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INSTITUTE VISION AND MISSION
VISION:

To emerge as a Centre of excellence in technical education with a blend of effective student
centric teaching learning practices as well as research for the transformation of lives and

community,

MISSION:
1. Provide the best class infrastructure to explore the ficld of engineering and research.
2. Build a passionate and a determined team of faculty with student centric teaching,
imbibing experiential and innovative skills.
3. Imbibe lifelong learning skills, entrepreneurial skills and ethical values in students for

addressing societal problems.

PRINCIPAL
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DEPARTMENT VISION AND MISSION
VISION:

To strive for making competent Mechanical Engineering Professionals to cater the real time
needs of Industry and Research Organizations of high repute with Entrepreneurial Skills and

Ethical Values.

MISSION:

MI1. To train the students with State of Art Infrastructure to make them industry ready
professionals and to promote them for higher studies and research.

M2. To employ committed faculty for developing competent mechanical engineering
graduates to deal with complex problems.

M3. To support the students in developing professionalism and make them socially

committed mechanical engineers with morals and ethical values.







% NARASARAOPETA
NEC ENGINEERING COLLEGE

FAL FONOMOLST

DEPARTMENT OF MECHANICAL ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1: Excel in profession with sound knowledge in mathematics and applied sciences
PEO 2: Demonstrate leadership qualities and team spirit in achieving goals

PEO 3: Pursue higher studies to ace in research and develop as entrepreneurs.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1. The students will be able to apply knowledge of modern tools in manufacturing
enabling to conquer the challenges of Modern Industry.

PSO2. The students will be able to design various thermal engineering systems by applying
the principles of thermal sciences.

PSO3. The students will be able to design different mechanisms and machine components of

transmission of power and automation in modern industry.
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PROGRAM OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science.
engineering fundamentals, and an engineering specialization to the solution of complex
engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyse complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engincering problems
and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, socictal, and
environmental considerations.

4, Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques. resources, and
modern engineering and [T tools including prediction and modelling to complex engineering
activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of.
and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of'the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological change.







REVISED Bioom’s Taxonomy Action Verbs

E

Definitions I. Remembering | ll. Understanding . Applying ‘IV: Analyzing V. Evaluating VI. Creating
Bloom'’s Exhibit memory | Demonstrate Solve problems to | Examine and break| Present and Compile
Definition of previously understanding of new situations by | information into defend opinions | information
learned material | facts and ideas by applying acquired | parts by identifying| by making togetherin a
by recalling facts| organizing, knowledge, facts, | motives or causes. | judgments about | different way by
terms, basic comparing, techniques and Make inferences | infermation, combining
concepts, and translating, rules in a different | and find evidence validity of ideas, | elementsina
answers. interpreting, giving | way. to support or quality of work | new pattern or
descriptions, and generalizations. based on a set of | proposing
stating main ideas. criteria. alternative
solutions,
Verbs « Choose = (Classify *  Apply =  Analyze » Agree = Adapt
e Define * Compare = Build = Assume =  Appraise » Build
* Find Contrast * Choose = Categorize * Assess * Change
= How Demonstrate * Construct ¢ Classify *  Award = Choose
* Label Explain : * Develop - Compare » Choose = Combine
= List = Extend Experiment with| = . Conclusion = Compare = Compile
= Match * |llustrate Identify = Contrast e Conclude * Compose
= Name * Infer *» Interview * Discover Criteria Construct
=  Omit Interpret =  Make use of = Dissect Criticize = Create
= Recall Qutline Maodel Distinguish Decide = Delete
* Relate * Relate = Organize Divide *= Deduct = Design
» Select = Rephrase = Plan * Examine * Defend + Develop
*  Show = Show * Select *  Function * Determine * Discuss
*  Spell *  Summarize s  Solve = [nference * Disprove * Elaborate
= Tell * Translate = Utilize * |nspect = Estimate = Estimate
*  What » List = Evaluate * Formuiate
«  When =  Motive = Explain Happen
=  Where * Relationships | « Importance | * Imagine
*  Which = Simplify * Influence = Improve
= Who *  Survey * |Interpret * lnvent
*  Why ~| 3. Takepartin | e Judge * Make up
* " e Testfor * Justify *  Maximize
‘¢ . Theme = Mark =  Minimize
s  Measure *  Modify
* Opinion = Original
= Perceive * Originate
= Prioritize * Plan
= Prove = Predict
* Rate = Propose
* Recommend | = Solution
* Ruleon * Solve
* Select *  Suppose
* Support s Test
= Value = Theory

4

rderson, L W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing,

Fl _',,Z.

Abridged Edition. Boston, MA: Allyn and Bacon.
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DEPARTMENT OF MECHANICAL ENGI NEERING
R20 REGULATION - COURSE OUTCOMES

IIB. TECH] SEMESTER

After successfyl completion of this course,

Illustrate the concepts of stress and strain and thermal stress in members
gradually, suddenly applied loads,

Analyze shear force diagrams and bending moment diagrams to the different loads for the
different support arrangements,

Solve the equations of slope and deflection for different su
integration method, Macaulay’s method.







NEC ' Narasaraopeta Engineering College
(Autonomous)
Yallmanda(Post), Narasaraopet- 522601

Department of Mechanical Engineering

COURSE INFORMATION SHEET

PROGRAMME: B.Tech Mechanical Engineering

COURSE: MECHANICS OF SOLIDS Semester : 1 CREDITS: 3

COURSE CODE: R20ME2105 COURSE TYPE (CORE /ELECTIVE / BREADTH/ S&H): CORE
| REGULATION: Autenomous

COURSE AREA/DOMAIN: PERIODS: 6 Per Week,

MECHANICS OF MATERIALS

COURSE PRE-REQUISITES:
| C.CODE | COURSE DESCRIPTION SE
NAME : M
To impart the basic concepts and fundamentals of Engineering | I/IT
RIGME1204 Engincering | Mechanics and the principles of various force systems under static
| Mechanics | and dynamic conditions. To develop the problem solving skills of
engineering mechanics essential for mechanical engineering,

‘COURSE OUTCOMES:

SNO Course Outcome Statement
CO 1: Ilustrate the concepts of stress and strain and thermal stress in members, strain
Co1 energy due gradually, suddenly applied loads.

CO 2: Analyze shear force diagrams and bending moment diagrams to the different loads for the
CO2 | gifferent support arrangements.

CO 3: Determine shear stresses induced in the beams which are made with different cross sections
CO3 | like rectangular, circular, I, T sections.

CO 4: Solve the equations of slope and deflection for different support arrangements by doublc
COo4 integration method, Macaulay’s method.

cos5 | CO 5: Determine stresses induced in cylinders subjected to internal, external pressures,

s




SYLLABUS:

UNIT

DETAILS

SIMPLE STRESSES & STRAINS: Concept of stress and strain- Types of stresses & strains-
tensile, compressive, shear ~Hooke’s law — stress — strain diagram for mild steel - Factor of safety
— Lateral strain, Poisson’s ratio & volumetric strain — Bars of varying cross section — composite
bars. Elastic moduli and the relationship between them. Temperature stresses.

STRAIN ENERGY & IMPACT LOADING: Stréin energy - Resilience — Stress due to various
types of axial loads- Gradually applied suddenly applied and impact loadings,

I

SHEAR FORCE AND BENDING MOMENT: Definition of beam — Types of beams - concepts
of SF & BM with point load, Uniformly Distributed Load, uniformly varying loads and
combination of these loads, Point of contra flexure, Relation between S.F., B.M and rate of loading
at a section of a beam.

I

FLEXURAL STRESSES: Theories of simple bending — Assumptions - derivation of bending
equation, - Neutral axis, Moment of resistance, determination of bending stresses, section modulus
of rectangular and circular sections (solid and hallow), I & T sections,

SHEAR STRESSES: Shear stress distribution across various beams sections- rectangular,
circular, I and T sections,

iv

DEFLECTION OF BEAMS: Member bending into a circular arc ~slope, deflection and radius
of curvature. Determination of slope and deflection for cantilever and simply supported beams
subjected to point loads and U.D.L by Double integration method, Macaulay’s method, Moment
area method,

THIN CYLINDERS: Thin cylindets - longitudinal and circumferential stresses, Derivation of
formulae and calculations of hoop stress, longitudinal stress in a cylinder subjected to internal
pressure,

THICK CYLINDERS: Derivation of formulae for radial and hoop stresses, Lame’s equation,
and cylinders subjected to inside & outside pressure, compound cylinders.

TORSION OF SHAFTS: Theory of pure torsion, Torsional moment of resistance, derivation of
Torsion equation, assumptions in the theory of pure torsion, polar modulus, power transmitted by
a circular shafl, shafis in series, shafts in parallel,

TEXT BOOKS

T

BOOK TITLE/AUTHORS/PUBLISHER

Ti

Strength of materials by Bhavikatti

T2

Strength of malerials by R. K. Bansal

REFERENCE BOOKS

BOOK TITLE/AUTHORS/PUBLISHER _

Mechanics of Materials {In $i Units) by Beer and Johnson

Strength of Materials (Mechanics of Materials) by James M.Gere and Barry J.Goodno

Strength of Materials (Mechanics of Solids) by R.K. Rajput




TOPICS BEYOND SYLLA BUS/ADVANCED TOPICS:

SNO

DESCRIPTION

Associated PO & PSO

1 Statically Indeterminate Structures

PO1, PO2,PO3, PO5 & PSO1

2 Finite Element Analysis

POL, PO2,PO3, POS5 & PSO1

WEB SOURCE REFERENCES:

1

https:/inplel.ac.infcourses/105 1020907

https:/npiel.ac.in‘courses/ 105 104 617

https:iimptel ac in/courses/ 105106172/

Fa] W} b

hitps:/nptel ac.inicourses/ 1051061 16/

https:i/nptel ac.in/courses/1 12107146/

bttpssinplel.ac.in‘courses/10510510%

hiips.//nplel.ac.in‘courses/1 12107147,

hitps://npiel.ac,in‘courses/ 112106141/

ol ool < o,

hitps:/mplel.ac.in/courses/112 101095/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

v Chalk & Talk v PPT v Active Learning

v Web Resources v Students Seminars « Case Study

O Blended Learning v Quiz O Tutorials

O Project based learning O NPTEL/MOOCS O Simulation

O Flipped Learning O Industrial Visit O Model Demonstration
[3 Brain storming O Role Play &~ Virtual Labs

MAPPING CO’S WITH PO'S

' RISME2102

co PO1 | PO2 | PO3 [PO4 [ TO5 | POG | PO7 PO8 | PO9 | PO10 | PO11 | PO12 | PSOT | PSO2 | PSO3
Col1 3 2 1 2 - N - . - - - - N . 3
coz 3 3 2 3 - - - - - - - - - - 3
CO3 3 3 2 3 - - - - - - - - - - 3
CO4 3 3 2 3 . - - - . - - - - - 3
o5 3 2 2 2 - - - - - - N N . - 3
Average | 3.00 | 267 |1.67 | 267 |- - - - - - - - - - 3.00
; ’ ]
MAPPING COURSE WITH POs & PSOs
Course | PO1 | PO2 | PO3 | PO4 [ PO5S | POG | PO7 | POS | PO9 | POI0 | PO1T | POL2 | PSOT | PSO2 PSO3
300 267 [ 167 | 267 |- - - - - - - - - - 3.00




—

Course Outcome Assessment Methods Weightages
Direct Cumulative Internal | Descriptive Test Final
Assessment Examinations Objective Test 30% na
- 90% Course

(CIE) Assignment Test Outcome

Semester End Examinations (SEE) 70% (100%)
Indirect Course End Survey

10%
| Assessment

—— :
Rubrics for overall attainment of course outcomes:

If 50% of the students crossed 50% of the marks: Aftainment Level 1

If 60% of the students crossed 50%, of the marks: Attainment Level 2

If 70% of the students crossed 50% of the marks: Attainment Level 3

o

Course Instructor Course Coordinator

o
, /@e oordinator




ANNEXURE I:
(A} PROGRAM QUTCOMES {POs) Engineering G raduates will be able to:
L Engineering knowledge: Apply the knowledge of mathematics, science, enginecring fundamentals, and an engineering
specialization to the solution of compiex engineering problems.
2. Problem analysis: [dentify, formulate, review research literature, and analyze complex engineering problems reaching
substantiated conclusions using first principles of - mathematics,
natural sciences, and engineering sciences,
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or
processes that meet the specified needs with appropriale consideration for the public health and safety, and the cultural,
societal, and environmental considerations, '
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of
experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. :
5. Modern tool usage: Create, select, and apply appropriate techniques, résources, and modern engineering and IT tools including
prediction and modeling (o complex cngineering activilies with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and
cultural issues and the consequent responsibilities. relevant to the professional engineering practice, :
7. Environment and sustainability: Understand the impact of the professional engineering solutions in  societal and
environmental contexts, and demonstrate the knowledge of, and necd for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice,
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in
multidiseiplinary settings.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society
al large, such as, being able to comprehend and write cffective reports and design documentation, make effective presentations, and
give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles
and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments,
12, Life-long learning: Recognive the need for, and have the preparation and ability to engage in independent and life-long learning
in the broadest context of technological change.

(B} PROGRAM SPECIFIC OUTCOMES {PSOs) :

PSO1.The students will be abte to understand the modern tools of machining which gives them good expertise on advanced
manufacturing methods.

P3S02.The students will be able to design different heat transfer devices with emphasis on combustion and power production.
PS03.The students are able to design different mechanisms and machine components suitable to automation industry.

Cognitive levels as per Revised Blooms Taxonomy:

ot LEVEL Key words
Cognitive v
Domain
Remember K1 Defines, describes, identifies, knows, labels, lists, matches, names, outlines,
' recalls, recognizes, reproduces, selects, states,
Understand K2 Comprehends, converts, defends, distinguishes, estimates, explains,

extends, generalizes, gives an example, infers, interprets, paraphrases,
predicts, rewrites, summarizes, translates.

Apply K3 Applies, changes, computes, constructs, demonstrates, discovers,
manipulates, modifies, operates, predicts, prepares, produces, relates,
selcts, shows, solves, uses, -

| Analyse k4 Analyzes, breaks down, compares, contrasts, diagrams, deconstructs,
' differentiates, discriminates, distinguishes, identifies, illustrates, infers,
outlines, relates, selects, separates,

Evaluate K5 Appraises, compares, concludes, contrasts, criticizes, critiques, defends,
' describes, discriminates, evaluates, explains, interprets, justifies, relates,
summarizes, supports _

Create K6 Categorizes, combines, compiles, composes, creates, devises, designs,
explains, generates, modifies, organizes, plans, rearranges, reconstructs,
L relates, reorganizes, revises, rewrites, summarizes, tells, write




CO1:

CO 2:

CO3:

CO4:

Unit wise Sample assessment questions

. COURSE OUTCOMES: Students are able fo

Nlustrate the concepts of stress and strain and thermal stress in members,

energy due gradually, suddenly applied loads.

strain

Analyze shear force diagrams and bending moment diagrams to the different loads for the

different support arrangements,

Determine shear stresses induced in the beams which are made with different cross sections

like rectangular, circular, I, T sections.

Solve the equations of slope and deflection for different support arrangements by double

integration method, Macaulay’s method.

COS: . Determine stresses induced in cylinders subjected to internal, external pressures,
! KNOWLEDGE
{| SNO QUESTION LEVEL Co
UNIT 1
Explain about Stress- Strain diagram of (Mild Steel) ductile materials under K1 cot
tensile test?
Derive the relation among the three elastic constants (Modulus of Elasticity and K2 co1
Shear Modulus, and *Bulk Modulus)?
Explain about different types of Stresses and Strains? _ K1 CO1
Define Strain Energy and derive the expressions for stress due to gradually K cot
| applied loads, suddenly applied loads and Impact loads?
A reinforced concrete column 300mmX300mm in section. The column in
reinforced with 8 steel bars of 20mm diameter. The column carries a load of 3 co1
360KN. Find the siresses in the concrete and steel bars? Take E (Steel) =2.1X10°
N/mm?, E (Concrete) = 1.4X10* N/mm?22
UNIT 2

Explain about follc;wing the terms: i) Shear Force ii) Shear Force Diagram iii) K1 con
Bending Moment iv) bending Moment Diagram v) Pont of Contra Flexure.
A cantilever of length L carrying a point load W at free ;:nd and a U.D.L. @ per K2 con
unit run over the whole length. Draw S.F. and B.M. diagrams?
A simply supported beam of length L carryihg a U.D.L. of w per unit run over K2 coz
the whole span. Draw S.F. and B.M. diagrams? _
A beam AB, 10m long has supports at its ends A&B. It carries a point load of K3 co2
SKN at 3m from A and a point load of 5KN at 7m from A and a uniformly




distributed load of 1KN/m between the two point loads. Draw SF and BM

Diagrams for the beam?

UNIT 3

Derive the Bending Moment equation and mention the assumptions made in the

theory of simple bending?

CO3

A cast iron bracket subjected to bending has the cross-section of I-form with
unequal flanges. The total depth of the section is 280mm and the metal is 40mm
thick throughout. The top flange is 200mm wide and the bottom flange is 120mm
wide. Find the position of the neutral axis and moment of inertia of the section
about the ncutral axis and the maximum bending moment that should be imposed

on this section if the tensile stress in the top flange is not to exceed 20N/mm?2.

What is then the value of the maximum compressive stress in the bottom flange? |

K2&K3

CO3

Prove that the shear stress at any point in the cross section of a beam which is

subjected to a shear force F, is given by

Cco3

Derive an expression for the shear stress at any point in a circular section of a
beam, which is subjected to a shear furce F. And prove that the maximum shear

stress in a circular section of a beam is 4/3 times the average shear stress.

CO3

UNIT 4

Derive an expression for the slope and deflection of a beam subjected to uniform

bending moment (Bending into Circular ARC)?

CO4

Find the deflection of-a simply supported beam of length L carrying a uniform
distributed load of w per unit length? ( Doubie Integration Method)

CO4

Find the deflection of a simply suppbrted beam of length L carrying a point load
W at a distance ‘a’ from left support and at a distance ‘b’ from right supports by
using MACAULAY’S METHOD?

CO4

Find the slope and deflection of a simply supported beam AB of length L and
carrying a U.D.L. of w per unit length over the entire span by any method.

CO4

UNIT 5

Derive the Expression for Hoop stress and longitudinal stress in a thin cylinder

shells subjected to internal fluid pressure?

CO5

Derive the Expression for effect of internal pressure on the dimensions of a thin

cylindrical shell?

CO5

A cylindrical vessel is 1,5m diameter and 4m long is closed at ends by rigid

plates. It is subjected to an internal pressure of 3N/mm?. If the maximum principal

COs5




stress is not to exceed 150 N/ mm?, find the thickness of the shell. Assume E =2
X 10° N /mm? and poisson’s ratio = 0.25. Find the changes in diameter, length

and volume of the shell?

Derive the expressions for the stresses in a thick cylindrical shell subjected to an

internal fluid pressure? (OR) Derive the Lame’s equations?

