) Derive the relationship between marginal distribution and joint distribution.	3	3	5M
	b	ii) For two random variables X and Y, the joint PDF is $f_{X,Y}(x, y)=6xy$ for $0 \le x,y \le 1$. Find: a. $F_X(x)$ b. $f_X(x)$.	3	3	5M
		Unit-IV	<u> </u>	1_:	
	a	i) Discuss the conditions for a process to be wide-sense stationary (WSS).	1 0		1
5	a	ii) A random process has an autocorrelation function $R_X(\tau)=5e^{- \tau }$. Find $R_X(0)$.	2	4	5M
		OR	3	4	5M
	Ь	i) Derive the properties of the autocorrelation function.	<u> </u>		,
	ט	ii) Compare nth-order stationarity and strict-sense stationarity.	3	4	5M
		Unit-V	2	4	5M
	-	i) Derive the relationship between the			
	a	i) Derive the relationship between the power spectrum and the autocorrelation function using the Wiener-Khinchin theorem.	3	5	5M
	-	ii) Describe the properties of the			3101
6		ii) Describe the properties of the cross-power density spectrum with examples.	2	5	5M
_		i) Exploin the relative to the			
	b	i) Explain the relationship between the cross-correlation function and the cross-power spectrum in the frequency domain.	2	5	5M
		ii) For a process with $R_X(\tau) = \cos(2\pi f_0 \tau)$, derive the corresponding power spectral density.	3	5	5M
KI: Bloo	ms T	RYODOMY Knowledge Level	ļ		

CO: Course Outcome

M: Marks

II B.Tech I Semester Regular Examinations, December-2024

Sub Code: R23CC2102

Time: 3 hours.

UNIVERSAL HUMAN VALUES

(COMMON TO ALL BRANCHES)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

Q.No		Questions	KL	CO	M
	a	Describe the value education.	2	1	2M
	b	Differentiate between happiness and prosperity.	2	1	2M
	c	Define the concept of harmony in the human being.	1	2	2M
	d	Interpret the harmony in the self.	2	2	2M
	е	Describe the harmony in the family.	2	3	2M
1	f	Differentiate between 'trust' and 'respect'.	2	3	2M
	g	List the four orders of nature.	2	4	2M
	h	Interpret the interconnectedness in nature	2	4	2M
	i	Define the term definitiveness of ethical human conduct.	1	5	2M
	j	Describe the natural acceptance.	2	5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** ($5 \times 10M = 50M$)

Q.No		Questions	KL	CO	M
		Unit-I			
		i) Explain the role of education in achieving holistic development.	2	1	5M
	a	ii)Outline the method to fulfill basic human aspirations.	2	1	5M
2		OR			
		i) List the basic components of holistic development.	2	1	5M
	ь	ii) Explain the current scenario concerning happiness and prosperity in	2	1	5M
		society.			3111
		Unit-II			
		i) Explain the co-existence of the self and the body.	2	2	5M
2	a	ii)How do the needs of the self differ from the needs of the body?	2	2	5M
3		OR			
	1.	i) Briefly explain the role of health in ensuring harmony in the human being.	2	2	5M
	b	ii) Discuss the key components of a programme for self-regulation?	2	2	5M
4		Unit-III			
	a	i) Explain the significance of 'trust' as a foundational value in relationships.	2	3	5M
		ii) Explain why harmony in the family is considered the basic unit of human	2	3	5M
		interaction.			

