

(AUTONOMOUS)

I B.Tech I Semester Regular & Supple. Examinations, December-2024

R23

Sub Code: R23CC1101

LINEAR ALGEBRA & CALCULUS

Time: 3 hours

(Common to All Branches)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

		Answering all the questions from Part-A is compulsory (10 x 2M – 20M)	KL	CO	M
Q.No		Questions	IXL		141
	a	If A, B and C are the angles of a non-right angled triangle ABC, then find the value of $\begin{bmatrix} \tan A & 1 & 1 \\ 1 & \tan B & 1 \\ 1 & 1 & \tan C \end{bmatrix}$.	К3	COI	2M
	b	If $\begin{bmatrix} x^2 - 4x & x^2 \\ x^2 & x^3 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -x + 2 & 1 \end{bmatrix}$, then the value of x?	K2	CO1	2M
	С	Given an eigen value of a matrix A, write the eigen values of following matrices: A ^T and A ⁿ .	K1	CO2	2M
1	d	Given that $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$, find the eigen values of A.	К3	CO2	2M
	е	State Lagrange's mean value theorem.	K1	CO3	2M
	f	Give an example of a function for which Rolle's theorem is not applicable.	К3	CO3	2M
	g	Find the Jacobian for the functions $x = r \cos \theta$; $y = r \sin \theta$.	K2	CO4	2M _.
	h	State Euler's theorem for function of three variables.	K1	CO4	2M
	i	Evaluate $\int_{0}^{3} \int_{0}^{1} (x^2 + 3y^2) dy dx$.	K4	CO5	2M
	j	Change the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{x}} f(x,y) dy dx$.	К3	CO5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** (5 x 10M = 50M)

		Answer either 'a' or 'b' from each question of PARI-B (5 x 10M – 50M)	ΙZT	CO	M
O.No		Questions	KL		171
2		Unit-I			
	a	i) For what values of x, will the matrix $A = \begin{bmatrix} 3-x & 2 & 2 \\ 1 & 4-x & 0 \\ -2 & -4 & 1-x \end{bmatrix}$ be of rank less than 3.	K4	CO1	5M
		ii) Solve the following system of equations x + 2y + 3z = 0; 2x + 3y + z = 0; $4x + 5y + 4z = 0; x + 2y - 2z = 0.$	K3	CO1	5M
		OR			

	i) By reducing the following matrix A into Normal form find the rank of A $ b = \begin{bmatrix} -1 & 2 & -1 & -2 \\ -2 & 5 & 3 & 0 \\ 1 & 0 & 1 & 10 \end{bmatrix}. $ ii) Discuss the consistency of the second state	K4	CO1	5M
	ii) Discuss the consistency of the system and if consistent, solve the equations: $x + y + z = 6$; $x + 2y + 3z = 14$; $2x + 4y + 7z = 30$.	K3	CO1	5M
3	Verify Cayley-Hamilton theorem and find A ⁸ , Where $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$	K3	CO2	10M
	OR	<u> </u>	<u></u>	
	Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_2x_3$ to canonical form by an orthogonal transformation. Also find the rank, index, signature and nature of the quadratic form.	K3	CO2	10M
	Unit-III i) Verify Rolle's theorem for the function $f(x) = (x - a)^m (x - b)^n$ in [a, b], where m, n are positive integers. ii) Expand $f(x) = x^5 - x^4 + x^3 - x^2 + x - 1$ in powers of $(x - 1)$.	К3	CO3	5M
1	OR	К3	CO3	5M
4	i) If $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$, prove that c of Cauchy's mean value theorem is geometric mean between a and b. $a > 0$, $b > 0$	К3	CO3	5M
	ii) Expand 5 ^x up to the first three non-zero terms of the series using Maclaurin's theorem.	К3	CO3	5M
	Unit-IV	!		
	a i) If $u = \frac{e^{x+y+z}}{e^x + e^y + e^z}$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 2u$.	КЗ	CO4	5M
5	ii) Find the extreme values of $x^3 + y^3 - 3axy$, $a > 0$.	K3	CO4	5M
		КЗ	CO4	5M
	ii) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.	КЗ	CO4	5M
	Unit-V			
6	Evaluate $\int \int x^2 dx dy$, over the region in the first quadrant enclosed by the rectangular hyperbola $xy = 16$, the lines $y = x$, $y = 0$ and $x = 8$.	К3	CO5	10M
	b Evolute of f flog z dy dy dz	К3	CO5	10M