COs

A compound cylinder is made by shrinking a cylinder of external diameter
300mm and internal diameter of 250mm over another cylinder of external
diameter 250mm and internal diameter 200mm. the radial pressure at the junction
after shrinking is 8 N/ mm2. Find the final stresses set up across the section, when

the compound cylinder is subjected to an internal fluid pressure of 84.5 N/ mm?2?

COs5




Time: 3

Model Question Paper-1

Code: R20ME2105 R20

Narasaraopeta Engineering College
(Autonomous)
Yallmanda(Post), Narasaraopet- 522601
I1 B. Tech I Semester Regular Examinations
MECHANICS OF SOLIDS
MECHANICAL ENGINEERING _
[OUTCOME BASED EDUCATION PATTERN]

Hrs

Max. Marks: 70

ote: 1.

Answering the question in Part-A is compulsory

Execution Plan

Sl No Activities

Time (Minutes)

J—

To study the Question Paper and choose to attempt

5

o

Part-A  33Minutes x 5Questions

165

3 Quick revision & Winding up

10

Total

180

PART-A (12 Marks)
Answer ALL Questions.

PART-A (70Marks)
Answer any FIVE Questions

Question

Cognitive
Level

Cco

Marks

A tensile test was conducted on a mild steel bar. The following data was
obtained from the test: Diameter of the steel bar = 20mm, Gauge length
of the bar = 150mm, Load at the elastic limit = 200KN, Extension at a
load of 100KN = 0.2mm, Maximum load= 300KN, Total extension =
30mm, Diameter of the rod at failure = 12.5mm. Determine: i} The
Young’s Modulus, ii) Stress at the elastic limit, iii) Ultimate Stress, iv)
Percentage elongation, v) Percentage decrease in area.

OR

14

A steel rod 100mim in diameter and 2.5m long is subjected to a suddenly
applied pult of 400KN. Determine the strain energy if E = 200 KN/mm?

" Why Nominal Breaking stress is less than the ultimate strength as
obtained from uniaxial tensile test of a ductile material?

7+7

A beam 8m long is symmetrically supported over a 4m span. The
overhanging ends at the left and right carry point loads of 60KN and
40KN respectively, while the length between supports carries a uniform ly
distributed load of 20KN. Draw shear force and bending moment
diagrams.

OR

14




i)Define Shear force diagram and Bending Moment Diagram?
ii) Derive the Bending Moment equation and mention the assumptions

made in the theory of simple bénding?

7+7

A cast iron bracket subjected to bending has the cross-section of I-form
with unequal flanges. The total depth of the section is 280mm and the
metal is 40mm thick throughout. The top flange is 200mm wide and the
bottom flange is 120mm wide. Find the position of the neutra] axis and
moment of inertia of the section about the neutral axis and the maximum
bending moment that should be imposed on this section if the tensile
stress in the top flange is not to exceed 20N/mm?2. What is then the value
of the maximum compressive stress in the bottomn flange?
OR

14

Derive an expression for the shear stress at any point in a circular section
of a beam. which is subjected to a shear force F. And prove that the
maximum shear stress in a circular section of a beam is 4/3 times the

average shear stress,

14

What is Macaulay’s Method? Where it is used? Find the expression for
deflection at any section of a simply supported beam with an eccentric
point-load using Macaulay’s method.

OR

14

Find the deflection of a simply supported beam of length L carrying a
uniform distributed load of w per unit length? ( Double Integration
Method) :

14

Make a neat sketch of a circular shaft subjected to a twisting moment?
Derive the torsion formula? What assumptions are taken while deriving
formula for a circular shafi?

OR

14

A compound cylinder is made by shrinking a cylinder of external
diameter 300mm and internal diameter of 250mm over another cylinder
of external diameter 250mm and internal diameter 200mm. the radial
pressure at the junction after shrinking is 8 N/ mm?2. Find the final
stresses sel up across the section, when the compou‘ﬁd cylinder is

subjected to an internal fluid pressure of 84,5 N/ mm2?

14
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G COLLEGE

(AUTONOM ouUs)
ACADEMIC CALENDAR

(B.Tech. 2021 Admitted Batch, Atademic Year 2022-23)

2021 Batch 2™ Yegr I+t Semester

Description From Date To Date Duration
Commencement of Class Work 3-09-2022
. 7 Weeks
1** Spell of Instructions 5-09-2022 22-10-2022
Assignment Test-I 26-9-2022 31-09-2022
I Mid examinations 24-10-2022 29-10-2022 I Week
2 Spell of Instructions 31-10-2022 17-12-2022
7 Weeks
Assignment Test-I] 21-11-2022 26-11-2022
II Mid examinations 1?21_2-2(}22 24-12-2022 ! Week
Preparation & Practicals 4 26-12-2022 31-12-2022 [Week
Semester End Examinations 02-01-2023 14-01-2023 2 Weeks
2021 Batch 2% Yeqp 204 Semester
Commencement of Clags Work 16-01-2023
1** Spell of Instructions 16-01-2023 04-03-2023 7 Weeks
Assignment Test-] 06-02-2023 11-02-2023
I'Mid examinations 06-03-2023 11-03-2023 I Week
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Code: R20MFE2105 ' MECHANICS OF SOLIDS
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COURSE OBJECTIVES:

® To understand stresses and deformation in a member due to an axial loading, Also to estimate the
thermal stresses, strains and strain energy in members subjected to axial loading.

e Understand the concept of shear force and bending moment with respect to beams and to draw the
shear force and bending moment diagrams. , _

e Understand bending and shear stresses in beams of various cross sections under different loading
conditions.

® Understand and analyze beam deflections using various methods like double integration approach,
Macaulay’s method.

e Study the pressure vessels, their classification and to estimate various stresses such as radial,
circumferential, longitudinal and shrinkage induced in them, concepts of torsion.

COURSE OUTCOMES:

After successful completion of this course, the students will be able to:

CO 1: Hlustrate the concepts of stress and stran . and thermal stress in members,
strain energy due gradually, suddenly applied loads. ‘

CO 2: Analyze shear force diagrams and bending moment diagrams to the different loads for the
different support arrangements.

CO 3: Determine shear stresses induced in the beams which are made with different cross sections
like rectanguiar, circular, I, T sections.

CO4: Solve the equations of slope and deflection for different support arrangements by double
integration method, Macaulay’s method.

CO 5: Determine stresses induced in cylinders subjected to internal, external pressures.

UNIT-1

SIMPLE STRESSES & STRAINS: Concept of stress and strain- Types of stresses & strains-
tensile, compressive, shear —Hooke’s law — stress — strain diagram for mild steel — Factor of safety —
Lateral strain, Poisson’s ratio & volumetric strain — Bars of varying cross section — composite bars.
Elastic moduli and the relationship between them. Temperature stresses.

STRAIN ENERGY & IMPACT LOADING: Strain energy - Resilience ~ Stress due to various
types of axial loads- Gradually applied suddenly applicd-and Impact loadings.

UNIT-II

SHEAR FORCE AND BENDING MOMENT: Definition of beam — Types of beams - concepts
of SF & BM with point load, Uniformly Distributed Load, uniformly varying loads and
combination of these loads, Point of contra flexure, Relation between S.F., B.M and rate of loading
at a section of a beam.

UNIT-HI

FLEXURAL STRESSES: Theories of simple bending — Assumptions - derivation of bending
equation, - Neutral axis, Moment of resistance, determination of bending stresses, section modulus
of rectangular and circular sections (solid and hallow), I & T sections.

SHEAR STRESSES: Shear stress distribution across various beams sections- rectangular, circular, [
and T sections.

NEC ,
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UNIT-IV

DEFLECTION OF BEAMS: Member bending into a circular arc —slope, deflection and radius of
curvature. Determination of slope and deflection for cantilever and simply supported beams
subjected to point loads and U.D.L by Double integration method, Macaulay’s method, Moment
area method.

UNIT-V

THIN CYLINDERS: Thin cylinders - longitudinal and circumferential stresses, Derivation of
formulae and calculations of hoop stress, longitudinal stress in a cylinder subjected to internal
pressure

THICK CYLINDERS: Derivation of formulae for:radial and hoop stresses, Lame’s equation,
cylinders subjected to inside & outside pressure, compound cylinders.

TORSION OF SHAFTS: Theory of pure torsion, Torsional moment of resistance, derivation of
Torsion equation, assumptions in the theory of pure torsion, polar modulus, power transmitted by a
circular shaft, shafts in series, shafts in parallel.

TEXT BOOKS:

1. Mechanics of Materials by B.C. Punmia, Ashok Kumar Jain, Arun Kumar
2. Strength of materials by S. Ramamrutham, Dhanpat Rai Publications.

3. Strength of materials by R. K. Bansal, Lakshmi publications

REFERENCE BOOKS:

1. Introduction to solid mechanics by Irving H. Shames, James M. Pitarresi, Pearson Publications.

2. Mechanics of Materials (In Si Units) by Beer and Johnson, Tata McGraw-Hil.

3. Strength of Materials (Mechanics of Materials) by James M.Gere and Barry J.Goodno, PWS-
KENT Publishing Company, 1990 o

4. Strength of Materials (Mechanics of Solids) by R.K. Rajput, S.Chand Publications.

WEB REFERENCES:

1. URL: https://nptel.ac.in/courses/112107146/23

2. https://nptel.ac.in/courses/105105108/19

3. https://nptel.ac.in/courses/112105 125/pdfimodule-9%20lesson-2.pdf
4. https://nptel.ac.in/courses/112105164/36

E-BOOKS: 1. https://easyengineering.net/a-textbook-c)ﬁstrength-of—materials/
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SNO Course OQutcome Statement

col Iiustrate the concepts of stress and strain and thermal stress in members,
strain energy due gradually, suddenly applied loads. (K1&K2)
coz2 Analyze shear force diagrams and bending moment diagrams to the different loads for the
- different support arrangements. (K3&K4)

Determine shear stresses induced in the beams which are made with different cross
CO3 . R . .
sections like rectangular, circular, I, T sections. (K3&K4)
COg4 | Solve the equations of slope and deflection for different support arrangements by double

integration method, Macaulay's method. (K5)
Determine stresses induced in cylinders subjected to internal, external pressures.
COs
(K3&K4)
) e Ref Text | Total Delivery
Quicome Topics/Activity book Periods Method
Unit-1. SIMPLE STRESSES & STRAINS
I.1 | Explanation about Elasticity and plasticity, | T2,R1 Chalk & Talk
types of stresses &  strains-tensile 1 PPT ’
Lompressive, shear —Hooke’s law
COl 1.2 | Stress — strain diagram for mild steel — | T2,R1 1 Chalk & Talk,
* Working stress — Factor of safety - Lateral PPT
Tllustrate the _cm_‘cepts strain, Poisson’s ratio & volumetric strain
of stress and strain and 1.3 | Problems on Bars of varying section — | T2,R1 2 Chalk & Talk, -
thermal stress in composite bars. PPT
members, 1.4 | Relation between elastic constants-E,G&K. T2,R1 2 Chalk & Talk,
strain energy due PPT
gradually, suddenly 1.5 | Determination of Temperature stresses. T2,R1 2 | Chalk & Talk,
applied {oads. (K1&IK2) PPT
1.6 | Explanation about Principal planes and | T2,R1 2 Chalk & Tall,
principal stresses and Mohi’s cirele. PPT
1.7 | Dectermination of Strain Energy- sudden, | T2,R1 2 Chalk & Talk,
gradual and [mpact loadings. PPT
Unit-2. SHEAR FORCE AND BENDING MOMENT
2.1 | Types of beams-cantilever beam, simply | T2,R1 Chalk & Talk,
COz2. : supperted beam, overhanging beam 2 PPT
Analyze shear force
diagrams and bending 2.2 | §.F and B.M diagrams for cantilever beams | T2,R1 2 Chalk & Talk,
moment diagrams to the subjected to point loads, Uniform Distributed PPT
s s Load (U.D.L}, uniformly varying loads and :
different loads for the S
diffe combination of these loads
Ifterent _ support 2.3 [ S.F and B.M diagrams for simply supported | T2,R1 |2 Chalk & Talk,
arrangements. (K3&K4) beams subjected to point loads, Uniform : PPT
Distributed Load {U.D,L), uniformly varying
loads and combination of these loads




2.4 | S.F and B.M diagrams for overhanging beams | T2,R1 Chalk & Talk,
. subjected (o point loads, Uniform Distributed PFPT
Load {U.D.1.), uniformly varying loads and
combination of these loads
75 | Problems on S.F and B.M diagrams for | T2R} Chalk & Talk,
cantilever, simply supported and overhanging PPT
beams subjected to point loads, Uniform .
Distributed Load (U.D.L), uniformly varying
loads and combination of these loads
26 | Relation between S.F., BM and rate of | T2,R1 Chalk & Talk,
loading at a section of a beam. PPT
CO 3. Unit-3. FLEXURAL STRESSES & SHEAR STRESSES
Determine shear stresses 31 | Theories of bending, Assumptions and [ T2,R1 Chalk & Talk,
. ; ‘ derivation of bending equation PPT,
induced in the beams
which are made with
. . ‘rminati i —secti T2 Chalk & Tal
different cross scctions 3.2 | Determination  bending _stresses se_ctlon ,R1 kil k,
. . modutus of rectangular and circular sections. PPT
like rectangular, circular, :
T sections. &K4
L et (K3 ) 33 | Determination bending stresses of I, T, | T2,R1 Chalk & Talk,
section, PPT
3.4 | Shear siress distribution across various beams .1‘2,R1 Chalk & Tatk,
sections like rectangular, circular, I, T PPT
sections.
MID | EXAMINATION DURING SEVENTH WEEK
' Unit-4. DEFLECTION OF BEAMS
4.1 | Bending into a circular arc, slope, deflection | T2, R1 Chalk & Talk,
CO 4. and radius of curvature. . :}‘;TT "
. a a
Solve the equations of
. PPT
slope and deflection for
different SUppOrt 75 T Double integration and Macaulay’s methods | 12, R1 Chalk & Talk,
arrangements by double PPT
integration method,
\ .
Macaulay’s method. 733 [ Determination of slope and deflection for | T2, RI Chalk & Talk,
(K5) cantilever and  simply supported beams PPT
subjected to point loads, U.D.L
4.4 | Mohr's theorems and Moment area method. T2,R1
Unit 5. THIN CYLINDERS & THICK CYLINDERS
5.1 | Derivalion of formula for longitudinal and | T2,R1 Chalk & Talk,
circumferential stresses : PPT
5.2 | Dctermination of volumetric strains, changes { T2, R1 Chalk & Talk,
in diameter, and volume of thin cylinders. PPT
COS. 53 | Delermination of lame's equation for | T2, R1 Chalk & Taik,
Determine stresses cylinders subjected to inside & outside [ PPT
induced in cylinders pressures.
subjected to internal, | 54 | Problems on Compound cylinders. Chalk & Talk,
external pressures. PPT
(K3&K4)
TORSION & COLUMNS
5.5 | Derivation of Torsion of Circular shafts. T2,R1 Chalk & Talk,
PPT
5.6 | Problems on Shafts in series, Shafts in T2, R1 Chalk & Talk,
parallel. - PPT




MID 11 EXAMINATION DURING FOURTEENTH WEEK

* END EXAMINATIONS

XT BOOKS

BOOK TITLE/AUTHORS/PUBLISHER

Strength of materials by Bhavikatti

St_rength of malerials by R. K. Bansal

REFERENCE BOOKS

BOOK TITLE/AUTHORS/PUBLISHER

Mechanics of Materials (In Si Units) by Beer and Johnson

Strength of Materials (Mcchanics of Malerials) by James M.Gere and Barry J.Goodno

Sirength of Malerials (Mechanics of Solids) by R.K. Rajput
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UNIT -1
SIMPLE STRESSES AND STRAINS

INTRODUCTION AND REVIEW

Preamble ,

Engineering science is usuallgf subdivided into number of topics such as

1. Solid Mechanics

2. Fluid Mechanics

3. Heat Transfer

4. Properties of materials and soon Although there are close links between them in terms of the
phystcal principles involved and methods of analysis employed.

The solid mechanics as a subject may be defined as a branch of applied mechanics that deals with
behaviours of solid bodies subjected to various types of loadings. This is usually subdivided into
further two streams i.e Mechanics of rigid bodies or simply Mechanics and Mechanics of deformable
solids.

L

The mechanics of deformablé solids which is branch of applied mechanics is known by several names
i.e. strength of materials, mechanics of materials etc. C

Mechanics of rigid bodies:

- The mechanics of rigid bodies is primarily concerned with the static and dynamic behaviour under
external forces of engineering components and systems which are treated as infinitely strong and
undeformable Primarily we deal here with the forces and motions associated with particles and rigid
bodies.

Mechanics of deformable solids :

Mechanics of solids:

The mechanics of deformable solids is more concerned with the internal forces and associated
changes in the geometry of the components involved. Of particular importance are the properties of
the materials used, the strength of which will determine whether the components fail by breaking in
service, and the stiffness of which will determine whether the amount of deformation they suffer is
acceptable. Therefore, the subject. of mechanics of materials.or strength of materials is central to the
whole activity of engineering design. Usually the objectives in analysis here will be the determination
of the stresses, strains, and deflections produced by loads. Theoretical analyses and experimental
results have an equal roles in this field.

Analysis of stress and strain :

Concept of stress : Let us introduce the concept of stress as we know that the main problem of
engineering mechanics of material is the investigation of the internal resistance of the body, i.e. the
nature of forces set up within a body to balance the effect of the externally applied forces.




The externally applied forces are termed as loads. These externally applied forces may be due to any
one of the reason.

() due to service conditions

(ii) due to environment in which the component works

(iii) through contact with other members

(iv) due to fluid pressures

(v) due to gravity or inertia forces,

As we know that in mechanics of deformable solids, externally applied forces acts on a body and
body suffers a deformation. From equilibrium point of view, this action should be opposed or reacted
by internal forces which are set up within the particles of material due to cohesion.

These internal forces give rise to a concept of stress. Therefore, let us define a stress Therefore, let us
define a term stress

Stress:

Plor F)
N

Let us consider a rectangular bar of some cross — sectional area and subjected to some load or force
. (in Newtons )

Let us imagine that the same rectangular bar is assumed to be cut into two halves at section XX. The
each portion of this rectangular bar is in equilibrium under the action of load P and the internal forces
acting at the section XX has been shown

!X
|

«—— | = Y

P [‘"_ - P ’)
| %

Now stress is defined as the force intensity or force per unit area. Here we use a symbol to represent
the stress.



Where A is the area of the X — section

Here we are using an assumption that the total force or total load carried by the rectangular bar is
uniformly distributed over its cross — section.

But the stress distributions may be for from uniform, with local regions of high stress known as stress
concentrations.

If the force carried by a component is not uniformly distributed over its cross — sectional area, A, we
must consider a small area, * A' which carries a small load P, of the total force “P', Then definition of
stress is o R

- As a particular stress generally holds true only at a point, therefore it is defined mathematically as

s hm -6F
Al BA

Units :

The basic units of stress in S.T units i.e. (International system) are N / m? (or Pa)

MPa=105Pa

GPa=10°Pa

KPa=103Pa

Some times N / mm? units are also used, because this is an equivalent to MPa. While US customary
unit is pound per square inch psi.