1		OR			
	b	i) Explain the importance of harmony in society for the well-being of individuals.	2	3	5M
		ii) Mention two examples of other feelings that contribute to harmonious relationships.	2	3	5M
		Unit-IV			<u> </u>
	a	i) Explain the concept of self-regulation in the four orders of nature.	2	4	5M
5	<u> </u>	ii) Explain the relationship between interconnectedness and coexistence.	$\frac{2}{2}$	4	$\frac{5M}{5M}$
		OR OR		1 7	JIVI
	b	i) Explain the significance of coexistence in realizing existence	2	1 4	5M
	 	ii) How does nature achieve self-regulation without external intervention?	2	4	5M
	<u> </u>	Unit-V	·		JIVI
	a	i) Explain the significance of humanistic education in shaping individual behavior.	2	5	5M
6		ii) Discuss the main features of value-based management models.	2	5	5) (
		OR	- 4	5	5M
	b	i) Outline any one strategy for transitioning toward a value-based profession.	·		
	ا تا ا	ii) How does a humanistic constitution contribute to a universal human order?	11	_ 5	5M
· Bloom	nc To	(constitution contribute to a universal human order?	2	5	5M

CO: Course Outcome

M: Marks

II B.Tech I Semester Regular Examinations, December-2024

R23

Sub Code: R23EC2103

SIGNALS & SYSTEMS

Time: 3 hours

(ECE)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

Q.No		Questions	KL	CO	M
	a	Give one example each for energy signal and power signal.	3	1	2M
	b	State Sampling theorem.	2	1	2M
	c	Write the Dirichlet conditions.	3	2	2M
	d	Define and give example of orthogonal functions.	2	2	2M
4	е	State and write the convolution property of the Fourier transform.	2	3	2M
1	f	Define Hilbert transform with formula.	2	3	2M
	g	Define time reversal property of Z-transform.	2	4	2M
	h	Define time shifting property of Laplace transform.	2	4	2M
	i	Give an example of Linear time variant system.	3	5	2M
	j	Define system bandwidth.	2	5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** (5 x 10M = 50M)

0.37	1	Answer either 'a' or 'b' from each question of PART-B (5 x 10 M = 50 M)	TZT	1 66	7.6
Q.No	<u> </u>	Questions	KL	CO	M
		Unit-I			
		i)Define and Give an example of each for periodic, aperiodic, even and odd	3	1	5M
		signals.			JIVI
	a	ii) Explain Sinc, Signum, and exponential functions with equations and	4	1	5M
2		figures.			JIVI
		OR			
		i) Explain any one technique for the reconstruction of signals from its	4	1	5M
	ь	samples.			JIVI
		ii) Explain effect of under sampling with example.	3	1	5M
		Unit-II			
	a	i)Define and prove scaling and frequency shifting properties of Fourier	3	2	5M
		series.		2	JIVI
3		ii) Derive the condition for orthogonality between two signals $x_1(t)$ and $x_2(t)$	4	2	5M
3		OR			
		i)Calculate Fourier series of $x(t) = 4 \sin 200 \pi t + 5 \cos 300 \pi t$	4	2	5M
	ь	ii)Explain conversion of exponential Fourier series from Trigonometric	4	2	5M
		Fourier series.			5101
4	1	Unit-III			
	a	i)Calculate Fourier transform of $x(t)=4t$ for $0 < t < 2$ and 0 otherwise.	3	3	5M
		ii)State and prove linearity and time shifting property of Fourier transform.	4	3	5M

	1	OR							
	ь	i)Derive Fourier transform from Fourier series.		3	5M				
	10	ii) Calculate Fourier transform of $x(t) = 5 \sin 100 \pi t + 3 \cos 400 \pi t$	4	3	5M				
		Unit-IV							
		i) A signal has	5	4					
	a	$X(s) = \frac{s-3}{(s-2)(s-4)}$			5M				
		derive all possible x(t) for above one.							
5		ii) Calculate Z transform of x(n)=u(n-1). U is a step function.	4	4	5M				
		OR							
		i) calculate the Laplace transform of x(t)=u(-t-1). U is a step function.	4	4	5M				
-		ii) A signal has	5	4	1}				
	b	$X(Z) = \frac{Z - 1}{(Z - 4)(Z - 5)}$			5M				
		derive all possible x(n) for above one.							
	Unit-V								
	a	i) Define and give examples of causal, non causal, stable and unstable systems.	3	5	5M				
6		ii) Define ideal low pass and band pass filter characteristics.	3	5	5M				
J		OR							
		i) Explain impulse response and transfer function of a LTI system.	3	5	5M				
	b	ii)Define and give examples of static, dynamic, linear and non-linear systems.	3	5	5M				