KL: Blooms Taxonomy Knowledge Level

CO: Course Outcome

M: Marks

(AUTONOMOUS)

I B.Tech I Semester Regular & Supple. Examinations, December-2024

R23

Sub Code: R23CC1102

INTRODUCTION TO PROGRAMMING (Common to All Branches)

Max. Marks: 70

Time: 3 hours

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory $(10 \times 2M = 20M)$

Q.No		Questions	KL	CO	M
	a	Describe type conversion with examples of implicit and explicit conversion	K3	1	2M
	b	Examine how the flowchart tool Dia can be used to represent an algorithm.	K4	1	2M
	c	Demonstrate the use of a for loop to print the first 10 natural numbers	K3	2	2M
	d	List the conditional statements with syntax.	K3	2	2M
:	e	Differentiate 1D array verses 2D array with an example?	К3	3	2M
1	f	How do you read and write strings in C? Provide a simple syntax.	K4	3	2M
	g	Demonstrate the difference between ptr++ and ++ptr using a pointer to an integer.	K3	4	2M
	h	Compare and contrast between structure and union?	K3	4	2M
	i	Write C program to demonstrate the difference between function declaration and definition	K4	5	2M
	j	Describe any 3 built-in functions to perform basic file operations in C?	K3	5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** $(5 \times 10M = 50M)$

		Answer either 'a' or 'b' from each question of FAR1-B (3 x 10M = 30M)	TZT	60	3.5
Q.No		Questions	KL	CO	M
		Unit-I			
		i) Analyze the process of compilation and execution in programming	K4	1	5M
	a	languages. ii) Explain the role of the ALU and program counter in the basic organization of a computer.	K3	1	5M
2	-	OR			
		i) How does the top-down approach help in problem-solving, and how is it different from the bottom-up approach?	K3	1	5M
	b	ii) Discuss the impact of time and space complexities on algorithm	K3	1	5M
	ļ	performance.	<u> </u>	<u> </u>	<u>. </u>
3		Unit-II	K4	1 2	т—
		i) Write C program that takes an integer input from the user and prints whether the number is even or odd.	124	-	5M
	a	ii) Briefly explain Switch statement with example.	K3	2	5M
		OR			
	b	i) Write C program that prints the first 10 Fibonacci numbers using a while	K4	2	5M
		loop.	K3	2	5M
	1	ii) Demonstrate Break and Continue statements with example.	123		121

		Unit-III	,	···.	1
		i) Write a program to search for a given number in an array of integers.	lirea	.	
	a	ii) Explain string manipulation functions with a serial array of integers.	K4	3	5M
4		ii) Explain string manipulation functions with examples. Use strcpy, strcat and strlen.	K3	3	5M
4	<u> </u>	OR	<u>. </u>		<u>"</u>
	Ь	i) Describe the memory model of arrays in C. How are array elements stored sequentially?	K3	3	5M
		ii) Write C program to read an array of strings and display the longest string among them.	K4	3	5M
		Unit-IV			<u>.</u>
		i) Write C program to define a structure Student with fields name, age, and	K4	4	
1	l a.	marks. Input and display data for a student.	:		5M
5		ii) Demonstrate the memory usage of a structure and a union. Compare their sizes.	К3	4	5M*
		OR			
		i) Create a program that swaps the values of two variables using pointers	K3	4	5M
	b	ii) Briefly explain the concept of pointers in C. Provide an example illustrating	K3	4	4
	ļ	their use.		•	5M
	<u> </u>	Unit-V	<u> </u>		
i		i) Discuss about the type of functions in C. Provide an example to illustrate it.	K3	5	5M
	a	ii) Examine the difference between pass by value and pass by reference in C functions	K4	5	5M
6		OR	<u> </u>		
		i) Write C program to count the number of characters, words, and lines in a text file.	K3	5	5M
	b	ii) Develop a function that appends new data to an existing file without overwriting its content	К3	5	5M

KL: Blooms Taxonomy Knowledge Level

CO: Course Outcome

M: Marks

I B.Tech I Semester Regular & Supple. Examinations, December-2024

Sub Code: R23CC1106 ENGINEERING PHYSICS

Time: 3 hours

(CE, EEE, ME, ECE, CSE (AIML), DS, CS, AIML)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory (10 x 2M = 20M)