TYPES OF STRESSES :

only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other stresses either are
similar to these basic stresses or are a combination of these e.g. bending stress is a combination
tensile, compressive and shear stresses. Torsional stress, as encountered in twisting of a shafi is a
shearing stress.

Let us define the normal stresses and shear stresses in the following sections.

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to the areas
concerned, then these are termed as normal stresses. The normal stresses are generally denoted by a
Greek letter ()| * ' '

This is also known as uniaxial state of stress, because the stresses acts only in one direction however,
such a state rarely exists, therefore we have biaxial and triaxial state of stresses where either the two
mutually perpendicular normal stresses acts or three mutually perpendicular normal stresses acts as
shown in the figures below :




{Biaxial state of stress)

(Triaxial state of stress)

Tensile or compressive stresses : o,

- B

The normal stresses can be either tensile or compressive whether the stresses acts out of the area or
into the area

¢ (Compressive stress)

Bearing Stress : When one object presses against another, it is referred to a bearing stress ( They are
in fact the compressive stresses ).

Bearing stresses at
the contact suface




Shear stresses :

Let us consider now the situation, where the cross — sectional area of a block of material is subject to
a distribution of forces which are parallel, rather than normal? to the area concerned. Such forces are
associated with a shearing of the material, and are referred to as shear forces. The resulting force
interistes are known as shear stresses. Co

Forces acling parailel
to the area concemed

The resulting force intensities are known as shear stresses, the mean shear stress being equal to

o A

Where P is the total force and A the area over which it acts.

PARTIALLY PLASTIC

ELASTH
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corventional stress-strain

O diagram of nominat stress-
straln diagram
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Nominal stress — Strain OR Conventional Stress — Strain diagrams:

 Stresses are usually computed on the basis of the original area of the specimen; such stresses are often
referred to as conventional or nominal stresses.

True stress — Strain Diagram:

Since when a material is subjected to a uniaxial load, some contraction or expansion always takes
place. Thus, dividing the applied force by the corresponding actual area of the specimen at the same
instant gjves the so called true stress.




SALIENT POINTS OF THE GRAPH:

(A) So it is evident from the graph that the strain is proportional to strain or elongation is proportional
to the load giving a st. line relationship. This law of proportionality is valid upto a point A.

Or we can say that point A is some ultimate point when the linear nature of the graph ceases or there
is a deviation from the linear nature. This point is known ds: the limit of proportionality or the
proportionality limit. - '

(B) For a short period beyond the point A, the material may still be elastic in the sense that the
deformations are completely recovered when the load is removed. The limiting point B is termed as
Elastic Limit.

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally
recoverable. There will be thus permanent deformation or permanent set when load is removed. These
two points are termed as upper and lower yield points respectively. The stress at the yield point is
called the yield strength.

A study a stress — strain diagrams shows that the yield point is so near the proportional limit that for
most purpose the two may be taken as one, However, it is much easier to locate the former. For
material which do not possess a well define yield points, In order to find the yield point or yield
strength, an offset method is applied.

In this method a line is drawn parallel to the straight line portion of initial stress diagram by off

setting this by an amount equal to'0.2% of the strain as shown as below and this happens especially
for the low carbon steel.

i
| vietd strength {or Proof stress)

L
0.2 % or 002 €

(E) A further increase in the load will cause marked deformation in the whole volume of the metal,
The maximum load which the specimen can with stand without failure is called the load at the
ultimate strength, ' o

The highest point ‘E' of the diagram corresponds to the ultimate strength of a material.

- Ou = Stress which the specimen can with stand without failure & is known as Ultimate Strength or
Tensile Strength.

Ou is equal to load at E divided by the original cross-sectional area of the bar.

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum untii fracture
oceurs at F,




[Beyond point E, the cross-sectional area of the specimen begins to reduce rapidly over a relatively
small length of bar and the bar is said to form a neck. This necking takes place whilst the load
reduces, and fracture of the bar finally occurs at point F]

Note: Owing to large reduction in area produced by the necking process the actual stress at fracture is
often greater than the above value. Since the designers are interested in maximum loads which can be
carried by the complete cross section, hence the stress at fracture is seldom of any practical value.

Percentage Elongation:

The ductility of a material in tension can be characterized
area at the cross section where fracture occurs.

by it$ elongation and by the reduction in

It is the ratio of the extension in length of the specimen after fracture to its initial gauge length,
expressed in percent.

| &J";!’) X100

I = gauge length of specimen after fracture(or the distance between the gage marks at fracture)

lg= gauge length before fracture(i.e. initial gauge length)

For 50 mm gage length, steel may here a % elongation | ofthe order of 10% to40%.

Ductile and Brittle Materials:

- b

Based on this behaviour, the materials may be classified as ductile or brittle materials

Ductile Materials:

It we just examine the earlier tension curve one can notice that the extension of the materials over the
- plastic range is considerably in excess of that associated with elastic Joading. The Capacity of -
materials to allow these large deformations or large extensions without failure is termed as ductility.
The materials with high ductility are termed as ductile materials,

Brittie Materials:

A brittle material is one which exhibits a relatively small extensions or deformations to fracture, so
that the partially plastic region of the tensile test graph is much reduced.

This type of graph is shown by the cast iron or steels with high carbon contents or conerete.




ELASTIC CONSTANTS

- In considering the elastic behavior of an isotropic materials under, normal, shear and hydrostatic
loading, we introduce a total of four elastic constants namely E, G, K, and .

It turns out that not all of these are independent to the others. In fact, given any two of them, the other
two can be foundout . Let us define these elastic constants

() E = Young's Modulus of Rigidity

= Stress / strain

(ii} G = Shear Modulus or Modulus of rigidity

= Shear stress / Shear strain

(iii) p= Possion's ratio

= lateral strain / longitudinal strain

(iv) K = Bulk Modulus of elasticity

= Volumetric stress / Volumetric strain

Where

Volumetric strain = sum of linear stress in x, yandz

direction. Volumetric stress = stress which cause the change

in volume. Let us find the relqtions between them w4

RELATION AMONG ELASTIC. CONSTANTS

Relation between E, G and p:

- Let us establish a relation among the elastic constants E,G and . Consider a cube of material of side ‘a’
subjected to the action of the shear and complementary shear stresses as shown in the figure and
producing the strained shape as shown in the figure below.

Assuming that the strains are small and the angle A C B may be taken as 459,




Therefore strain on the diagonal OA

= Change in length / original length

Since angle between OA and OB is very small hence OA OB therefore BC, is the change in the length
of the diagonal QA

. . _BC
Thus, strain on diagonaf DA = TA

. AlCcos45s®
0A

QA= ‘a = a2
sind

hence strain = AC —1—
a2 2
_AC
Za R
but AC = av '

where v = shear strain

& strai i B LY
Thus, the strain on diagonal = 20 = X
9 Za 2

From the definition

@

RAj-g e

gfy =

0]«

t

2G

thus, the strain on diagonal =

Now this shear stress system is equivalent or can be replaced by a system of direct stresses at 45° as
shown below. One set will be compressive, the other tensile, and both will be equal in value to the
applied shear strain.

Thus, for the direct state of stress system which applies along the diagonals:




. . o
strain on diagonal = E’— -yt




We have introduced a total of four elastic constants, i.e E, G, K and p. Tt turns out that not all of these
are independent of the others. Infact given any two of then, the other two can be found.

Again  E=3K(1-2y)

(for e, =€, =e, hydrostatic stateof stress)
g,~0Fvy=048

irrespective of the stresses i.e, the material is incompressible.
When = 0.5 Value of k is infinite, rather than a zero value of E and volumetric strain is zero, or in
other words, the material is incompressible,

Relation between E, K and

Consider a cube subjected to three equal stresses ! as shown in the figure below

[~
The total strain in one direction or along one edge due to the application of hydrostatic stress or
volumetric stress is given as

£ .5 _.5
ETE'E
e T

-—EU 29}

valumetre strain =3 linear gtrain
volumetre strain ==, +e, + e,

or thus, € =e,"g,

v olumetric sirain =3%{1 -2}

By definition

Bulk Modulus of Elasticity (kg = /elumetric stress(s)
; Yolumetric strain

ar

Molurnatric straip = ‘-;-

Equating the two strains we gét
[~ 4

= i -
-3 El-2n

E=3K(1-27




Relation between E,GandK:

IGK

e ——

BK+G)

Relation between E, K and O 3

From the already derived relations, E can be eliminated

E=2G{1+y)
E=3K(1-2y) , . .-
Thuswe get ‘

(1= 2¢) = 26(1 + 4}
therefore

_[3K-26)

TR

or
lv=D5(3K-2G) (G + 3K

Engineering Brief about the elastic constants :

We have introduced a total of four elastic constants i.e E, G, K and | [t may be seen that not all of

these are independent of the others. Infact given any two of them, the other two can be determined.
Futher, it may be noted that

E = 3K{1- 2y}
ar

_E
{1-2v}
fr=05K =w
Also e, = ( -Ez}'} o + oy + ;)

L0-2m)
E

K=

3o (for hydrostatic state of stressie O S0y 0, Tg)

hence if u = 0.5, the value of K becomes infinite, rather than a zero value of E and the volumetric
strain is zero or in otherwords, the material becomes incompressible

Futher, it may be noted that under condition of simple tension and simple shear, all real materials tend
to experience displacements in the directions of the applied forces and Under hydrostatic loading they
tend to increase in volume. In otherwords the value of the elastic constants E, G and K cannot be
negative

Therefore, the relations

E=2G(1+p

E=3K(1 )

Yields




Determination of Poisson's ratio: Poisson's ratio can be determined easily by simultaneous use of
two strain gauges on a test specimen subjected to uniaxial tensile or compressive load, One gage is

mounted parallel to the longitudnal axis of the specimen and other is mounted perpendicular to the
longitudnal axis as shown below:

o~ test
@) speacimen

[————— e

A

<

o

oy

Compression Test: Machines used for compression testing are basically similar to those used for
tensile testing often the same machine can be used to perform both tests.

Shape of the specimen:

The shape of the machine to be used for the different materials are as
follows:

() For metals and certain plastics: The specimen may be in the from of a cylinder

(ii) For building materials:

Such as concrete or stone the shape of the specimen may be in the from
ofa cube.



Shape of stress stain diagram ,

(8} Ductile materials: For dﬁctile_ material such as mild steel, the load Vs compreﬁsion diagram
would be as follows

compressive load (or slress)
e

- plastic deformation L
elastic T compression{or strain}
deformation

(1) The ductile materials such as steel, Aluminum, and copper have stress — strain diagrams similar to

ones which we have for tensile test, there would be an elastic range which is then followed by a
plastic region.

(2) The ductile materials (steel, Aluminum, copper) proportional limits in compression test are very
much close to those intension,

ial is compressed, it begins to

mes barrel shaped as shown in the figure above. With increasing load, the
specimen is flattened out, thus offering increased resistance to forther shortening ( which means that
the stress ~ strains curve gocs upward ) this effect is indicated in the diagram.

: b
Brittle materials ( in compression test )

Brittle materials in compression typically have an initia) linear region followed by a region in which
the shortening increases at a higher rate than does the load. Thus, the compression stress — strain
diagram has a shape that is similar to the shape of the tensile diagram.,

However, brittle materials usually reach much hj gher uitimate stresses jn compression than in tension,

For cast iron, the shape may be like this

1

compression

tension -




Brittle materials in compression behave elastically up to certain load, and then fail suddenly by

splitting or by craking in the way as shown in figure. The brittle fracture is performed by separation
and is not accompanied by noticeable plastic deformation,

Practice Problems:

PROB 1: A standard mild steel tensile test specimen has a diameter of 16 mm and a gauge length of
80 mm such a specimen was tested to destruction, and the following results obtained,

Load at yield point = 87 kN

Extension at yield point = 173 x 16 m

Ultimate load = 124 kN

Total extension at fracture = 24 mm

Diameter of specimen at fracture = 9.8 mm

Cross - sectional area at fracture = 75.4 mm?

Cross - sectional Area *A' = 200 mm?

Compute the followings:

(i) Modulus of elasticity of steel

(i) The ultimate tensile stream

(iii) The yield stress

(iv) The percentage elongation

(v) The Percentage reduction in Area,

PROB 2:

‘ w
A light alloy specimen has ‘a diameter of 16mm and a gauge Length of 80 mm. When tested in
tension, the load extension graph proved linear up to a load of 6kN, at which point the extension was
0.034 mm, Determine the limits of Proportionality stress and the modulus of elasticity of material.

Note: For a 16mm diameter specimen, the Cross - sectional area A = 200 mm?

| This is according to tables Determi ne the limit of proportion try stream & the modulus of elasticity for
the material.

Ans: 30 MN /m? | 70.5 GN /m?2



solutin

& kN
200108
= 30 MN/m?

Young Modulus E = 8tre§s
Strain

034 .

Limit of propottionaly stress =

strain =

£ - 30%10°
£ =30 //m
80

=70.5 GN/m?




Strain Energy

Strain Energy of the member js defined as the internal work done in defoming the body by the
action of externally applied forces. This energy in elastic bodies is known as elastic strain energy :

Strain Energy in uniaxial Loading

Fig .1

Let as consider an infinitesimal element of dimensions as shown in Fig .1. Let the element
be subjected to normal stress Ox.

The forces acting on the face of this element is ax. dy. dz
where

dydz = Area of the element due to the application of forces, the element deforms to an amount = ox dx

_ Change in lepgths .
Orginal in length

Assuming the element material to be as linearly elastic the stress is directly proportional to strain as

shown in Fig . 2.




L
arly from zero until it attains its fisll value,

From Fig .2 the force that acts-on the element increases line

For a perfectly elastic body the above work done is the internal strain energy “du”.

2

du= 1axdydz £, dx!

= ';:Gx €, dxdydz

1
dy= _
2

o, &, dv

where dv = dxdydz

= Volume of the element

By rearranging the above equation we can write

(4

The equation (4) represents the strain energy in elastic body per unit volume of the material its strain
energy -~ density ‘uy' .

From Hook's Law for elastic bodies, it may be recalled that

In the case of a rod of uniform Cross - section subjected at its ends

an equal and opposite forces of
magnitude P as shown in the Fig .3,




dv =Adx = Element volume

A=Area of the bar.
L= Length of the bar

A7)

Modulus of resilience :

Fig .4

Suppose “ix‘ in strain energy equation js put equal to yli.e. the stress at proportional limit or yield
point. The resulting strain energy gives an index of the materials ability to store or absorb energy
without permanent deformation

EaL

Uyz .

e}

" So

The quantity resulting from the above equation is called the Modulus of resilience

The modulus of resilience is equal to the area under the straight line portion ‘OY" of the stress —
strain diagram as shown in Fig .4 and represents the energy per unit volume that the material can
absorb without yielding. Hence this is used to differentiate materials for applications where energy
must be absorbed by members.

Modulus of Toughness :

modubus of
toughness




Fig .5
Suppose ‘' [strain] in strain.energy expression is replaced by gstrain at rupture, the resulting strain
energy density is called modulus of toughness

i - 2 :
U=IEEK d= "
i)

_
U= Eugﬁ-_ e (G)

From the stress - strain diagram, the area under the complete curve gives the measure of modules of
toughness. It is the materials.




UNIT-11
SHEAR FORCE AND BENDING MOMENT

Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are developed

and the terms shear force and bending moments come into pictures which are helpful to analyze the
beams further. Let us define these terms

Fig1

g 1(a) which is supporting the loads P1, P7, P3 and is
simply supported at two points creating the reactions Rtand R; respectively. Now let us assume that

that the resultant of loads and reactions to the left of AA Is ‘F vertically upwards, and since the entire
beam is to remain in cquilibrium, thus the resultant of forces to the right of AA must also be F, acting
downwards. This forces ‘F" is as a shear force. The shearing force at any x-section of a beam

represents the tendency for the portion of the beam to one side of the section to slide or shear laterally
relative to the other portion.

Therefore, now we are in a position to define the shear force ‘F' to as follows:

At any x-section of a beam, the shear force ‘F" is the algebraic sum of all the lateral components of the
forces acting on either side of the x-section.

Sign Convention for Shear Force; = e

The vsual sign conventions to be followed for the shear forces have been illustrated in figures 2 and 3,
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Fig 2: Positive Shear Force
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- Fig 3: Negative Shear Force

Bending Moment:

Py P




Fig 6: Negative Bending Moment

Fig 4 . s

Let us again consider the beam which is simply supported at the two prints, carrying loads Pi, P2and
P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine that the beam is cut

_section at AA is M in C.W direction, then moment of forces to the right of x-section AA must be ‘M
in C.C.W, Then *M' is called as the Bending moment and is abbreviated as B.M. Now one can define

the bending moment to be simply as the algebraic sum of the moments about an x-gection of all the
forces acting on either side of the section

Sign Conventions for the Bending Moment:

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 and Fig 6.
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Some times, the terms *Sagging' and Hogging are generally used for the positive and negative
bending moments respectively,

-

Bending Moment and Shear Force Diagrams:

The diagrams which illustrate the V.'ariations in B.M and S.F valyes along the length of the beam for
any fixed loading conditions would be helpful to analyze the beam further.

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force ‘F' varies
along the length of beam. If x dentotes the length of the beam, then F is function x i.e. F (x).

Similarly a bending moment diagram is a graphical plot which depicts how the internal bending
moment *M' varies along the fength of the beam, Again M is a function x i.c. M(x).

Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly simplified if the
relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AR carrying a uniformly distributed load w/length. Let us
imagine to cut a short slice of length dx cut out from this loaded beam at distance “x' from the origin
Q" . ' o .

.

¥
5%
/
p A0 " — - Corfiniclernd o

b distachud

Let us detach this portion of the beam and draw its free body diagram,

w/kmg&s

The forces acting on the free body diagram of the detached portion of this loaded beam are the
following




* The bending moment at the sections x and x + » be M and M

&

Now let us take the moments at the point *¢’. Such that

M+ S5 467985 < pae s
3 7

Gy Sx _
Fom +{(F+6F). 20 =
- 5 {F + 6F) 5

= F.%ﬁ +F.§§ +5F.% = M [Neglecting the product of

= F fx = §M
M
Fram_—2
= ax
Under the fimita §x— 0
dhd ™
F=uof -
=l (1
Resowingthefarcesveﬂicalfyweget o
w.bx +(F +6F)=F
=wnt=—E
8x

Under the limils Sx— 0

=-ew=-dpz:rr~ )
dx dx{-dx

_dF g
W = —-d—}?-—— I ?x—z— ........,,,.(2)

* From Equation (1), the area of the shear force diagram between
calculus is the bending moment diagram

= J'F.dx

* The slope of bending moment diagram is the shear force,thus

F=M
dx

* The shearing force F and F+ F at the section Xand x + X respectively.

+dM respectively.

* Force due to external loading, if ‘W' is the mean rate of loading per unit length then the total loading on
this slice of length 'xis w. . which is approximately acting throueh the centre ‘¢’ If the loading
assumed to be uniformly distributed then it would pass exactly theough the centre ¢'.

This small element must be in equilibrium under the action of these forces and couples.