CO: Course Outcome

M: Marks

II B.Tech I Semester Regular Examinations, December-2024

ELECTRONIC DEVICES & CIRCUITS

Time: 3 hours

Sub Code: R23EC2104

(ECE)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

Q.No		Questions	KL	CO	M
	a	Define Insulator, Semiconductor, and Conductor.	KI	1	2M
	b	Draw an energy band diagram of a PN diode.	K3	1	2M
	С	Compare the bridge rectifier with the half-wave rectifier.	K4	2	2M
	d	Write different applications of Varactor Diode.	К3	2	2M
	e	Why is the emitter region of a transistor more heavily doped than the base region?	K4	3	2M
ı	f	Why the width of the Collector region of a transistor is larger than the base and emitter region?	K3	3	2M
	g	Define the load line with its significance.	K2	4	2M
	h	Write down the various bias compensation techniques.	ΚI	4	2M
	i	Compare JFET and MOSFET.	K2	5	2M
	j	What is the inversion layer?	Kı	5	2M_

PART-B

Answer either 'a' or 'b' from each question of **PART-B** (5 x 10M = 50M)

Q.No		Questions	KL	CO	M
Q.110		Unit-I			
		i) How are the width of the space charge region and the barrier height affected when a PN junction is forward-biased and reverse-biased?	K4	1	5M
	a	ii) Derive diode current equation?	К3	1	5M
2		OR			
		i) Sketch the ideal energy band diagram of a metal-semiconductor junction in which $\phi_m < \phi_s$. Explain how it will work as an ohmic contact.	K4	1	5M
	b	ii)Analyze the Transition capacitance and diffusion Capacitance of the PN diode.	K3	1	5M
3	 	Unit-II			
		i) With circuit and necessary waveforms explain the operation of the Bridge Rectifier.	K4	2	5M
	a	ii) How a Zener diode works as a voltage regulator.	КЗ	2	5M
ŀ	-	OR		4	,
	b	i) With the necessary diagram, explain the operation of the Full wave rectifier and derive the expression for the ripple factor.	K3	2	5M
		ii) Write a short note on LED.	K4	2	5M
ı	1				

	L	Unit-III					
4	a	i) Draw the circuit diagram of a common-emitter transistor amplifier and explain its operation.		3	5M		
		ii) Explain the conditions of the cut-off, saturation, and active modes in a transistor.	K3	3	5M		
		OR	· · · · · · ·	<u></u>	-1		
	ь	i) Explain the input and output characteristics of common collector configuration.	K4	3	5M		
		ii) Derive the relation between α and β of a transistor.	K3	3	5M		
,		Unit-IV	-l	J.,	<u> </u>		
	a	i) What are the different types of biasing methods? Explain with proper diagrams.	K4	4	5M		
		ii) Determine R_B and R_C for a fixed-bias configuration, if $V_{CC} = 12V$, $\beta = 100$, $I_{CQ} = 2.0$ mA with $V_{CEQ} = 5$ V.	K3	4	5M		
5	OR						
		i) Draw the transistor biasing circuit using fixed bias arrangement and explain its principle with suitable analysis.	K4	4	5M		
	b	ii) Prove that the bias current I _{CQ} in a voltage divider configuration of the	K3	4			
		Bipolar Junction Transistor is independent of the change in current gain (β) of the transistor.	,		5M		
		Unit-V					
	a	i) Draw a neat sketch to illustrate the structure of a P-channel Depletion MOSFET. Explain its operation.	K4	5	5M		
_		ii) Explain the construction and working of N-channel JFET.	K3	5	5M		
6		OR	ı Y				
	b	i) Describe how an inversion layer of charges can be formed in an MOS with the n-type substrate.	К3	5	5M		
		ii) Write a short note on UJT.	K4	5	5M		