Q. No		Questions	KL	CO	M
	a	Mention the differences between spontaneous and stimulated emissions.	K1	1	2M
	Ъ	Define acceptance cone.	K1	1	2M
	C	Define space lattice and unit cell.	K1	2	2M
-	-d	Draw the planes of a cubic cell (i) (111) (ii) (101).	K4	2~	2M
1	е	Define magnetic susceptibility and permeability.	K1	3	2M
1	f	Write the properties of super conductors	K1	3	2M
	g	State Heisenberg's uncertainty principle.	K1	4	2M
	h	Write any two merits of classical free electron theory.	K1	4	2M
	i	State Hall effect.	K1	5	2M
	j	What are thermoelectric materials?	K1	5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** ($5 \times 10M = 50M$)

Unit-I a i) With the help of suitable diagrams, explain the principle, construction and working of a Ruby laser. ii) Mention the applications of lasers in the different fields. K1 1 3M	Q. No		Questions	KL	CO	Marks
a working of a Ruby laser. ii) Mention the applications of lasers in the different fields. OR b i) Explain the construction and working of a step-index fiber. ii) Discuss the propagation of light signal in step-index fiber. Vinit-II a i) Prove that FCC is more closed packed structure than the SC and BCC. OR ii) Derive an expression for the interplanar spacing between two adjacent planes of Miller indices (h k l) in a cubic lattice of edge a. ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4 × 10 ⁻¹⁰ m. Unit-III i) Explain atomic origin of magnetism in magnetic materials. ii) Mention the differences between soft and hard magnetic materials. OR b ii) What are the differences between type-1 and type -2 super conductors? K2 3 4M ii) Explain AC and DC Josephson effects. Cunit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M			Unit-I	•		
Section Cor Section Co		a		K4	, 1	7M
b i) Explain the construction and working of a step-index fiber. K2 1 5M ii) Discuss the propagation of light signal in step-index fiber. K3 1 5M Unit-II a i) Prove that FCC is more closed packed structure than the SC and BCC. K3 2 10M OR i) Derive an expression for the interplanar spacing between two adjacent planes of Miller indices (h k l) in a cubic lattice of edge a. ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4 × 10 ⁻¹⁰ m. Unit-III a i) Explain atomic origin of magnetism in magnetic materials. K2 3 6M ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR b i) What are the differences between type-1 and type -2 super conductors? K2 3 4M ii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential K5 4 7M box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M	2		ii) Mention the applications of lasers in the different fields.	K1	.1	3M
Solution Solution						
Ii) Discuss the propagation of light signal in step-index fiber. K3 1 5M		ь	i) Explain the construction and working of a step-index fiber.	K2	1	5M
a i) Prove that FCC is more closed packed structure than the SC and BCC. OR i) Derive an expression for the interplanar spacing between two adjacent planes of Miller indices (h k l) in a cubic lattice of edge a. ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4 × 10 ⁻¹⁰ m. Vinit-III a i) Explain atomic origin of magnetism in magnetic materials. ii) Mention the differences between soft and hard magnetic materials. OR b i) What are the differences between type-1 and type -2 super conductors? K2 3 4M OR ii) Explain AC and DC Josephson effects. K3 2 7M AM COR Vinit-III AM OR DR SI) What are the differences between type-1 and type -2 super conductors? K2 3 4M AM OR Unit-IV AM I) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. Ii) Find the energy of an electron for the first excited state in one K4 4 3M		٦	ii) Discuss the propagation of light signal in step-index fiber.	K3	1	5M
OR i) Derive an expression for the interplanar spacing between two adjacent planes of Miller indices (h k l) in a cubic lattice of edge a. ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4 × 10 ⁻¹⁰ m. Unit-III a i) Explain atomic origin of magnetism in magnetic materials. K2 3 6M ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR b i) What are the differences between type-1 and type -2 super conductors? K2 3 6M ii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M						
i) Derive an expression for the interplanar spacing between two adjacent planes of Miller indices (h k l) in a cubic lattice of edge a. ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4 × 10 ⁻¹⁰ m. Unit-III a i) Explain atomic origin of magnetism in magnetic materials. K2 3 6M ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR b i) What are the differences between type-1 and type -2 super conductors? K2 3 6M ii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential K5 4 7M box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M		a	i) Prove that FCC is more closed packed structure than the SC and BCC.	К3	2	10M
b planes of Miller indices (h k l) in a cubic lattice of edge a. ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4 × 10 ⁻¹⁰ m. Unit-III a i) Explain atomic origin of magnetism in magnetic materials. K2 3 6M ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR b i) What are the differences between type-1 and type -2 super conductors? K2 3 4M ii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M	3					
ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4 × 10 ⁻¹⁰ m. Unit-III a i) Explain atomic origin of magnetism in magnetic materials. K2 3 6M ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR b i) What are the differences between type-1 and type -2 super conductors? K2 3 4M ii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M		l h	i) Derive an expression for the interplanar spacing between two adjacent planes of Miller indices (h k l) in a cubic lattice of edge a.	КЗ	2	7M
4 i) Explain atomic origin of magnetism in magnetic materials. K2 3 6M ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR b ii) What are the differences between type-1 and type -2 super conductors? K2 3 4M iii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M		"	ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4×10^{-10} m.	K4	2	3M
4 ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR b i) What are the differences between type-1 and type -2 super conductors? K2 3 4M ii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M						
4 ii) Mention the differences between soft and hard magnetic materials. K4 3 4M OR		,	i) Explain atomic origin of magnetism in magnetic materials.	K2	3	6M
OR b i) What are the differences between type-1 and type -2 super conductors?		a	ii) Mention the differences between soft and hard magnetic materials.	K4	3	4M
5 ii) Explain AC and DC Josephson effects. K1 3 6M 5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. K5 4 7M ii) Find the energy of an electron for the first excited state in one K4 4 3M	4					
5 Unit-IV a i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M		h	i) What are the differences between type-1 and type -2 super conductors?	K2	3	4M
a i) Determine the energy of a particle enclosed in one-dimensional potential K5 4 7M box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M		_		K1	3	6M
box of infinite height. ii) Find the energy of an electron for the first excited state in one K4 4 3M	5					
ii) Find the energy of an electron for the first excited state in one K4 4 3M	l	а		K5	4	7M
			ii) Find the energy of an electron for the first excited state in one dimensional potential box of width 4 A° .	K4	4	3M