&F and §x baing smallquantities ]

Conclusions: From the above relations, the following important conclusions may be drawn

any two points, from the basic

is




' Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is therefore
constant,'

di
- =01
* The maximum or minimum Bending moment occurs where 9%

The slope of the shear force diagram is equal to the magnitude of the intensity of the distributed

loading at any position along the beam. The —ve sign is as a consequence of our particular choice of
sign conventions

Praocedure for drawing shear force and bending moment diagram:

-

Preamble:

The advantage of plotting a variation of shear force F and bending moment M in beam as a function
of *x' measured from one end of the beam is that it becomes easier to determine the maximum
absolute value of shear force and bending moment,

Further, the determination of value of M as a function of ‘x' becomes of paramount importance so as
to determine the value of deflection of beam subjected to a given loading.

Construction of shear force and bending moment diagrams;

A shear force diagram can be constructed from the loading diagram of the beam. In order to draw this,
first the reactions must be determined always. Then the vertical components of forces and reactions
are successively summed from the left end of the beam to preserve the mathematical sign conventions

adopted. The shear at a section is simply equal to the sum of ali the vertical forces to the left of the
section.

. PO
When the successive summation process is used, the shear force diagram should end up with the
previously calculated shear (reaction at right end of the beam. No shear force acts through the beam
Just beyond the last vertical force or reaction. If the shear force diagram closes in this fashion, then it
gives an important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of beam from
“the left hand end and summing up the areas of shear force diagrams giving due regard to sign. The
process of obtaining the moment diagram from the shear force diagram by summation is exactly the
same as that for drawing shear force diagram from load diagram,

moment diagram, the terminal conditions for the moment must be satisfied. If the end is free or
pinned, the computed sum must be equal to zero. If the end js built in, the moment computed by the

summation must be equal to. the one calculated initially for-thetreaction. These conditions must always
be satisfied. . ' ‘




IMustrative problems:

In the following sections some illustrative problems have been discussed so as to illystrate the
procedure for drawing the shear force and bending moment diagrams

1. A cantilever of length carries a concentrated load ‘W' at its free end.

Draw shear force and bending moment,

Solution:

At a section a distance x from free end consider the forces to the left, then F =

-Ve 8ign means the shear force to the left of the x-section are in downward dire
negative

-W (for all values of X)
ction and therefore

: Y
Taking moments about the section gives (obviously to the left of the section)

M =-Wx (-ve sign means that the moment on the left hand side of the portion is in the anticlockwise
direction and is therefore taken as —ve according to the sign convention)

. so that the maximum bending moment occurs at the fixed endie M=-W|

From equilibrium consideration, the fixing moment applied at the fixed end is Wi and the reaction is
W. the shear force and bending moment are shown as,

(7 see

L

WE e 5 Dotnggrain

2. Simply supported beam subjected to a central load (i.e. Toad acting at the mid-way)

W

L he ¢ j
{2 » r.f'—"——i

P

By symmetry the reactions at the two supports would be W/2 and W/2, now consider any section X-X
from the left end then, the beam is under the action of following forces.

we A




_If we just take the moments to the left of the cross-section,

So the shear force at any X-section would be = W/? [Which is constant upto x <1/2]

If we consider another section Y-Y which is beyond /2 then

2 for all values greater = |/2

Hence S.F diagram can be plotted as,
.For B.M diagram:

B = E‘f xforxliesbetweentl and |2
Hex 2
BM =% | iBmax =0
aﬂ=§ 2 2
. Wl
4
W i
BM = — R-Wlx-_
o ey

o)

4




1t may be observed that at the point of application of Ioad there is an abrupt change in the shear force,
at this point the B.M is maximum,

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

X x h .
S Wt
3 yd

Here the cantilever beam

is subjected to a uniformly distributed load whose intensity is given w /
length,

Consider any cross-section XX which is at a distance of x from the free end. If we just take the
resultant of all the forces on the lefi of the X-section, then

S.Fxx=-Wx for all values 07 i)

S.Fxx =0

S.Fxx at x=1=-WI

So if we just plot the equation No. (1), then it will give a straight line relation, Bending Moment at X-

X is obtained by treating the load to the left of X-X as a concentrated load of the same valye acting
through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

B.M}{,x = WX%

2
= - wX
= Wz

The above equation is a

quadratic in x, when B.M is plotted against x this will produces a parabolic
vatiation,

. -
The extreme valyes of this would be at x = Oandx =]

M
B_Max* = -ﬂ_

2

=§ - W

Hence 8.F and B.M diagram can be plotted as follows:




4. Simply supported beam subjected to a uniform] distributed load [U.D.L).

X

:wflengm

S

it vl

The total load carried by the span would be

= intensity of loading x length

=wxl]

By symmetry the reactions at the end supports are each wl/2

If x is the distance of the section considered from the left hand end of the beam.

S.F at any X-section X-X is -

Giving a straight relation, having a slope equal to the rate of loading or intensity of the loading.

S.Fm=5=§’ -

soat
S‘Fa 1 =0 hencethe SFiszeroatthe centre
N¥ o



The bending moment at the section x is found by treating the distributed load as acting at its centre of
gravity, which at a distance of x/2 from the section

BMey = %—fx - Wx,:;»

=W§[{ ~2) @
B-me =G:G
B'Mz:xﬂzn
Wi
B.M Rxw| T

8

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force and
bending moment can be drawn in the following way will appear as follows:

b

oy %@wzh

Wy 1 h
w%% ;;’ i i
%f%f.- i b
s : / ‘ Wle SF fhagram

A

1

When the beam is subjected to couple, the shear force and Bending moment diagrams may be drawn
exactly in the same fashion as discussed earlier.




6. Eccentric loads.

When the beam is subjected to an eccentric loads, the eccentric load are to be changed into a couple/
- force as the case may be, In the illustrative example given below, the 20 kN load acting at a distance
of 0.2m may be converted to an equivalent of 20 kN force and a couple of 2 kN.m. similarly a 10 kN

force which is acting at an angle of 307 may be resolved into horizontal and vertical components. The
rest of the procedure for drawing the shear force and Bending moment remains the same.

6. Loading changes or there is an abrupt change of loading:

When there is an aabrupt chan

ge of loading or loads changes, the problem may be tackled in a
systematic way.consider a cantil

ever beam of 3 meters length. It carries a uniformly distributed load

shearing force and bending mo
of the shearing force and bending moment.




Solution

-

¥
Consider any cross section x-x, at a distance x from the free end

Shear Force at x-x = -2 -2x 0<x<1

SFatx=0ie atA=-2kN

SFatx=1=-22=_4kN

SFatC(x=1)=-2-2x-4 Concentrated load
=-2-4-2x1 kN

=-8kN

Again consider any cross-section Y'Y, located at a distance x from the free end

SFatY-Y=.2-2x-4 1<x<3

This equation again gives $.F at point C equal to -§kN

"SFatx=3m=-2-4-2x3

=-12 kN

Hence the shear force diagram can be drawn as below:

2kN




For bending moment diagrams —
consider above

Again write down the equations for the respecti

Ve Cross sections, as

Bending Moment at xx = -2x - 2x.x/2 valid upto AC

BMatx=0=0

BMatx=Im=-3 kN.m

For the portion CB, the bending moment equation can be written for the x-section at Y-Y .

BMat YY =-2x - 2x.x/2 - 4( x -1)

This equation again gives,

BMatpointC=-21-1-01ie atx=1

=-3 kN.m

atpointBie atx=3m

=-6-9-8

=-23 kN-m

The variation of the bending moment diagrams would obviously be a parabolic
2 kN

~curve Hence the bending moment diagram would be

Point of Contraflexure;

KN BMD

Consider the loaded beam a shown below along with the shear force and Bending moment diagrams

for It may be observed that this case, the bending moment diagram is completely positive so that the
curvature of the beam varies along its length, but it is always concave upwards or sagging. However if
we consider a again a loaded beam as shown below along with the S.F and B.M diagrams, then




It may be noticed that for the beam loaded as in this case,

The bending moment diagram is partly positive and partly negative.If we piot the deflected shape of
the beam just below the bending moment

i
"

Deflection A T

This diagram shows that L.H.S of the beam *sags' while the R.H.S of the beam ‘hogs'

The point C on the beam where the curvatur

e changes from sagging to hogging is a point of
contraflexure.




NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS) MECHANICS OF SOLIDS
UNIT - I1I

FLEXURAL STRESSES OR BENDING STRESSES IN BEAMS

ENDING STRESSES: E
The stresses induced by bending moment are known as bending stresses.
PURE BENDING MPLE BENDING:
If a length of a beam is subjected to a constant bending moment & shear force is zero, then the

stresses set up in that length of the beam are known as bending stresses and that length of the beam is said
to be in pure bending,
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RA: W HB = W\\\\u‘-,“\k\\\i f
| 7 . 5 +* :Sj w
C . A . 8f nuuaumu-a 'i
¥ E‘W'E S.F diagram . D
we -
) -
!
C . 0

Sy Y
» N \}\\\\\\\\'t\\w‘-‘ﬁ‘\\\\\\?p\_“'\.

B.M. diagram

wixa wWxa

There is no shear force between A and B but bending moment between A and B is constant, This
condition of beam between A & B is known as pure bending.

ASSUMPTIONS MADE IN THE THEQRY OF SIMPLE BENDIN G:

1. The material of the beam is homogeneous and isot-ropic'.

2. The value of Young’s moduius of elasticity is same in tension and compression.
3. The transverse sections which were plane before bending remain plane after bending also.
4

- The beam is initially straight and all longitudinal filaments bend into circular arcs with a common
.centre of curvature.

5. The radius of curvature is large compared with the dimensions of the cross-section.

THEQRY OF SIMPLE BENDING OR DERIVATION OF BENDING EOUATION;
A small length 8x of a beam subjected to a simple bending as shown in the figure (a) and due to
action of bending, the par of length 8x will be deformed as shown in the figure (b).
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Neutral layer or surface (N-N):

A layer which is neither shortened nor elongated is known as neutral layer,
Neutral axis (N-A):

The line of intersection of neutral layer on a cross-section of beam is known as neutral axis.

Due to the decrease in length of the layers above N-N, these |
stresses.

> ayers will be subjected to compressive

Due to the increase in length.pf the layers above N—N,'these layers will be subjected to tensile stresses.
The amount by which a layer increases or decreases in length, depends upon the position of the layer

w.r.t. N-N. This theory of bending is known as theory of simple bending,
Let

R = Radius of neutral layer N’-N”,
0 = Angle subjected at O by A’B’ and C’I)’ produced,
y = Distance from the neutral layer.
Original length of the layer = EF = §x = NN = N'N’
From the above figure (bLN'N' =R
Increase in length of the EF = E'F° EF=(R+y)0-RoO= yo

> Strain in the layer EF = € = Increase in length / original length =y 9 /R g = y/R

> €w QY
F = Ex-fﬁ:-é_xv._'
F
o K
y R
P Gﬂ.y
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The below figure shows the cross section of the beam.

foree on the layer

= Stress on layer x Area of layer
=0 xda

MECHANICS OF SOLIDS

dy

CXEFEEEIITENEL TR
= Ryx dA

Tutal force on the beam section

w -

zjg—xydi N

- . (iA
7Y X ‘
But for pure Bending, Total force =0

- b

gjyxdﬁ =0

J.yxdfi =0

>y dA represents the moment of area dA about neutral axis, That
gives the position of the neutral axis,

E
Force on layer =g X¥X dA

Moment of Lhis force about NLA.
= Force on layer x y

is the centroidal axis of a section

;-i—?xyxdrixy

m%xyzdi

Total moment of the forees on the section of the beam (or moment of resistance)

M = Ifg X3 kA "g J. ¥ xdA

The above equation is known as Bending Equation. And it is applicable at bending moment is

maximum.
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NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS)
MODU . .

It is the ratio of moment of inertia of a section about the neutral axis to the distance of the
outermost layer from the neutral axis,

I

Z=——

ymnx

I'=M.O.I about neutral axis

¥max = Distance of the outermost layer from the neutral axis
" M=o, .2

» Hence moment of resistance offered by the section is

maximum when Z is maximum. Hence Z
represents the strength of the section.

LI
1. Rectangular section:

- ¥
T s
di2

d N

Vonas = :
A

DB S e e s K £ S

_bd*
6

2. Hollow Rectangular Section:

;. BD® g’
T 12 19

D
Y ax = Ty
" [2}

{= 'éz d4 4——-1\;-
d // \
ymﬂx = E #_.'_ . - ,.._‘_
R
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4. Hollow Circular Section:
n _
= = DA _ g4
D

-

ym=2

Z=£5[B“—d"}

1. A square beam 20mm X 20mm in section and 2m long is supported at the ends

a point load of 400N

ANS:

For simply supported beam: -

MECHANICS OF SOLIDS

. The beam fails when

is applied at the centre of the beam. What uniformly distributed load per

meter length will break a cantilever of the same material 4omm wide, 60mm deep and 3m long?

M 201 mm ——a

= 200 Nm

lwe N
+ Zm = 20
| 1
lat o, =Max stress induced
wxl 400x2
2 P = -
g bd®_20x20° 4000 o M=— y
& 6 3 & = 200 x 1000 = 200000 Nmm
M= O e &
4000 ' . o
200000 = e X ——:;"“‘ |
200000 x 3
= ———— fmme
S o 2000 150 N/mm

For cantilever beam:

‘“”‘'1|.f‘"\t“""\..r‘""'li
j-l

= 40

i

80
mm

’-
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Let w=Uniformly distributed load per m run. Maximum B.M. for a cantilever

2
wl* Wz 3

. — - e . N
7= 4560 1000 mam? LI Mhedm
ETTETTE | s M = 4.5x 1000w Nmm
M = Gﬂiﬂ){" 4
4.5 x 1000w = 150 x 24004
150 x 24000 i
W = 45 X m = RBO( ?ﬁfm*

' 2. A timber beam of rectangular section of length 8m is simply supported. The beam carries a U.D:L. of

12KN/m run over the entire length and a point load of 10KN at 3m from the left

support. If the
depth is two times

the width and the stress in the timber is not to exceed 8N/mm?, find the suitable

dimensions of the section?

i
[+ 4

! ANS:

:‘ Given Data:
Eength, L = 8m
UDL., = 12:kNitn = 12000 Nim
Point load, W= 10kN=10000 N 3_&?{{1}_\/ W?
Depth of beam = 2 x Width of beam 3
d = 2k #;
Stl'ess_a S = 8 Nf‘mmﬁ . A

Taking moments about 4, we get

Ryx8 = 12000 x 8 x 4+ 10000 % 8
2 0O
R, = 1_(}@(}x382+3306 = 51750 N
R, = Totalload - Ry

1}

{12000 x B + 10000 - 51750 = 54250 N

Now SF.atA = + B, = + 54250 N |

S.F. just LHS. atC 04250 - 12000 « 3 =+ 1R250 N

SF just RHSB. of C 18250 - 10000 = 825€3N

SF. atB e - RE = ~51780N S “

The 3.F. is changing sign between section CB and hence at some section in C and B the
S.F. will be zerg.

Let S.F. 18 zero at x metre from B.

KEguating the S.F. at this section to zero, we have

1

12000 xx~ Ry = 0
or 12000 x - 51750 = O
B1750 e
x = aém =4.3125m
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43125
2

BM.

—
e

M = Ry x 4.3126 — 12000 x 4.3125 x
51760 x 4.3125 — 111585.9375

I

= 1115685.9375 Nm = 111585.9375 x 1000 Nmm &
M=o9o,.2%2
« 267 h =
J11686.9375 x 1000 = Sx-m:-;m & g

3. A cast iron bracket subjected to bending has the cross
total depth of the

200mm wide and the bottom flange is

should be imposed on this section if the tensile stress in the top flange is not to exceed 20N/mm2.

bdz

MECHANICS OF SOLIDS

bx(2b)* _ 25°

Zmﬁ

6 3

(20.9223 x 10817 = 278.5 mm.,
2.x 275,5 = 5§1 mm. Ans.

-section of I-form with unequal flanges. The
section is 280mm and the metal is 40mm thick throughout. The top flange is

120mm wide. Find the position of the neutral axis and

moment of inertia of the section about the neutral axis and the maximum bending moment that

What is then the value of the maximum compressive stress in the bottom flange?

Lei the maximum bending momem be M N,

. k)
Let the max. compressive stress be £ Nimn*

W

1,=20Nime’

Top Flange 8600 20 - 16 x 10¢ 320 x 108
Web 8600 140 112 % 10* | 15680 x 10
Bottom Flange| 4800 260 124.8 x 16% | 32448 x 104

F
¥ . )
; &
rj 5 b Mg, l :
- %_, g Wy { ,
e B T
= N o A i
= mm
o ' — e e
] % o
] i
—
P
e %‘ ‘i 0mm { h] ;
= _ — _ Y
*;::: —a 120 le— :'-_

200x 40}

12
402003

= 106.67 x 104

= 2666.67 x 10*




| NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS)

MECHANICS OF SOLIDS
. Distance of the neutral axis from the upper edge
! - _ Zay_ 2528x10°
: = ¥ m = = I..’S .
| ' 7= Sa T 30800 ™
| Moment of inertia about the spper edge

=1 =Xl . 3 ay?
2837.34 x 10% + 48448 x 109 =511285.34 » 10¢

L =1 +(Zq) ¥?

S SI2R5.3d x 1P =7+ 20800 % 1215

-
1, = (S1285.34 - 30705.48) 10° = 20579.86 x 10% mm*
w T T amEe o . .

But

l : M Ffr == M = I < f
‘ v ! - A X
i
‘ . 2@ . AT, 3 v
§ M= lg}rg x 20570 86 = W Nonn = FI870 Ny
| 585 . s
L= f;j 5 X 20 Nivent-. = 26,009 Nimmn-.

4. Three beams have the same length, same allowable bending stress and the same bending moment.

The cross-section of the beams are a Square, rectangle with depth twice the width and a circle. Find
1
: the ratios of the weights of the circular and the rectangular beams with respect to square beams?

;ANS:

The below figure shows a Square, a rectangle and a circular section.

i
H

!

] (.
Z{;._ o 2lb 0

Let x = Side of a square beam
b = Width of rectangular boam
2b = Depth of the rectangular beam |
d = Diameter of a eircular section, -k

The moment of resistance of a beam is given by, -
M=ox2Z
where Z = Section modulus.
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bd®
. I T3 xx® 2 4
Section modulus of a squarebeam - L _ 12 _ xZ2 ¥
. ¥ { d ) 12 = 8
\ 2
bd®  bx(ep) .
h x 8b 2 2
Boction modulus of a rectangular beam =42 o 12 = - — =2 p8
nen d ( % ) 12 % "3
2 2
Kdﬁ
Section modulus of a circular beam - 64 - %4_ 4 _ nd®
4 64 "d 32
2 ’
Fquating the section modulus of a square beam with that of a rectangular beam, we get
2.,
6 3
¥ P
8= =— =} 5]:3
Bx2 4 0.2
= (0.26)Y° x = 0.63x
Equating the section modulus of a square beam with that of a circular beam, we get
x*  nd®
6 82
3 e 118
#=32 4. [32) Lx=11927x
6n 6z

The weights of the beams are proportional to their cross-gsectional areas. Hence
Weight of rectangular beam .. Area of rectangular beam

Weight of square beam Area of square beam
_bx26  0.63rx2x0.63x
T oaxx xxx

-~ 0&7938- .ﬁtn =,
And

Weight of circular beam _ Area of circular beam
Weight of square beam  Area of squarse beam

md?
_ 4 _7d' xx(1.1927x)
N T oat 44 g
=1.1172. Ans.
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SHEAR STRESSES IN BEAMS

SHEAR STRESSES:

The stresses induced by shear force are known as bending stresses.