CO: Course Outcome

M: Marks

II B.Tech I Semester Regular Examinations, December-2024

Sub Code: R23EC2105

SWITCHING THEORY & LOGIC DESIGN

Time: 3 hours

(ECE)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

Q.No		Questions	KL	CO	M
	a	Explain the ones and twos complement representation of a binary number.	2	1	2M
	b	Convert (2468) ₁₀ to () ₁₆	1	1	2M
	С	Write the advantages and disadvantages of k-map.	2	2	2M
	d	State duality theorem.	3	2	2M
1	e	Define half subtractor and full subtractor.	4	3	2M
	f	List out the applications of multiplexers.	5	3	2M
	g	Explain the operation of a SR flip-flop?	2	4	2M
	h	Draw the circuit diagram of a shift register and list its types	1	4	2M
	i	What is a PLD? What is the principal advantage of a PLD?	3	5	2M
	j	Draw the basic architecture of a PAL?	1	5	2M

PART-B

		Answer either 'a' or 'b' from each question of PART-B ($5 \times 10M = 50M$)		, ,				
Q.No		Questions	KL	CO	_M_			
2	Unit-I							
	a	i)Convert the following to Decimal and then to octal	2	1	10			
		(a) $(125F)_{16}$ (b) $(101111111)_2$ (c) $(392)_{10}$			M			
	OR							
	ь	i) What is the Hamming code? How is the Hamming code word tested and	3	1	10			
		corrected?			M			
3	Unit-II							
	a	i) State and prove the laws of Boolean algebra	1	2	5M			
		ii) Simplify the following expression using necessary minimization technique.	2	2	5M			
		$F=\Sigma m(0,1,2,8,9,15,17,21,24,25,27,31).$			JIVI			
	OR							
	b	i) Reduce the following expression to the simplest possible SOP forms.	5	2	5M			
		$F = \sum m (6,8,1,3,18,19,25,27,29,31) + d (2,3,11,15,17,24,28)$			3171			
		ii) Reduce using mapping the following expression and implement the real	2	2	5M			
		minimal expression in Universal logic. $F = \sum m (0, 2, 4, 6, 7, 8, 10, 12, 13, 15)$		<u> </u>	JIVI			
4		Unit-III						
	a	i) What is an excess-3 adder circuit and draw its logic diagram?	4	3	5M			
		ii) Write a short note on i) Half adder. ii) Full adder.	4	3	5M			
	1 .							

	T	OR						
		i) What is decoder? Construct 3*8 decoder using logic gates and truth tables	3	3	5M			
	b	ii) Discuss the functional principle of 4-bit ripple carry adder. What is its major disadvantage?	3	3	5M			
	Unit-IV							
5	a	i) Draw the circuit diagram of a positive edge triggered JK flip flop and explain its operation with the help of a truth table?	4	4	5M			
		ii) Explain synchronous and ripple counters. Compare their merits and demerits.	1	4	5M			
	OR							
	ь	i)Draw the block diagram of universal shift register and explain its operation	3.	4	5M			
		ii) Draw and explain the logic diagram of Moore model	2	4	5M			
	Unit-V							
	a	i) Show how the PLA circuit can be programmed to implement the binary to gray conversion.	2	5	5M			
		ii) Discuss how PROM, PLA and PAL technologies differ from each other	1	5	5M			
6	OR							
	b	i) Implement $f(A,B,C,D)=\Sigma(0,1,3,5,6,8,9,11,12,13)$ using PROM and explain its procedure.	4	5	5M			
		ii) Implement $f(A,B,C,D)=\Sigma(0,1,4,5,6,9,10,12,13,15)$ using PLA and explain its procedure.	1	5	5M			

CO: Course Outcome

M: Marks