		OR							
	1	i) Explain briefly the quantum free electron theory.	K2	4	3M				
	Ъ	 ii) Explain Fermi-Dirac distribution function. Plot this function for various temperatures including 0K. 	K2	4	7M				
		Unit-V							
	a	i) Distinguish conductors, semiconductors and insulators.	K3	5	6M				
		ii) What are extrinsic semiconductors and explain?	K1	5	4M				
6		OR OR							
Ū		i) What are the types of smart materials?	K1	5	4M				
	b	ii) Explain the principle and properties of magneto rheological fluids-electro rheological fluids.	K2	5	6M				

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M: Marks

Sub Code: R23CC1107

ENGINEERING COLI

(AUTONOMOUS)

I B.Tech I Semester Regular & Supple. Examinations, December-2024

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

R23

Time: 3	3 hou	rs (CE,EEE,ME,ECE,CSE(AIML),DS,CS,AIML) Max.	Marks:	70	
		PART-A:(EEE)			
Q.No		Questions	KL	CO	M
	a	What are the limitations of Ohms law?	K1_	1	1M
	b	What is the significance of commutator of a DC generator?	K3	2	1M
1	С	What are the drawbacks of non-conventional energy sources?	<u>K3</u>	3	1M
ļ	d	Define phase, peak factor and form factor of an AC wave form	K1	1	1M
Ì	е	What is meant by controlling and damping torques of an instrument?	K3	4	1M
		Unit-I			
		i)Classify the electric circuit elements and explain each of them	K1	1	5M
		ii)Find the current (I) flowing through 6 Ohms resistor of the circuit shown	K2	1 1	Ì
		below using superposition theorem			
		5Ω 6Ω 15 Ω		l Ì	
İ	a	2021			5M
		20 V 30 V			
		$T \downarrow $ $10 \Omega \downarrow 15 \Omega $ T			
2					
		OR	•		
		i) Draw the impedance and power triangles for series RL circuit.	K2	1	5M
		ii) a) Determine the form factor and amplitude factor of the waveform	K2	1	
}		shown below			
		i 🛦	1		
Ì	1,	1			5M
	b	500 A			5171
	1				
	_	0 1 2 3 4 t		<u> </u>	
		Unit-II		1	
		i)With a neat diagram explain the construction and working principle of DC	K3.	2	10M
3	a	motor, clearly discuss each part of the motor		<u> </u>	
3		OR	T		1
		i)Explain the principle of operation of Three-phase Induction motor	K3	2	5M
	Ъ	ii)Explain the construction and working principle of Moving Iron	K3	2	5M
		instruments	<u> </u>	<u> </u>	
		Unit-III	,		
		i)What are the advantages and disadvantages of renewable and non-	K2	3	5M
	a	renewable energy sources			<u> </u>
	1	ii) With a neat sketch, explain the hydel power generation	K3	3	5M
4		OR			
-		i) With a neat sketch explain the wind power generation	K3	3	5M
	Ъ		172	1	
	"	ii)Write down any six safety precautions used in electrical system	K3	4	5M
			ــــــــــــــــــــــــــــــــــــــ		<u> </u>