1. Prove that the shear stress at any point in the cross section of a beam which is subjected to a shear
force F, is given by
Ay
T = Fx—c
: Ixb
¢ ANS:
A € o
an:mme \g’x&
k ] /
{a} / - j//
‘ ‘ =" 11
A G(u-»;céa} coH G ,x’!_—_'_”f e /F
M i T (AR e = (Tl %
byt SN SO 2SN O, WL oI S S I ¥ ool
S s S
) {M+dM) ¥ .r‘f/
ey ' : b '
B D g.‘ _’f f— b —»{

® “ C)
The figure (a) shows a simply supported beam carrying a U.D.L.
The figure (b) shows two sections AB & CD at a distance dx apart,
The figure (c) & (d) shows ihe cross section of the beam.
Let at section AB, F = Shear force & M = Bending moment
Let at section CD, F + dF = Shear force &M+dM= Bendmg,moment
Let dA = Area of elemental cylinder & dx = Length of the elemental cylinder
y = Distance of elemental cylinder from neutral axis

6 = Intensity of bending stress on the elemental cylinder on the section AB

¢ + do = Intensity of bending stress on the end of the elemental cylinder on the section CD

Bending stress on the end of elemental cylinder on the section AB, will be

a= s
S
Bending stress on the end of elemental cylinder on the section CD, will be
O +da = M.%dﬂ-ﬁx“

Force on the end of the elemental cylinder on the section AB
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- M
= Stress x Area of elemental evlinder =oxdAd = 7 xyxdA
Similarly, force on the elemental cylinder on the section CD

m{“M + Lfﬂf]

7 xyxda -+

=(o+da)dA =

* Net unbalanced force un the elemental cylinder = dI_M Xy xdA

A o o b g

' adM dM -
.'.Tot&lﬂﬂbﬂi&ncedf&rce:jg? Xy xdA =~ T --jydizn}—xAxy
Where A= Area of the section above the level EF

¥ = Distance of the C.G. of the area A from the neutral axis.

Shear resistance (or shear foree; at the level FF = Total unbalanced foree = Efﬁ’{ XA w ¥
7 h

Let T
&

Intensity of horizental shear at the level E&
Width ol beam at the ievel EF

i

j ~Bhearforcedueto v = Shear stress x Sheararea = tx b x dx
Y
Equating the two values of shear furce given by equations

TxhHoly = f-{;ﬁxxixj;

‘ . M Ay . A¥
ST = e N = F L
J dy Txp Fx I x

iZ. Prove that the shear stress distribution in a RECTANGULAR section of a beam which is subjected
1
}

to a shear force F is given by

- F(d*_ 5
-5l

And show that for a rectangular section of the maximum shear stress is L.5 times the average stress?
iANS: Let the shear force acting at the section = F

0724
L

3
e b ——» e
{a}
Consider a level EF at a distance y from the neutral axis.
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MECHANICS OF SOLIDS
b = Actual width of the section at the level EF
' d
A = Area of the section abovey = (-5 - y} x b
. fd 3 1¢ d)
¥ = Distance of the C.G, of area 4 from peutral axis = y + 5 [2 - :VJ =3 [J' + *2")

. o ¥ g}xbx.,m’v.{»g)’ g -
| L A7 ’Lé—"""__ 2[ 2 =£(_Ei_“_,,,2f
Tlhie shear stress at the level EF = t=F. Pevyi — Bl oF
: Therefore the variation of t with respect to y is parabola.

At the Top edge, y =d /2 and hence

|

! 2 2 <

i z;ﬁ{iﬂ«-(_d;J{mf-xﬂ=ﬂ
{ 4

s

27
At the neutral axis, y = 0 and hence

Fid* Fd* Fd F ,
‘ = — =0 = = = -—
=357 [ 1 J i N b 1.5 ; (i
12

[A¥]

Shear force F
Now average shear stress, 7, = Area of section  pxd

1 Substituting the above value in equation (i}, we get
g T=1lbxt, =71,

1%3. A rectangular beam 100mm wide and 250mm deep is subjected to 2 maximum shear force of SOKN,
; Determine: (i) Average shear stress, (ii) maximum shear stress, and (iii) shear stress at a distance of
| 25mm above the neutral axis.
/ANS: Given Data;
| Width, b = 100 mrm
Depth, d = 250 mm
Maximum shear force, F =50 kN = 50,000 N.
‘ = _F ‘ 50,600 e 2 W 2. M— 100 mm—»i
(i} Average shearsirese = 1, 7= Fren = T 2 I:wmm . e
i) Maximum shear stress= 1 = 1.5 x Tug =8 N/mm2, ,
250
(71f) The shear stress at a distance v from N.A. is N Al ™
wro Bl 2} 50000 250" - 25% | = 2.88 N/'mm?, Ts
BEET2 AV IR YR e . s
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i

ANS:

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS)
Derive an expression for the shear stress at any point in a circular se

subjected to a shear force F. And prove that the maximum

beam is 4/3 times the average shear stress.

Ay

The shear stress at the level EF = t=F .-
bxl

Consider a strip of thickness dy at a distance v from N.A.

Let dA is the area of strip.

Then dﬁ_;bxd_yzEF‘xdf
=2 x EB x dy

=2xx}122~yﬂ‘xdy

MECHANICS OF SOLIDS
ction of a beam, which is

shear stress in a circular section of a

E F T

Y

. b

(&)

Moment of this area dA about N.A, =y xdA =y x 2 VE? -y xdy =2y JR* - % dy.

— R -
Moment of the whole shaded area about the NA = Ay = J; 2y 1!82 - y® dy

b=BEF =2xwEB=2x

3

Ay

Fox % (R? - y% )"

= LR(— 2y) fR% - y2 dy.

2 L5
= -é' {R2 _‘,}.z}.l-’z

| 2
yR? -y

L

E»‘I;QRE _ y?}ﬁf‘i

T=F

"Bxi Ixb

. _.‘ﬁ {RQ'—’V'?'}

Aty = 0i.e., at the neutral axis, the shear stress is maximum and is given by

}?

. @ £ F
.__I.{:WR‘E_ FxR = 2y g
Toex = 37 = - PRl
Ix= RS
4
But average shear stress,
. Shear force o
& Area of circular section nRR?
4
Toge = E X T

]

How will you prove that the shear stress changes abruptly at the junction of the flange and the web
of an I-section?

B = overall width of the section,

D = Overall depth of the section,

b = Thickness of the web, and d = Depth of web.
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) Shear stress disiribution in the flange

MECHANICS OF SOLIDS

Consider a section at a distance ¥ from N.A, in the flange as shown in F1g_fg

Wzdth of the section = &,‘2 dIE
Shaded area of flange, A = B ( L y] ! y
2 oy __ | LA
Distance of the ¢} of the shaded ared from neutral axis is given as N A
_____ Doy 1y n_A L2,
EYA o — =y = LD
Y22 J 2i2 %)
Hence shear stress in the flange becomes -
Cf Y100 T
FxRBl i oyix*® Ly
Fxay  TBLGy Y i, wg_(nﬁ .
IxB IxB “erl 2 7
(@) For the upper edge of the tiange, y = %
FiD® ¢p+
Hence shear stres = =i -l=—1 Iz
; T { 772 =0
d
(&) For the lower edge of the flange, y= Py
F | D? d)*“ FID® 4*) F
L I DR - e
Hence e 21[4 {2 2I{ 4, 4 )" 8l
(it} Shear stress distribution in the web . Wm
Consider & section at a distance y in the web from the N.A. a5 shown in Fig. T é
o2
Width of the seetion = b, . a2 AT .
- A¥ = Moment of the flanpe area about N A, _L ] J ______ ] +
+ moment of the shaded area of web about N.A. o A
D d 195) ({g_)_(_*] L
_B[Emgjx2(2+2 +b 3 5 y
B b{d®
w o (% — | o —
,B(D d2)+2[4 J’] L J

Hence the shear stress in the web becomes as

: @
Fx45 _F (0 gt B[4 J
= ﬂ J‘
Ixb  Ixb [ 2% 4
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4 At the neutral axis, y = 0 and hence shear stress 18 maximum.

e .
__FIB a2 o b d] F- ﬁwa—d”hgd_m}
“m‘m{“‘” ST TR 8 8

MECHANICS OF SOLIDS

) _ d
At the junction of top of the web and bottom of flange, ¥ = 9

Hence shear stress is given by,

2 2 2
; F B, 2 2. b g____{g) _ FxBx(D*-g?
v be{'gw d 3"’2[4 2) | = 8Ixb

The shear stress distribution for I- section is shown in the below figure.

- B b

'\“ A B R e
-3

-l
|
i
1
|
'
|
H
i
!

| F— NF“ Wm_ﬂh m]g}, R—

€
L)

L

{a} | (6)
6. The shear force acting on a beam at an I-section with unequal flanges is SOKN. The section is shown

in the below figure. The moment of inertia of the section about N.A. is 2.849X10%. Calculate the

: shear stress at the N.A. and also draw the shear stress distribution over the depth of the section.
i

%ANS:

)
Given Data:

Shear force, £ =50 KN = bu,uvy
Moment of inertia about NLA.

I = 2.849 x 108 mm4.

Ay + Agyy + Agyy
i i - TTa Tt . " — ¥ =
Distance of tlie center of gravity from the bottom surface = v (A, + Ay + Ag)

S
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MECHANICS OF SQLIDS
vhere A, = Area of bottom flange 4 Chediim—" !
I IF i
= 130 x 50 = 6300 mm? G =1} é
Ay = Area of web = 200 % 50 = 10000 mm? ] _] * F
Ay = Area of top flange = 200 x 50 = 10000 mm? - e wae TP 7 3,608 ——»{
¥: = Distance of C.GG. of A from bottom face . 83.4af
50 I S S _ f—-» 4.4198 .
= "E* =25 mm E N A :
¥g = Distance of C.G. af A, from bottom face § E o
. 11651
=50+£§2=150mm f A 168 51 1 , //
¥3 = Distance of C.G. of A, from bottom face m} @ i _L 3229
50 e i I A
=504200 + - =275 mm 0 |somm |
N ;
—— 139 mm —‘-«4 i“l—'gﬁq
- _ ! 0000 % 275
y* = 68500 x 25 x 10000 x 150 + 100 = 166.51 mm

~ 6500 + 10000 + 10000
Hence N.A. is at a distance of 166.51mm from the bottom face & 133.49mm from upper top fiber.

h Stress Distribution:

FxA7
Ixd
(i)  Shear stress at the extreme edges of the flanges is zero.

(i} The shear stress in the upper flange just at junction of upper flange and web

Ay = Moment of the area of the upper flange about N.A.
= Area of upper flange x Distance of the C.G. of upper flange from N.A.
= (200 x 50) x (133.49 - 25) = 1084900
b = Width of upper flange = 200 mm
50000 x 1084900
T = 2849 % 108 % 200

(iii) The shear stress in the web ji;st at the junction :)f

= ,9520 N/mm?,

the web and upper flange will suddenly
increase from 0.952 to 0.952 X 200/ 50 = 3.808 N/ mm?.

(iv) The shear stress will be maximum at the N.A.
Ay = Moment of total area {about N.A.) about N.A. _
= Moment of area of upper flange about N.A, + Moment of area of web about N.A.
133.49 - 50) _
= 200 x 50 x {133.49 - 25) + (133.49 - 50) x 60 x E—m—é-m——- = 1259164.5
- b=B0mm

50000 x 1259164.5
Tmaz = 5 246 % 107 % 50

= 4,4196 N/mm®.
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(v) The shear stress in the lower flange just at the junction of the lower flange and the web.

AY¥ = Moment of the area of the lower flange about N.A.
= 130 x 50 x (166.51 — 25) = 918125
b = Width of lower flange = 130 mm

v SO EOXSISI0. ) 939 Nimme,
2.849x 10" x 130

(vi) The shear stress in the web just at the junction of the

increase from 1,239 to 1.239 X 130/ 50 = 3.22 N/mm?.

web and lower flange will suddenly
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UNIT-4
DEFLECTION OF BEAMS
1. Derive an expression for the slope and deflection pf a beam subjected to uniform bending moment?
Ans: LA |
D
- i
P ’ : N
/ Y
Let R = Radius of curvature of the deflected beam, ff 1 |
y = Deflection of the beam at the centre {i.e., dis- ; Jj\ ;
' \ o
tance CC }, ) ] ] \ R /.f‘\.éhz "-\H 'l‘
I = Moment of inertia of the beam section, \\\ - ; ;
E = Young’s modulus for the beam material, and A P % 4‘}3
@ = Slope of the beam at the end A (i.e., the angle 'S Yy _
made by the tangent at A with the beam AB). b
For a practical beam the deflection y is a c

small quantity.

Hence,

dy
—=tan0=90.
e 12841

AC-BC=%
2 &
Hence neglecting y2, we get,
L2
e = ORy
4 ¥
LEE
T BR
But from bending equation, we have
#_E
I R
_ Exl
T M
From triangle AOB, we know that
(£]
_aAc l2) o L
B = e = =t | . 9 wm
st AO R IR — 2R

AC x CB =DC » CC*

L L
arr =ZR-yixy

2 2
L2
= = .2
i 2Ry — y2
L‘.’.
¥= ,
8 x 2l
R M
y= MLE
8EI
. L e
T oy E _MxL .
M ~ 2Er

The above equation gives the slope of the deflected beam at A or at B.
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2. Prove that the relation that Bending moment =

M < BT d?y I = Moment of inertia of the beam section,
~ 7" dx®  E=Young’s modulus for the beam material,

Ans:

Let the curve AB represents the deflection of a beam as shown in the below figure. Consider
a small portion PQ of this beam. Let the tangents at P and Q make angle y + dy with x-axis .
Normal at P and Q will meet at Csuch that PC=QC = R, .

Y & Y &
0 X s)
{a)
The point C is known as centre of curvature of the curve PQ.
Let the length of PQ is equal to'ds. - R
From Fig. 12.2 (b), we see that
Angle PCQ = dy
PQ=ds=Rdy
| - % _ D)
But if x and y be the co-ordinates of P, then
tan y = 2 i)
sin y = L4
ds
dx
cos ¥ = ds

. Now equation (i) can be written as

o (@ (@) .

VEE

B= sec W

S C)

Differentiating equation (ii) w.r.t. x, we get

.(iEd)
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d*y
dy _ dx®

e e

dx sec® y

Substituting this value of %ﬂi in equation (i), we get
X

sec sec y . sec” L sec’ 4

A= 5 = = B 2 ‘5
ay dy

— dx? dxzj

Taking the reciprocal to Eﬂth" sid_és, we get
dty &%
_1| 3 dx2 ~ dx2
R sec’w  (sec? )32
d’y
- dxz: ;
(1+tan? y)3¢

LN e

For a practical beam, the slope tan -ty at any point is & small quantity. Hence tan? v
be neglected,

1

)
o
-3

dx® "
From the bending équation, we have
M_E A

or

e !
it
R

Equating equations (iv) and i), we get

dx

Differentiating the above equation w.r.t, x,
dM dé{}'
gy
ox dxﬂ

M

we get

But - = F shear force (See page 988)

day
- ELGE
. Iy
EI iﬁ'

—— = ¢ the rate of loading

H

A,

dr
F
dF
dx
F
dx
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dt&
w= EIE{ - B
Hence, the relation between curvature, slope, deflection etc. at a section is given by:
Deflection =y
dy
Blope ==
al
Bonding moment =FI ﬁ
dsy
Bhearing force =EI =
d'y

The rate of loading = EJ

3. Find the deflection of a simply supported beam of length L carrying a uniform distributed load of w
, wh
per unit length? '

Ans;

je— x —»} w/Unit length

wx L

2 &
We know that B.M. at any section is
d?y . .

MxxRAxx-wxxx

= Ef ~—5
M dx?
Bquating the two values of B.M., we get
dly "w,Lx__ w.x?
| de? 2 2
Integrating the above equation, we get

EI

4 '3 6 (ii)
The boundary conditions are:

() at x=0,y=0 and  (ii) at x=L, y= 0
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Substituting first boundary condition i.e., x = 0, y = 0 in equation (ii), we get
0=0-0+0+C, or Cy=0 ! i o get
Substituting the second boundary condition i.e., at x = L, ¥ = 0 ip equation i), we g

0= _“.’,.;g‘__ _Lf._ﬂ_!:‘_ +C,.L , (Cyie already zero)

19 + 24 24
Substituting the value of C, in equations () and (i7), we get
dy w.L 2 w3 _wL?

x X W ¢i13)
Bl =74 8 24 |
and Elv = E;i 3 —_12 4 "_ E‘ﬁ,ﬁs '
¥ 12 X 5a s o P 6

or E]‘}f = .{U_*.é :{3 o et £~’-’£{_x

oouT (iv)

Let 8, =8 ' . . ldyy
A Ope at support A, This is equal to [==] »
. ‘ xdxjmé
and B = Slop &t suppori B = ["3_‘;
~»"m‘ B

dy

AtA, x=0 d — &

an dr a,.
Substituting these values in equation (i}, we gat

Ef.ﬂ',_ -*:%xﬁ-f‘ix(}._ﬁgﬁ

8 24
L
24 24 \
- g . WL By symmetry, g, = . S&
v A 4Rl & i 2457
Ely, = 4L f&ja_y_ (‘ff‘]‘ wl' [ L
12 1‘ 2 24 ' 5, 2..1‘ 24 {:é-.,ﬂ}
= L{__%i wL’i A "4 . sw- Ld '
86 384 48 381
L5 w5 wgs
©  asiET T 381 Bl 0wl = W= Total load)

o

. Find the deflection of a simply supported beam of length L carrying a point load W at a distanée ‘a’

| from left support and at a distance ‘b’ from right supports by using MACAULAY’S METHOD?
| Ans:

W.b .
Ri=—f and Ry 28 M= Ryxs- ol
o & o
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[l F] "'\:{S_: b I
A Cw
JIE""-._“ B
H“& _.‘-FF v.
. «.__“L_ mmmmm ’
R, = Wb &
S Ry = Wal

The above equation of B.M. hotds

. ood f
any section between € and Sood for

' the values of x hetwe Lo ,

B ata distance x from A 5. siven b en { and ‘o’ The B.M. o

M = Box—Wx(e- al )
W.b

= “E“ L= Wy~

The above equation of B.A. ?mi

ds good for all values of x bet . =
The B.M. for all sections of the ween x

=aandx=p.
beam can be expressed in

i a single equation writtey ity
258 b

M=

L —FVQ'I—(,;_}

1]
dzy
_ dx®
), we get

L A5y W
E! t ‘_‘:-—_!x*

ek S TiF ~ Wix — g
Integrating the above equation, we get

- | -]
Hoenes squating () and (7

-.AFii)

Er ﬁ Wb +? C o Wix
de Lz TN DT )

-hwgfating equation (iv) once again, we get

3 : Y|
EIy:—W'b.%+Clx+C2 LA

()
2L

The boundary conditions are:

{HYAtx=0,y=0and (i) Atx=L,y=0

i1 At A, x = 0 and y = 0. Substituting these values in equation (v) upto dotted line only,
1

G=0+0+0C,
e Ca = a ) . | B
(i)AtB,x=Landy = 0. Suhstituﬁng these values in eqﬁatit:m (v}, we get
w.o [P | W (L -a)®
G_EE—».?+GIKL+O o3
: (v €, =0. Here complete Eq. () is to be taken)
2 3 :
=E{5I"L +CxxL—-—~2}K% (v L—g=0b
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L4 woeIl Wb
N oo - - " . - Lz__ b?
CyxL=-.b 5 5 ( )
w.b ’ .
Ci = E (sz - bg) .‘..{m}

Substituting the value of C, in equation (iv}), we get
2 : —m2
El ﬁzw«,‘f_‘é.x__,{ W'b(Lfé_bE)] _Wix-a)

d: L 2 | 6L P)
2 : 2
- W.b.x* Wb (La__bz} _M i)
2L 6L * 2

Equation (vii) gives the slope at any point in the beam. Slope is maximum at A or B, To
Ind the slope at A, substitute x = 0 in the above equation upto dotted line as point A lies in AC.