PART-B (ECE)

Q.No	\Box	Oversions	 		<u> </u>
210	a	Questions What is Zener Effect?	KL	CO	M
	b		K1	1	1M
_	-	What is the significance of amplifier?	K2	2	1M
5	c	Give the truth table of XNOR gate	K1	3	1M
	d	What is the significance of FLIP-FLOP?	K1	3	1M
	e	What is the use of counter in digital electronics?	K2	4	1M
		Unit-IV			
	1	i)Explain the characteristics of Zener diode	K2	1	5M
6	a	ii)Explain the characteristics of NPN transistor	K2	1	5M
		OR			·
İ	ь	i) With a neat circuit diagram explain the working of common emitter amplifier along with its frequency response	K1	1	10M
		Unit-V			
7	a	i) Explain the operation of a half wave bridge rectifier with a neat circuit and also draw the relevant waveforms.	K2	2	10M
	-	OR .			
	b	i) Explain the block diagram of an electronic instrumentation system and clearly explain each block of it.	K1	3	10M
		Unit-VI			
	a	i) Explain AND, NOR, XOR and NOT gates along with their truth tables	K1	3	5M
1		ii) Design & implement half adder with truth table.	K3	3	5M
8		OR			3171
ŭ		i)Explain J-K flip-flop with relevant truth tables	K2	4	5M
	b	ii)Explain about serial input and output registers what is meant by ring counter?	K2	4	5M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M: Marks

2

I B.Tech I Semester Regular & Supple. Examinations, December-2024 **ENGINEERING GRAPHICS**

R23

Sub Code: R23CC1108

Max. Marks: 70

Time: 3 hours

(ECE)

Note: Answer All FIVE Questions.

	,	All Questions Carry Equal Marks (5 X 14 = 70M)			
Q.No	<u> </u>	Questions	KL	CO	M
	<u> </u>	Unit-I			
1	a	Draw a hyperbola when the distance of the focus from the directrix is 70 mm and the eccentricity e is 3/2. Draw the tangent and normal to the curve at a point P distance 50 mm from the directrix.	3	1	14M
_		OR			
	b	Construct a Diagonal scale of 3:200 showing meters, decimeters and centimeters and to measure up to 6 meters, to show 4.56m	3	1	14M
		Unit-II		' 	
2	a	The front view and top view of a straight line PQ measures 50mm and 65 mm respectively. The point P is in the HP and 20 mm in front of the VP and the front view of the line is inclined at 45° to the reference line. Determine the true length of PQ, true angles of inclination.	3	2	14M
2		OR		<u> </u>	
	ь	An isosceles triangular plane ABC with a 70 mm base and altitude 80 mm has its base in the H.P. and inclined at 45° to the V.P. The corners A and C are in the V.P. Draw its projections and determine the inclination of the plane with H.P.	3	2	14M
		Unit-III		L	
3	a	A right circular cone of base diameter 60 mm and height 80 mm is so placed that diameter KJ of the base is inclined at 50° to HP.	3	3	14M
J	<u> </u>	OR		·	
	ь	A right pentagonal pyramid of base side 20mm and height 60mm rests on one of its edges of the base in HP, the axis is 30° to the HP.	3	3	14M
		Unit-IV		<u></u>	
4	a	A cylinder, 65 mm diameter and 90 mm long has its axis parallel to the H.P and is inclined at 30° to V.P. It is cut by a vertical section plane in such a way that the true shape of the section is an ellipse having a major axis, 75 mm long. Draw its sectional front view and true shape of the section.	3	4	14M
•		OR		· · · · · · · · · · · · · · · · · · ·	* *********
	ь	A pentagonal pyramid of-base edge 25 mm and height 60 mm rests vertically on its base on the HP such that one of its base edge parallel to VP. It is cut by a plane, inclined at 60° to HP and passes through a point 35 mm from the base. Draw the development of the lateral surface of the pyramid.	3	4	14M
_		Unit-V			
5	a	Draw the isometric view of the cone with base 40mm diameter and height 60mm long. The axis is perpendicular to HP, the base is resting on HP	3	5	14M
	<u> </u>	OR	<u> </u>		

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

2