- d
Er.ef——“;r;bxo—% L2-on ( a%am:eﬂj
__ W e o
==~8L (L2 - b?)
0, =— 62?1, (L2 - b2) : (as given before)
Substituting the values of C, and C, in equation (v}, we get
e Wb [ Wo 5, LW
Ely = w20 3,1 _ Y 52 42 : W
¢ 6L -1-{ GL{L b)Jx+B w"g*(.t-—&)a
. W.b W.b W
Ely = 32 yo e Wb . .
Y. sl @ 6L (L*— b%a = 6L .af{a® - L2? + b2
Wa® . b?
Vo & o el
3EIL

5. Explain about MOMENT AREA METHOD?

Ans:

Consider an element PQ of small

E,ﬁt R = Rﬂd’iﬂﬂ f .
length dx at a distance x from B. The of curvature of de

corresponding points on the deflected flected part P,Q,
o Gl? ______ € telled 0 dﬂﬁ ; I ]
peamareFiQqusshowninbig 12,17 4), f""ﬁa T‘gj :ﬁﬁgﬁzﬁi&%{a

P,C = Tangent at point 2,
0 = Tangept at point @, ' .
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Arga = Mdx

For the deflected part P,@, of the beam, we have

P.Q,=R.ds
But P ~dx
' dx = R.d6
J dx
. i ®=%
Bl Fi\ 1 I' But for a loaded beam, we have
A ME  RE
Wi s IR M
i Substituting the values of B in equation (i}, we get
W - gendx__Mds
0 M :
Since the slope at point A is assumed zero, hence total slope at B is obtained by integrating
the above equation between the limits € and [.. :
LMdx 1 ¢L
= =X "m.
<k E "m -[o d

L
But M.dx represents the area of B, M. diagram of length dx. Hence J; M .dx represents the
area of B, M. diagram between A and B.

1 .
6= F74 [Area of B. M. diagram between A and B}
But f=slopeatB=0, S

~ SlopesatB,

o. - Areaof B. M. diagram between A and B
5 = :
EI

If the slope at A is not 2zero then, we have

“Total change of slope between B and A is equal to the erea of B. M. diagram between B .
and A divided by the flexural rigidity EI"

Area of B.M. between A and B
ET

or BE"BA=

Now the defloction, due to bending of the portion F.Q), is given by
dy = x.dé
Substituting the value of d@ from equation (i), we get
Bl LAHT)
Since deflection at A is assumed to be zero, hence the total deflection at B is obtained by

integrating the above equation between the limits zero and L.,

dy:rx .
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L xM dx 1 ¢t
But x x M.dx repregents the mament of area of the BM. diagram of length dx about
point B,
1 _ AR
* = — XA = e
YERI A=y
6. Find the

slope and deflection of a simply supported beam AB of length L and carrying a U.D.L. of
W per unit length over the entire span by using MOHR’S THEQREM?
Ans:

willnit !sng!h o

R r'd
oy
ih)
Kk
L £ L, B, {)iﬂgfam &
r - 2 o
(i} Now using Mohr's theorem for slope, we get
Slope at A = Area of B.M. diagram between 4 and C
_ El
But area of B.M, diagram between A and ¢
= Area of parabola ACH
= IxACxCD -

Slope at A==
o S4BT o

(é6; Now using Mohr's theorem for deflection, we get from equation {12.17) as
Az
) _ T EI

* = Distance of C.G. of area 4 from 4 w.L? <Ok 5 14
; _ 24 7 _ 5 w
-8 x4ac=2 xL . 5L ¥ = 6

8 §°0 18 El 384 EI
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UNIT-S

THIN CYLINDERS

the Hoop stress is twice the longitudinal stress?

Fiuid under pressure ]

l ' 7
i —»

The figure shows a thin cylindrical vessel in which a fluid under pressure is stored.

}'

Let d = internal diameter of the thin cylinder
t = thickness of the wall of the cylinder
p = Internal pressure of the fluid
L = Length of the cylinder
EXPRESSION FOR CIRCUMFERENTIAL STRESS (HOQP STRESS):

.

Let p=Internal pressure of fluid -
d =Internal diameter of the c'ylinder
t =Thickness of the wall of the cylinder

¢ 1 = Circumferential or hoop stress in the material

Forcedue to fluid pressure . = P x Arca on which p id acting ‘
=px{dxL) - Y
{~  pis acting on projected area d x 7.}

DEPARTMENT OF MECHANICAL ENGINEERING
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Porce due to circumferential stress ,
= 0, x Area on which O, i actiny
=o, x(Lxt+L xf) ,
=0, x 2Lt = 26, xLxt _, - E)
Equating (i) and (i7), we get
pxdezzq, xLoxt

.
[

o, = “gt“-d"— {cancelling L.)

EXPRESSION FOR I ONGITUDINAL, STRESS;
Let

P = Internal pressyre of fluid, d

= Internal diameter of the cylinder

¢ 2 = Longitudinal

t = Thickness of the wall of the cylinder, stress in the material

b
Longivuding; Stress (g,

evelop

)
Resisting foree = G2 X Area on which G,

=0y xrul x ¢
limiting case

Is acting
Hence in the

Force dge to fluid pressure =Resisting force

on
Pxrd* =0, xnd xy

LR e
e Oy = ———=—m= L0
] 7 x t 4
pd 1
& LT X !
%1% 9xgf Tg X O
Longituding) stress = Halfof circumferentig] strass,
2d _ pd
T =% L 2t dr  pa
ey 2 9 3?

DEPARTMENT OF MECHANICAL ENGINEERING
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EXPRESSION FOR EFFECT OF INTERNAL PRESSURE ON THE DIMENSIONS OF A THIN

CYLINDRICAL SHELL: , _ P4 L7
Yo g T4
Lot € ;fiﬂf?lf;m’;ﬁﬁ:fmi“* But change in Volume 3V) = Final volume ~ ~ Original volume
&, = Longitudinal strain.

Thea cim‘:‘m ferential strain, Original volume (V) = Area of cylindrical sheli x Length
e, = 23 _HOy == d2 x 1,
“CTETE

Final volume = (Final ar&a of eross-section) x F‘mal length

== fd+5d12x!L+8Ll

(2 +(8d)? + 2 6] x L+ BL]

— [d2 + (B L + 24 1.5d + SLd® + 8L (54)2 + 2d 8d3L)
Neglecting the smaller quanmtxes such ag (ﬁd)zL fL(8d)? and 24 BdBL we get

41 :ln-lhf;t

Final volume == 1 2L+ 2d 154 + 5, 32
-~ Change in volume (5V)
‘ =3 2L+ 20L5d + 5L 7 ExL
=% [2d L8d + 5La2)

v Ll L8d + 8La"

Volumetricstrains = 27 ——
4 %dSX'L
d L
& 5L
=2¢e +e , ( -E-=ez.-z-—e2)
pd iy wlopd .L}
*zxzﬁzz[l 2]*‘2&#(2 #

pd(, 2u 1
EEt( 23 “)
pd 1
E il > SO ST
ﬂEz( +2 4 #J
__ad_(ém

2K 2p

Also change in volume (&V) = Vi2e, + ey,

DEPARTMENT OF MECHANICAL ENGINEERING
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A cylindrical vessel is

an internal pressure of 3N/mm?. If the maximum principal

the thickness of the

1.5m diameter and 4m long is closed at ends

stress is

shell. Assume E =2 X 105 N /mm?

in diameter, length and volume of the shell?

Ans;

Dia.,
Length,

d=15m= 15800 mm
L =4m=4gpg mm
Internal Pressure,  p=3 Nfmm?

Max. principal stress = 150 N/mm?

Max, principal stregs means the eireumferential
o Circumferentialstress, ©; = 150 N/mm?
Value of £ = 2 x 195 N/mme?,

stregs

MECHANICS OF SOLIODS

by rigid plates. It js subjected to

not to exceed 150 N/ mm?, find

and poisson’s ratio = .25, Find the changes

?’aisson’s ratio, p= Q.25
o, = p.xd
2¢
Let ¢ = thickness of the shel), e~ £Xd _ 3x 1500
dd = change in diameter, xoy 2x150
3L = change in length, and
8V = change in volume. =15 mm.
Q | 'Sl < pxdxf.(i_uJ
x E 27" h§x1560x40i}0{1 0.95
2x15x2x 107757025 ) = 0.984 mm, & =075 mm.
3V pxd s o
V " 2Ex: (2 “XH
3 x 1500 5 ]
= - (--m—2x0.25§=i’il-§9;ﬂ"2
2x2x10%x 15 2 7 4x10%x 15
3 .
oV = —xV= *"*-—-X(-t
2000 " " 9gpg {3 X9 x L)
W £ S ‘
* 5005 *| 3 1500 x.f_meo}z 10602875 mms3, »

DEPARTMENT OF

MECHANICAL ENGINEERING
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THICK CYLINDERS

1. Derive the expressions for the stresses in a thick cylindrical shell subjected to an internal fluid

pressure? (OR) Derive the Lame’s equations?

Loz,
2 —

- TR S g o m s, [E T .

N

Let r, = Extornal radiug of the cylinder,
ry = Internal radius of the cylinder, and
L = Length of eylinder.

Let p, = Radia] bressure on the inner surface of the ring
P, + dp_= Radial pressure on the outer surface of the ring
G, = Hoop stress induced in the ring.

Burstimg foree
L R ap,ix 2y 4 gyl L
:225 gijx, X - {'p_t_ X +px -t +'x‘dpa + fl’p . ffl]j
Selil-p  dy o<y .dp | ﬂ‘;e- WU i

¥ glecting ofp /
=2 pdrax gy, 5 4Py -

- )

Resisting force = Hoop stress x Area on which it aézg =g, x %dx_ [,

a:rxx2dx,L«._~~.2Lng,dx+x.<:r;n;_
dp
O, =g g 9P
) P frian '
DEPARTMENT OF MECHANICAL ENGINEERING
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MECHANICS OF SOLIODS
The longitudinay Strainfe,) at thig point is givey by,
é‘g Y Ei - _]:E_EF\ + E‘f}h

F E
nstant,

But Iongituding) strain iz ¢g
T2 MOy up, 4
z = CUnRLaAnt
But g, is als . an e
Ut @, s also tonstant, and for then
Log - B, =consiant

taterial of the eylinder £ and W are constant.
< 2a where

1S constant
. O,.=p, +2a
Equating the two values of o, given by equations (;i) and (iv), we get

P¥2 =-p _x %

dx
Py =9y
x, dx P P—2a=-2p - 2q
dp, 20, 20 -2p, +a)
& x  x ok
dp, __ 2dx
(p,+a)  x

Integrating the é.bove equation, we get
log, (p, + a) =~2log, x +log, &

The above equation can also be written as

log, . +a)=- log, x* + log, b

Substituting the values of P, in equation (iv), we get

+2 b +a
G = — a =

1 x2 x2
These equations are called Lame’s Equations,

Boundary conditions are:

Watx=r, P, =Py or the pressure of fluid inside the cylinder, and
atx=ryp =0or atmosphere pressure. - .

After knowing the values of ‘a’ and ‘P, the hoop stress can be calculated at any radius,

DEPARTMENT OF MECHANICAL ENGINEERIN G
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2. Find the thickness of a metal hecessary for a cylindrical shell of internal diameter 160 mm to

withstand an internal pressure of 8 N/ mm? The mammum hoop stress in the seetion is to exceed

35N /mm? ?
Ans;

Internal dia. = 160 mm

Internal radius, ro= ]lgwg =80 mm
Internal pressure = 8 N/mm?
This means at + = 50 mm, p, =8 Nmm?
Maximum hoop stress, o, = 35 N/mm?

b .
e —mm- = f v i)

Pe= 3 (
o = % + 0 : : @iy

x ’

Bubstituting x = 80 mm and P, =8 N/mm? in equation (£), we get

L R
T 80% 6400
 Bubstituting x = 80 mm and g, = 35 N/mm? in equation (i), we get
b \
35”87‘?4-“ 6400 ...(ip)

Bubtracting equation (i) from equation (iv), we get

27 =% or = %z =135

Bubstituting the value of g in equation (iii), we get

b
= oan - 13
6400 195

b =(8 + 13.5) x 6400 = 21. 5x640¢3
Bubstituting the values of ‘g’ and ‘b’ in equation (Z), i

_2LBx6100 .
x

Wb

e =

But at the outer surface, the pressure is zero, Hence at x = Ty, = 0. Substituting these
in the sbove equation, we get

0= _2”};.‘13(26400.,, 13.5
a
21.5 x 6400 21.5 % 8400
g 273 X 40U = o = 100.96
T2 135 TN \/ 135 096 mm

Thickness of the shell, ¢ = Fg—r,

-

DEPARTMENT OF MECHANICAL ENGINEERIN G
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3. Determine the hoop stresses in a thick compound cylinder?
Ans;

Let r,=Outer radius of compound evlinder A
7y = Inner radius of compound eyvlinder _
¥ = Radius at the junction of the two cylinders

p* = Radial pressure at the junction of the two
cylinders.

(D) For outer cylinder
The Lame's equations at a radius ¥ for outer eylinder are given by

px = :1_7‘“ —_ al "_,{'i} Crx = "—2' - {Ii . (ii)
wherea,, b, are constants for outer cylinder.
Atx = T3 2. = 0. And at x = r¥p, = p*
Substituting these conditions in equation (i Lweget
by - b : -
0=-%-a S gL . (V)
7 : i
From equations (i{} and {iv), the constants @; and b, can be determined. These valuesy
substituted in equation {7£). And then hoop stresses in the outer eylinder due 1o shrinking can
obtained, ‘
{it) For inner cylinder
The Lame's equations for inner eylindey at a radius x ave given by
b
= 2 = 2.
-p.‘t’ - x2 ﬂ?: G'\- - xg 1 a'.‘)
where ay, b, are censtants for jnner cylinder,
Atx=r.p. =0 as fluid under pressure is not admitted into the inner cylinder. A
&t.z‘-:rﬁ“,pr:p*, )
Substituting these values in the abhove valye of p . we got

{ i bé'ﬂ Ty
= —%-&2 S 4TY) .angd b= 5% —q, - (VD)
BT Co pEe
8 : . C B
B, = ;ﬁ' - A «fpii) and g, = "'x"‘? + A AU

! 4. A compound cylinder is made by shrinking a cylinder of external diameter 300mm and internal
| diameter of 250mm over another cylinder of external diameter 250mm and internal diameter

200mm. the radial pressure at the junction after shrinking is 8 N/ mm?2, Find the final stresses set up

DEPARTMENT OF MECHANICAL ENGINEERING
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For outer eylinder -
External diameter = 300 mm
External radius,

Ty = —E—w = 1560 mm
Internal diameter = 260 mm
Radius at the Junction,
r¥ = J—Z?- =125 mn.
For inner eylinder
Internal diameter = 200 mm
Internal radius

200 '
ro= 5= 100 mm

Radial pressure due o shrinki
P¥ = 8 N/mm?

+
aw

ng at the junction,

Fluid pressure in the compound cylinder,
g A
p =845 N/mm*® : | »
{{) Stresses due to shrinking in the outer and inner cylinders before the fluid pressu
 admitted. ' .
{a; Lame's equations for outer cylinders are:

' - b
5 S ¢ - o,= —t+d
Px“x_';“ﬂl 63 and =t
At X =150 mm, p, = 0.
Substituting these values in equation ({),
b
.
150 22500 N .
At x = r* = 125 mm, p, = p* = § Nimm=~.
Substituting these values in equation (i}, we get
se b g g

1252 7 15625

» " ¥ i . : > PN Y ’t
Subtracting equation (iif) from equation (iv}, we ge
) b, b (— 15625 + 22500) by

[T —

29500 15625 22500 x 15625
8 % 22500 x 15625
= - — e = 406080.9
'7 (- 15626 + 22500) :
Substituting the value of b, In equiation (/ii), we get
) : 409090.9 409090.9

_ = — = 15 18
22500 ' O 17 92600

=

DEPARTMENT OF MECHANICAL ENGINEERING
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Substituting the values of g, and &, in equation {1}, we get

4090909
o= -

The above equation gives the hoop stress in the m{ter {{}:Iingfr_dzs Eoziiﬁ:gxgrz}?:tg
stress at the outer and inner surface of the auter.‘c_ylmdm ig pbtained by
mm and x = 125 mm respectively in the above equation.
: 409090.9
%= " I5g

and G = ﬁﬁ?ﬁgf_ + 18.18 = 44.36 N/mm? (tensile).
1257 195

{b) Lame's equations for the inner cylinder are:

MECHANICS OF SOLIODS

+ 1818

+ 18.18 = 36.36 N/inm? (tensila)

b
b.z AN G -3 _,_,?;,',,,_ + &2 o!v{d’
po= 5" & At} and x5 2 -

‘ i 1 - re.)
; Aty =r; =100 mm, p_= 0 {There xisc no fluid gndm* pressure.)
Substituting these values in eguution (v}, we get

0= e on iy = ...._b2m =iy ‘ «n{\m“
T100° ¢ 10000 o
hstititi se values in equation (v), we ge
Atx=r*=120mm,p =p*=8 N/fmm?. Substituting these value ]

b

— ‘-'m._
=

: 4 il
125 %25 15635 ¢

Subtracting equation (vii) from equation (viii), we get
E 15625 16000
: _ by (10000 — 15625) _ —5625 by
T 15625x 10000 15625 x 10000
' 8 x 15625 x 10000
e b2 = -

5625 =-222222 2

8ubstituting the valye of b, in equation (vii), we get

_ 2222223
T 10000

, 222929 9

i e gy L
125 1257 2222
j =-14.22-2222=_3644 N/mm? (compressive)

o 222222 2
3 T ,

- . TT2222-2292 - - 44,44 Ninm? (compressive)
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NARA?ARAOPETA ENGINEERING COLLEGE (AU TQNQMQU%) MECHANICS OF SOLIODS
; (i) Stresses due to fluid pressure alone e ¥ |

! When the fluid under pressuré i8 admitted ins; ‘

i ; : _ de the compound linder, th '

‘Sogether will be og - . 1nsy p Cylinder, the two cylinders

which are nsidered as one single unit, The hoop stresses are calculateq by Lame's equations,

B
: p.= ;‘{"A +{ix)  and o-xz-%+A )
Mhore A and B are constants, * | .

r Atx =100 mm, p, =p =84.5 N/mm?2, Substituting the values in equation (ix), we get

B B
845=—F-A=_2
A 100% 10000 4 i)
tx =150 mm, P, = 0. Substituting thege values in equation (ix), we get
B
0= -A=_°___
S . ~ 150* 22500~ 4 eolii)
ubtracting equation (xif) from equation (xi), we get
: B B
: B4.5 = -
; 10000 22500
- Bl32500-10000) | 125005 |
10000 x 22500 = 10000 x 22500
B 84.5 x 10000 x 22500 -
Substituting this value in equation (xii), we get
! 1521000 1521000
0="Z500 4 ©r 4= "oo500 =676
Substituting the values of A and B in equation {(x), we get
i
5, = 221000, 6o
] x
Hence the hoop stresses due to internal fluid pressure alone are given hy,
! Cipg = —1—%%9 +67.6 = 219.7 N/mm? (tensile)
C95 = lSE-I—OZO—O +67.6 =97.344 +67.6
7 125° , -
= 164.94 N/mm?
52 ' o
O 50 = 1_1516%92 +67.6 = 67.6 + 67.6 = 135.2 N/mm?.

The resultant stresses will be the algebraic sum of the initial stresses due to shrinking and
those due to internal fluid pressure.

Inner cylinder
F\p0 = 6,9 due to shrinkage + ¢, due to internal fluid pressure
=—44.44 + 219.7 = 175.26 N/mm? (tensile).
Fig5 = 0,95 due to shrinkage + 6, due to internal fluid pressure
| = - 36.44 + 164.94 = 128.5 N/mm? (tensile).
Quter cylinder

F\p5 = 6,55 due to shrinkage + T,,; due to internal fluid pressure
= 44.36 + 164.94 = 209.3 N/mm? (tensile). :n
i F| .o = 0,5, due to shrinkage + T,50 due to internal fluid pressure
| =36.36 + 135.2 = 171.56 N/mm? (tensile).
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TORSION OF CIRCULAR SHAFTS

@'Hake a Meat %kefch a C:.‘jrc::_}qrx g}mfr surb'e:(['ed to &
—-fmisb"mg whomémt- Shoto Cfeq‘?alg e \plmaf:om \of
Sheaar AMgle, fmjk-' Of —fwigk amnd shears S’{megs 17)
S‘met . Deatue The Formslom Jfom'ml;{o«- rbhat

o8SumptionNs ane —rqb«:m 'R :}e defxfu:‘-aqs srmola fonr
a  (ircolon Shaff?

Q'HS: “DERIVATTON OF ToreroN EQuarronl;
R ad Q-J‘VAM'M [N e Ry P T,

o
(omaiden  a Ql’)aft »]G-nad at  Ome _'8,»,,_1 9:) c:::
frree @ B I8 gub)'acted 4o torgue (s
ree i

' t *ﬁvt Outy]
N ow d}gi'ol”rffom e
f~b»,e e 28
Qu@face nNe 'fa'a‘.?{ _.;'% = _%g_’ - pp! 0

prr———

L

Ond  Shear . Smain . D0\ = RO ——(3)



gﬁ"o'm@{",@
f-2 —o

7\[003 Shean Gmodolus 08 npdolve of fb"f?r'.dh{rf/

Pigrdi ofl‘?nlodub_,g o
’ £7 S S’fzea:fs'/m_gi

:' —

Shean gf,m;m

-

P
7
Qo
o

T.o —®

L
Comstagnt ohte € and ~ Qe Com}q—mk

=)
(_Eft?r?g

j;!e"ﬂ . ’ .
., 'T/ R = (ome Fant



Cﬂ"b'm.’}”ﬂ G’%un{v'em alike @

e Shean Q%rn:_gg m maxfuen o Outey Suvyﬁmre
@und ,‘29 eio ot "Lhe Cem@] *‘i’f"ﬂ?" Smf'{“

( awis ﬂf The leffj
(oms? dog O *?-/f'mwéo.f Gr;rc/g, ng 0

@9’) ot r.‘}. de)—a'nte (ﬂ’ -)LFD

“]% ielemesg
e (en h)-,

qrreq of )'ﬂf'.he "”j = da = ‘Lﬂ@‘_)o’_‘h

lumfrnj fﬂ“ie om 'l‘% (3’

5 dF =gk dn =_(._ )xd%

lu*mm"?j Mmoment O ’t’h g)mj

dr = dF x4

= lorrctue =

= dr - ["r/ex%'i’)dﬁ |



f-l_otof —’[l:-wmfmj Qmo'memhm o Qt@} %“ﬁu&

th’ T= Torrzue/ ’Fumfmj amoment } Tw.‘s{—t‘fnj fmbmmt/
" Toashomal Qﬁgfgtﬁ'ﬂ’}(t of ogrnent + (M=) .
T = UM@ rnomment E’f bnterria.
J= U'-‘“dﬁ{"nq‘-i)

~ . SE\CCL'{] Stmecs ar Tf Outer Smfa(c (N/'”‘)

)

@; qu}us af 't‘}-,e Q}vo_frt
9}’78&3? ‘?’VIOdULUS} "modulus Df Q)\?!dl-/y/
Qﬁaid?’j medulus (N/.mm)

0 = qmﬁle Df %JNF / Fusisfing amgle [ Degarec]

C':

L b | J\gmjf-h ¢})D ’tb.r' Sha Tt



Torsional Shear StressWhen a machine member

couples acting in parallel planes(or torque

be subjected to torsion. The stress set up by torsio
centroidalaxis and maximum at the outer surfac
atorque (T) at the other end as shown in Fig. 5.

shaft is subjectedto torsional shear siress.

zero at the centroidal axis and maximum at the outer surface. The
at the outer surface of the shaft may be obtained from the followingguation:

is subjected to the actionof two equal and opposite
or twisting moment), then the machine members said to
nis known asttorsional shear stress, It is zero at the
e.Consider a shaft fixed at one end and subjected to
1. As a resuliof this torque, every cross-section of the
We have discussed above that thetorsional shear stress is

maximum torsional shear stress

tT.co 0
r J 1 4
where T = Torsional shear stress induced at the outer surface of the shaft or maximum
shear stress,

# = Radius of the shaft,

T = Torque or twisting moment,

J = Second moment of area of the section about i

inertia,

ts polar axis or polar moment of

C = Modulus of rigidity for the shaft material,
! = Length of the shaft, and
8 = Angle of twist in radians on a fength/.

%
7
¥
i d
P
Z

Fig. 5.1.

The equation {7) is known as forsion equation.

Torsional shear stress,

It is based on the following assumptions:

1. The material of the shaft is uniform throughout.
2. The twist along the length of the shaft is uniform.

3. The normal cross-sections of the shaft, whic

plane and circular after twist,

4. All diameters of the normal cross-section w
with their magnitude unchanged, afier twist

5. The maximum shear stress induced in the sh

its efastic limit value,
Notes : L. Since the torsional shear stress on any
distance from the centre of the axis; therefore the
is given by X
x r
2. From equation (§), we know that
VAR »

—=_ or T=1x_,

Joor

h were plane and circular before twist, remain

hich were straight before twist, remain straight

aft due to the twisting moment does not exceed

cross-section normal to the axis is directly proportional 1o the
torsional shear stress.al a distancre from the centrc of the shaft

J

¥

For a solid shaft of diameter {d), the polar mmoment of inertia,

RS

T= 1x Txdtx 2

32

L odte = xdi=T g4
64

64 32

n
= _ xtxd?

d 16



In case of a hollow shaft with external diameter { d,) and internal diameter ( d,). the polar moment of

inertia,
J=E (@)@ andr= %
32 o i 2 [d y 4]
= Tx£ 4 4 2 T L(du) _(dr) I
L ) @) )x e, R 2\
é ]_6 XT(dD)3 (I—kq) SubStltthlng, k=

| -
3. The expression (€ » J) is called forsional rigidity of the shaft,

4. Thestrength of the shaft means the maximum torque transmitted by it. Therefore, in order to design a
shaft for strength, the above cquations are used. The power transmitted by the shaft (in watis) is piven by
2 N.T

P = =T.0 [Q o= 2—,}‘0]1\1
60 J

Example 1 A steel shaft 35 mm in diameter and 1.2 m long held rigidly at one end has a
hand wheel 500 mm in dicmeter keved (o the other end. The modulus of rigidity of steel is 80 GPa.

1. What load applied 1o tangent to the rim of the wheel produce a torsional sheay of 60 MPa?

2. How many degrees will the wheel turn when this load is applied?

Sotution. Given : d=35mmor r =175 mm ;/=12m=1200mm ; D =500 mm or
R=250mm ; C'= 80 GPa = 80 kN/mm? = 80 = 10° N/mm? ; T= 60 MPa = 60 N/mm?
1. Loud applicd to the tangent to the rim of the wheel

Let W = Load applied (in newton) to tangent to the rim of the wheel,

We know that torque applied to the hand wheel,

. T= W.R=Wx250=250 WN-tm

and polar moment of inertia of the shaft,

= T - .
J="" xd*="" (35=147.34 x 10°* mm*

32 32

We know that Z _t

Joor

60 x 14734 x 108
2508 _ 60 or W= = 2020 N
14734 x 10° 175 17.5 % 250
I_cC8 Ans.
J
2. Namber of degrees which the wheel will turn wh ent load W= 2020 N is applied

Let 6 = Required number of degrees.

We know that p- T _ 250x2020x1200 _

C.J B0x10°x147.34 x 10

Example 2. 4 hollow shaft is required to transmit 600 lgW at 110 r.p.m., the maximum torque
being 20% greaier than the mean. The shear stress is nol'io axieed 63 MPa and twist in a length of
3 metres noi to exceed 1.4 degrees. Find the external diameter of the shafl, if the internal diameter to
the external diameter is 3/8. Take modulus of rigidity as 84 GPa.

Solution. Given : P=600kW =600 x 10° W: N=110 rpm. ;7 =127 0 T=63 MPa
=63 N/'mm?; { = 3 m = 3000 mm ;0=14x% 7/180 =0.024 rad sk=d/d,=3/8;C=84GPa
=84 x 10° N/m? = 84 x 10° N/'mm?

Let T pean = Mean torque transmitted by the shaft,
d, = External diameter of the shaft, and

d Internal diameter of the shaft.

Q

i



We know that power transmitted by the shaft (P),

600 x 10° = 2'1'EN.Tmeaﬂ _ 2ax 110 x Tmeaﬂ =1152TF

60 60 pean

i Tivean = 600 x 10%11.52 =52 x |(* N-m = 52 x 10% N-mm

and maximum torque transmitted by the shaft,
Toiae ™ 12T, = 1252 % 108 = 62.4 x 105 N-mm

Now let s find the diamster of the shaft considering strength and stiffness.
1. Considering sirength of the shaft

We know that maximum torque transmitted by the shaft,

T =R xr@ya-m T
ey ) 16 0 I—

1 . 3yl ,
624 %10° = | x63x(d,) le _(3) J] =12.12 (d,)

o (d,) =624 x10%12.12=5.15 x 105 or d,=172.7 mm )
2. Considering stiffness of the shaft

We know that polar moment of inertia of a hollow circular section,

TP R S I wﬂ'
J = d,) —(d) |'= _ (@d)ikl—] —
%_3 (0) (1)_] 1%2(0)|_h g 4}][[_]
4 4 4 4
We also know that = -k )= " (d, 1—[ = 0.0962 (d,
e also know tha 32(do)( ) 32(),_ 5 J (do}
T b
J !
G 3 G
62.4 % 10 _ 84 x 10*x 0.024 or 648.6 x 10 - 0672
0.0962 (d, )* 3000 (d,)*
o (d,)' = 648.6 x 105/0.672 = 964 x 10° of ¢ =176.2mm .{i)
Taking larger of the two values, we shall provide = *-

d,= 176.2 say 1806 mm Ans.
5.3 Shafts in Series and Parallel

When two shafts of dif ferent diameters are connected together to form one shaft, it is then
known as composite shaft. If the driving torque is applied at one end and the resisting torque at the
other end, then the shafts are said to be connected in series as shown in Fig. 5.2 ( @). In such cases,
each shaft transmits the same torque and the total angle of twist is equal to the sum of the angle of
twists of the two shafts.

Mathematically, total angle of twist,

06, +0, 4 ,Lh
IR e WA

If the shafts are made of the same material, then C; = G =C
6= T T.h T\ b
ml_ + mi = GII— oI + JZ'-’
L |
- —
7
T T
7 (L) WL
) S — A

{7 Bhatts in series, {/) Shafts in parallel,



When the driving torque (7) is applied at the junction of the two shafts, and the resisting torques
d T, at the other ends of the shafts, then the shafts are said to be connected in parallel, as shown
in Fig. 5.2 ($). In such cases, the angle of twist is same for both the shafts,i.e.

T, an

6, =10,
T
or Lo _ Db o 2 4 « &1 N
and r=r+ 7,
If the shafts are made of the same material, thenC, = Cs.
L _ b 4
L L4

Example 3. A steel shafi ABCD having a total length of 3.5 m consists of three lengths
having different sections as Jollows: I

AB is hollow having outside and inside diameters of 100 mm and 62.5 mm respectively, and BC
and CD are solid. BC has a diameter of 100 mm and CD has a diameter of 87.5 mm. If the angle of
twist is the same for each section, determine the length of each section. Find the value of the applied

forque and the total angle of twist, if the maximum shear stress in the hollow portion is 47.5 MPa and
shear modulus, C = 82.5 GPa.

Solution. Given: L =3.5m ; d, =100 mm ; d,=62.5mm ; d, = 100 mm ; d, =875 mm ;
T=47.5MPa=47.5 Nfimm?; C=82.5 GPa=82.5 x 10° N/mm?
The shaft ABCD is shown in Fig, 5.3.

A o R & n

—

Hoh nu{:g'jj;f]é—” ffff W" ” W”" _'“ ““ “ _I“‘ TG mm — e = f““ - \7; IE 1) R “' -
= !' ..... . =§_T ......... _L_!: ....... _ k, - . f
JEm =l
Fig, 8.3
Length of each section
Let 1, byand I; = Length of sections AB, BC and CD respectively.

We know that polar moment of inertia of the hollow shaft48,

T ;

J = = [(dY—())=" [(100)* — (62.5)*] = 8.32 = 105 mm*
T 32 o i

Polar moment of inertia of the solid shaft BC,

i3
J=" (@y=" 100y =082 x 10¢ mm*
32 'm 32
and polar moment of inertia of the solid shaft ,
J= (dy-= (87.5)*=5.75 x 10 mm*
3 3 3Z
We also know that angle of twist,
6=T.//C.J
Assuming the torque T and shear modulus ¢ to
be same for all the sections, we have Angle of twist for holiow shaft 4B,
0, =T.1/C.J
Similarly, angle of twist for solid shaft BC,
- 6 =T.L/C. ),
and angle of twist for sofid shaft CD,
8,=T7.0L/C.J, :
Since the angle of twist is same for each sectiont,herefore
6, =8,

L



r

-
Y= " (875 =575 x 10°mm?
We also know that angle of twist,

e=T.1/C.J
Assuming the torque 7" and shear modulus ¢ to be same for all the sections, we have
Angle of twist for hollow shaft 48, '

0, =T.0,/C.J
Similarly, angle of twist for sohd shaft BC,
0,=T.L/C.4
and angle of twist for solid shaft CD, Machine part of a jet engine.
B, =7.4L/C. A
Since the angle of twist i 1s same for each sectiont,herefore
8,=6,
I.h T4 L 832x10° _
C.J C Iy or 5 L 982x10¢ 0847 ~B
Also é = b
% A 1T _J _832x10°
cs "TE L B sae )

WeknowthmHHl -1z 7 3.5~ 3500 mm
( 1[[£1+ + ]Jg=3500

LU+ 3500
2 0.847 1447’{

f, % 2.8717 = 3500 or! =3500/28717=1218.8 mm Ans.
From equation (),
£L,=1,/0847=1218.8/0.847 = 1439 mm Ans,
and from equation {77, L=10/1447=12188/1.447-8422 mm Ans.
Value of the applied torque
We know that the maximum shear stress in the hollow portion,

T = 47.5 MPa = 47.5 N/mm?
For a hollow shaft, the applicd torque,

7= . f(d e G 1| f(100)4- (62.5)4]
16 _ 6 47.5 \_——1—90—_
L o ]
= 7.9 x [0° N-mm = 7900 N-m Ans.
Totad angle of twist

When the shafls are connected in series, the total angle of twist is equal to the sum of angle of
twists of the individual shafts. Mathematically, the total angle of twist,

0=0,+6,+0,
T.IE . T..lz +T:£33 =£1[£ir+3r+:§]
7910 12188 1439 8422 ]
= 82516t 832105 T 0825305 595 qps
_ 7.9><1d6 :

. [146.5+ 146.5 + 146.5] = 0.042 rad
82.5x10°x 10

0.042 x 180 / = = 2.406° Ans.
5.4 Bending Stress in Straight Beams - '

1



A sdeed shatt and ws aluminim tube wre gonnected to 3 fised support and ko a rigd
disk as shown in the cross seetion. Knowing that the inftial stresses are 0,
detwrmine the maximum targque Ty which may be applied to the disk i the allows
able stresses are 120 MPy in the steel shalt and 70 MPa in the aluminurg tube.
Use = S0 GPa Foy steel and € = 27 Py for. z%fﬂmi;iiim
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T = 09057, @

Shusering Stresses,  We shall gaswme thit the requircinent Tl = 30 MPa s
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_ Tamed i (70 MPai2 003 x 07"
e "y i i1,

m

Using Eq. {23 we compnle the corresponding vifue T, and then ind the mag
s shearing shress i the stes] shuft, ES |

D4« 108 4yt
We note that the allowalde stec] stress of 120 M Py i exceeded: vur assumption
wiv wronz. Thus the masinemm torqne T, will be obtained by makisy

oot = 1200 MPa. We first detormine the targue Ty,

poe Taeeide 120 MPLEM % 1078 it
e (0.025 15 -
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BOTH ENDS ARE HINGED OR PINNED ONE END FIXED & OTHER END FREE
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16.4 Euler's Column Theory

Y

i

LA

L

The first rational attempt, to study the stability of long columns, was made by Mr . Euler.

The columns which have lengths Iess than 8 times their diamete,rare called short columuns {sce alsoArt 16.8).
The columns which have lengths more than 30 times their diameter are called long columns,

16.5 Assumptions in Euler’s Column Theory

The following simplifying assumptions are made in Euler:s column theory :
L

. The cross-section of the column is uniform throughout its length.

Initially the column is perfectly straight, and the lgad'a]iplied is truly axial.,

The column material is perfectly elastic, homogeneous and isotropic, and thus obeys Hooks®
law,

The length of column is very large as compared to its cross-sectional dimensions.
The shortening of column, due to direct compression (being very small) is neglected.
The fajlure of column occurs due to buckling alone.

The weight of the column itseif is neglected,

4 16.6 Euler's Formula

According to Euler’s theory, the crippling or buckling load ( W..) under various end conditions

j is represented by a general equation,

; where

16.5 Assumptions in Eufer's Column Theory
16.6 Euler's Formula

_ .
W =CnE] CmEAER -

oF

—— > o (QI=AR)
CnE A
T kY
£ = Modulys of elasticity orYoung’s modulus for the material of the column,
A = Area of cross-section,
k = Least radius of gyration of the cross-section,
! = Length of the column, and

C = Constant, representing the end conditions of the column or end fixity
coefficient.

i The following table shows the values of end fixity coefficient (C' ) for various end conditions,

Table 16.1. Values of end fixity coefficient (C ).

_ 5. No. End conditions End fixity coefficient (C)
' 1. Both ends hinged - !

2. Both ends fixed ' 4

3 One end fixed and other hinged

i 4, One end fixed and other end free 0.25

16.7 Slenderness Ratio

In Euler's formula. the ratio] / Fis known as sfenderness ratie. It muay be defined as the ratio of
the effective length of the column to the least radins of gvration of the section.



16.8 Limitations of Euler's Formula
We have discussed in Ant. 16.6 that the general equation for the crippling load is

2
o CEEA
~. Crppling stregs,
W, CrE

o = T TRy
Sometimes, the columns whose slenderness ratio is more than 80, are known asforyg columns,

and those whose slenderness ratio is fess than 80 are known asshort columns. It is thus obvious that
the Euler’s formula holds good only for long columns.

16.9 Equivalent Length of a Column

16.10 Rankine’s Formula for Columns

Wehave already discussed that Euler’s formula

gives correct results only for very long columns.
Though this formula is applicable for columns, ranging from very long to short ones, yet it does not
give reliable results. Prof. Rarkine, after a nu

mber of experiments, gave the following empirical

formula for columns. 1 1 1
7w - D
where W, = Crippling oad by Rankine’s formula,
W = Ultimate crushing load for the column = o, %4,
k7
We = Crippling load, obtained by Euler’s formula = Iz

A little consideration will show, that the valye of W, will remain constant irrespective of the
fact whether the column is a long one or short one. Moreove,rin the case of short columns, the value
of Wy will be very high, therefore the value of 1/ Wy, will be quite negligible as compared to 1/ We.
It is thus obvious, that the Rankine’ s formula will give the value of its crippling load ( i.e. W)
approximately equal to the ultimate crushing load i(.e. W), In case of long columns, the value of Wy
will be very small, therefore the value of | / Wy, will be quite considerable as compared to 1 / We lt
is thus obvious, that the Rankine® s formula will give the vAlue of its crippling load (  i.e. w.)
approximately equal to the crippling load by Euler’s formula (i.e. W, ). Thus, we sée that Rankine's
formula gives a fairly correct résult for all cases of columns;, ranging from short to long columns.

From equation (), we know that

W
LV, _ Wi

We Wo Wy Wexhg
WCXWE— WC

" WerWy 14 7C
We
Now substituting the value of W and Wy in the above equation, we have
o:x A _ 0: X A Q=g
W, = Gex AXLE = G AL Q )
1+ -
nEJ 1+ %
. mE AR
aex A
TTE a T 1+aqlL :
x 3
where 0, = Crushing stress or yield stregs ir compression,
A = Cross-sectional area of the column,
: .y )

a = Rankine’s constant = ——,
Tk



16.12 Long Columns Subjected to Eccentric Loading

In the previous articles, we have discussed the ef fect of loading on long columns. We have
always referred the cases when the load acts axially on the column (i.e. the line of action of the Toad
coincides with the axis of the column). But in actual practice it is not always possible to have an axial

load on the column, and eccentric loading takes place. Here we shall discuss the effect of eccentric
ioading on the Rankine’s and Euler’s formula for long columns,

Consider a long column hin

ged at both ends and subjected to an eccentric load as shown in
Fig. 16.5.

s i

We have already discussed that when a column is subjected to an eccentric load, the maximum
intensity of compressive -sltresssz giﬁn by the refation - *-

o =+
ma g4 7

The maximum bending moment for a column hinged at both ends and with eccentric loading is

given by
I W ! 3
M= We sec - —_ W A(QI=A42
557 W.e.secZk JEA «Q )
w  W.esec i _HL
g = + 2k EA
e A Z
! w
W.ey,. . sec — |-—
T Zk\hE"" (Q7=1Iiy. = 4y
A AR TR A

:Wr ey, ! 1
e ey

eV gap L \/—Wi;l

. = _;LI“';C?
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NARASARAOPET ENGINEERING COLLEGE (AUTONOMOUS):

NARASARAOPET

DEPARTMENT OF MECHANICAL ENGINEERING

II BTECHI - SEMESTER ASSIGNMENT TEST - I, November — 2022

SUBJECT: MECHANICS OF SOLIDS

DATE: 11-11-2022

DURATION: 30 MIN

MAX MARKS: 10

No : Questions

Course
Outco
me
(CO)

Knowledge
Level as Per
Bloom's
Taxonomy

Marks

1.A tensilc test was conducted on a mild steel bar. The following data
was obtained from the test: |
(1) Diameter of the steel bar= 3em

{ii) Gauge length of the bar= 20cm

(iif) Load at elastic limit= 250kN

(iv) Extension at a load of 150 kN= 0.2 lmm

1 | (v} Maximum load= 380kN

(vi) Total extension= 60mm

(vii) Diameter of the rod at the failure

Determine: (a) the Young's modulus,= 2.25¢m

(b) the stress at elastic limit,

{c) the percenlage elongation, and

(d) the percentage decrease in area.

col

Analyzing (K4)

An axial pull of 35000 N is acting on a bar consisting of three lengths
asshown in Fig. 1.6 (b) Ifthe’ Young s modutus=2.1x 10"5 N/’mm2
determine : . '

(i} stresses in each section and

(i1) total extension of the bar.

Beefion 3

. Setion 3
.. ogclion 1 ? T
35000 N L 45000
4———@1)!;1 3 en Dea Som CiA [—p N
—L 3

AN

M= 21 gm bl 28 g2 i 22 o -

5

€Ol

Analyzing (K4)

A member formed by connecting a steel bar to an alumintum bar is
shown in Fig. 1.7. Assuming thal thc bars are prevented from
buckiing sideways, calculate the magnitude of force P that will cause
the total length of the member to deerease 0.25 mm. The values of
elastic modulus for steel and aluminium arc 2.1 x 10"5 H/mim2 and

7 x 1074 N/mm?2 reqpectlvelv

Col

Analyzing (K4)
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The bar shown in Fig. 1.8 is subjected to a tensile load of 160 kN. If
the stress in the middle portion is limited to 150 N/mun?2, determine
the diameter of the middle portion. Find also the length of the middie
portion if the total elongation of the bar is to be 0.2 mm. Young's

modulus is given as equal 16 2.1 x 1073 N/mm?3.

-CO1l

Evaluating (K5)

A stecl rod of 3 em diameter is enclosed centrally in a hollow copper
tube of external diameter 5 cm and internal diameter of 4 ¢m, The
composite bar is then subjected to an axial pull of 43000 N. If the
length of each bar is equal to 15 em, determine :

(1) The stresses in the rod and {ube, and

(ii} Looad carried by each bar.

Take E for steel = 2.1 x 10°S N/mm2 and for coppef 118 1075

N/mm?2,

COot

Evaluating (K3)

A compound tube consists of a steel tube 140 mm internal dimetet-
and 160 mm external diameter and an outer brass tube 160 mm
internal diameter and 180 mm external diameter. The two tubes are
of the same length. The compound tube carries an axial load of 900
kN. Find the stresses and the load carried by each tube and the
amourt it shortens. Length of each tube is 140 mm. Take E for steel

as 2 x 1075 N/mm?2 and lor brass as 1 x 1075 N/mm?2.

cOo1

Evaluating (K.5)

Two vertical rods one of steel and the other of copper arc each rigidly
fixed at the top and 50 cm apart. Diameters and lengths of each rod
are 2 cm and 4 m respectively. A cross bar fixed to the rods at the
lower ends carries a load of 5000 N such that the cross bar remains
horizontal even after loading. Find the stress in each rod pnd the
position of the load on'the ba.r. Take E for steel =2 x 10"5: N/rnmz
and E for copper = 1 x 105 N/mm2. =

CO1

Evaluating (K35)
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II B.TECHI- SEMESTER ASSIGNMENT TEST - II, December — 2022

SUBJECT: MECHANICS OF SOLIDS

DATE:03-12-2022

DURATION: 30 MIN

MAX MARKS: 10

Questions

Course
QOutco
me
(CO)

Knowledge
Level as Per
Bloom's
Taxonomy

Marks

A cantilever of length 2 metre fails when a load of 2 kN is applted at
the free cnd. If the sectjon of the beam is 40 mm x 60 mm, F nd the

stress at the failure.?

cOo3

Analyzing {(K4) 5

A rectangular beam 200 mm deep and 300 mm wide is simply
supported over a span of 8§ m. What uniformly distributed load per
metre the beam may carry, if the bending stress is not to exceed 120
N/mm?2.?

-CO3

Analyzing (K4) 5.

A rectangular beam 300 mm deep is simply supported over a span of
4 metres. Determine the uniformly distributed load per metre which
the bcam may carry if the bending stress should not exceed

120 N/mm?. Take I = § x 10"6mm™4 .7

CO3

Analyzing (K4) 5

A square beam 20 mm x 20 mm in section and 2 m long is supported
at the ends. The beam fails when a point load of 400 N fs ap’_p_lied at
the centre of the beam.‘)What,unitbrm]y distributed load per metre

length will break a cantilever of the same material 40 mm wide, 60

mm deep and 3 m long?

COo3

il

Evaluating (K5) 5

A beam is simply supported and carries a uniformly distributed load
of 40 kN/m run over the whole span. The section of the beam is
rectangutar having depth a 500 mm. If the maximuin stress in the

material of the beam is 120 N/mm? and moement of inertia of the

section is 7 x 108 mm, find the span of the beam.?

COo3

Evaluating (K3)

A timber beam of rectangular section of length & m is simply
supported. The beam carries a U.D.L. of 12 kN/m run over the entire
length and a point foad of 10 kN at 3 metre from the left support. If
the depth is two times the w1d1h and the stress in the timber § 53 not to
exceed 8 N/mm2, find the swtabie

dimensions of the seclion.?

Co3

Evaluating (K5)
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NARASARAOPET ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET

DEPARTMENT OF MECHANICAL ENGINEERING

IIB.TECH I-SEMESTER MID EXAMINATION-II DECEMBER-2022

SUBJECT: MECHANICS OF SOLIDS

DATE: 23/12/2022

DURATION: 90 MIN

MAX MARKS:25

Questions

Course
Outcome
(CO)

Knowledge Level
as Per Bloom’s
Taxonomy

Marks

A beam of an I-section shown in Fig. is simply supported
over a span of 4 m. Find the uniformly distributed load the

beam can carry if the bendmg stress is not to exceed 100
N/mm2 . ¥

Co3

Analyzing (K4)

10

A compound cylinder is made by shrinking a cylinder of
external diameter 300mm and internal diameter of 250mm
over another cylinder of external diameter 250mm and
internal diameter 200mm. the radial pressure at the Junctlon
after shrinking is 8 N/mm2 Find the final stressesset’up
across the section, when the compound cylinder is subjected

to an internal fluid pressure of 84.5 N/ mm2?

CO4

Applying (K3)

10

| moment? Derive the torsion formula? What assumptions are

Make a neat sketch of a circular shaft subjected to a twisting

taken while deriving formula for a circular shaft?

CO6

Analyzing (K4)

05







NARASARAOPET ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET

DEPARTMENT OF MECHANICAL ENGINEERING

11 B.TECH I-SEMESTER MID EXAMINATION-I, November -2022

SUBJECT: MECHANICS OF SOLIDS DATE: 11-11-2022
DURATION: 90 MIN MAX MARKS:25
SECTION: A . o
Course | Knowledge Level
1?(') Questions Outcome | as Per Bloom’s | Marks
(CO) - Taxonomy ’
Two vertical rods one of steel and the other of copper are each
rigidly fixed at the top and 50 cm apart. Diameters and lengths
of each rod are 2 cm and 4 m respectively. A cross bar fixed
to the rods at the lower ends carries a load of 5000 N such that
the cross bar remains horizontal even after loading. Find the
stress in each rod and the position of the load on the bar. Take
E for steel =2 x 10"5 N/mm2 and E for copper = 1 x 1{"5
1. - .
N/mm?2. ! Analyzing
Cco1 (K4) 10
A beam AB, 10m long has supports at its ends A and B. It
carries a point load of 5KN at 3m from A and a point load of
) SKN at 7m from A and a ugifonnly distributed load of |KN/m 02 Evaluating 10
" | between the two point loads. Draw SF and BM Diagrams for (K3)
the beam?
| Derive the Bending momentum equation with neat sketch _ i
3. and write the assumptions made? co2 Ap(p 11331;1 & 05
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IMPORTANT QUESTIONS

S KNOWLE
DGE
QUESTION CO
NO LEVEL
UNIT 1
Explain about Stress- Strain diagram of Mlld Steel ductile materials
1 | P gram of ¢ ) K1 | co1
under tensile test?*
Derive the relation among the three elastic constants (Modulus of
5 erive the relation among the three elastic constants ( ulu K2 co1
Elasticity and Shear Modulus, and ‘Bulk Modulus)?
3 | Explain about different types of Stresses and Strains? K1 €Ol
Define Strain Energy and derive the expressions for stress due to
4 K2 co1
gradually applied loads, suddenly applied loads and Impact loads?
A reinforced concrete column 300mmX300mm in section. The
column in reinforced with 8 steel bars of 20mm diameter. The column
S | carries a load of 360KN. Find the stresses in the concrete and steel | K3 | CO1
bars? Take E (Steel) = 2.1X10° N/mm?, E (Concrete) = 1.4X10*
N/mm?2? _ o
UNIT2
Explain about following the terms: i) Shear Force ii) Shear Force
1 Diagram {ii) Bending Moment iv) bending Moment Diagram v) Pont | Kl cO2
of Contra Flexure.
A cantilever of length L carrying a point load W at free end and a
2 | UDL. @ per unit run over the whole length. Draw S.F. and BM. | K2 CO2
diagrams?
A simply supported beam of length L carrying a U.D.L. of w per unit
3 ply supp gt Irying P K2 CO2
run over the whole span. Draw S.F. and B.M. diagrams?
A beam AB, 10m long has supports at its ends A&B. It carries a point
load of SKN at 3m from A and a point load of SKN at 7m from A and
4 K3 CcO2
a uniformly dlstrlbuted load of 1KN/m betwcen the two point loads.
Draw SF and BM Diagrams for the beam?
UNIT 3
Derive the Bending Moment equation and mention the assumptions
1 ] K2 COo3
made in the theory of simple bending?
2 | A cast iron bracket subjected to bending has the cross-section of I- K2& | CO3




IMPORTANT QUESTIONS

form with unequal flanges. The total depth of the section is 280mm
and the metal is 40mm thick throughout. The top flange is 200mm
wide and the bottom flange is 120mm wide. Find the position of the
neutral axis and moment of inertia of the section about the neutral axis
and the maximum bending moment that should be imposed on this
section if the tensile stress in the top flange is not to exceed
20N/mm?2. What _is then the value of the maxjj.nu;,l} _compressive stress

in the bottom ﬂaﬁ'g"e?

Prove that the shear stress at any point in the cross section of a beam

which is subjected to a shear force F, is given by

CO3

Derive an expression for the shear stress at any point in a circular
section of a beam, which is subjected to a shear force F. And prove
that the maximum shear stress in a circular section of a beam is 4/3

times the average shear stress.

COo3

UNIT 4

Derive an expression for the slope and deflection of a beam subjected
]

to uniform bending moment (Bending into Circular ARC)?

CO4

Find the deflection of a simply supported beam of length L carrying a
uniform distributed load of w per unit length? ( Double Integration
Method)

CO4

Find the deflection of a simply supported beam of length L carrying a
point load W at a distance ‘a’ from left support and at a distance ‘b’
from right supports by using MACAULAY’S METHOD?

CO4

Find the slope and deflection of a simply supported beam AB of
length L and carrying a U.D.L. of w per unit length over the entire
span by any method.

CO4

UNIT 5

- LI

Derive the Expres$ion f_or Hoop stress and Ioﬁgifuéinal stress in a thin

cylinder shells subjected to internal fluid pressure?

CO35

Derive the Expression for effect of internal pressure on the

dimensions of a thin ¢ylindrical shell?

COs




. IMPORTANT QUESTIONS ,

A cylindrical vessel is 1.5m diameter and 4m long is closed at ends by
rigid plates. It is subjected to an internal pressure of 3N/mm? If the
maximum principal stress is not to exceed 150 N/ mm2, find the
thickness of the shell. Assume E = 2 X 10° N /mm? and poisson’s

ratio = 0.25. Find the changes in diameter, length and volume of the
shell?

CO5

Derive the expressions for the stresses in a thick cylindrical shell
subjected to an internal fluid pressure? (OR) Derive the Lame’s

equations?

COs

A compound cylinder is made by shrinki.hg' a ‘dylinder of external
diameter 300mm and- internal diameter of 250mm over another
cylinder of external diameter 250mm and internal diameter 200mm.
the radial pressure at the junction after shrinking is 8 N/ mm2. Find
the final stresses set up across the section, when the compound

cylinder is subjected to an internal fluid pressure of 84.5 N/ mm??

CO5
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Subfect Code: R20ME2105 L '
I1 B.Tech. - I Semester Regular Examinations, February-2022
MECHANICS OF SOLIDS
' (ME)-
Time: 3 hours Max, Marks: 70

Note: Answer Al FIVE Questions, .
All Questions Carry Equal Marks (53X 14 =70M)
QNo Questions ) KL [cO[Ma

Unit-T
i) Define Bulk modulus_ Caleulate the cliange in volume of a cubical Block of’
side 120 mm subjected :to a hydrostatic pressure of 70 MPa. Take Poisson’s | 2 1 im™M
a | ratio 0,28 and young’s modulus 200 GPa, ,
ii)Derive the expression for strain ehergy stored in a body when the impact 2
1 load is applied?-

] _OR_

i) Define strain énergy and complimentary strain energy. Derive an expression | 4

b {for strain energy in a body subjected to axial stress .

i) Derive the relationship between youngs modultis and modulus of dgidity |3 i |m™
Unit-II

DA cantilever beam AB, 2 m long carries a uniformly distributed Joad of 1.5

KN/m over 2 leagth of 1.6 m from the free cnd. Draw shear forcs and bending
moment diagrams for the beam.

ii) Establish relation between Ioad, shear force and 'Behding moment 3 2 \M
‘ " OR_

Construct shear force diagram and bending moment diagrams for a beam

ABE, 3L/2 m long, which is supported at A and B, ‘L’ m long. The beam

b | carries a concentrated load of 2W at L/4 distanice from left support A, and | 3 2 | 14M

point load W/2 at E, It'also carries an upward point load of W at a distance of
L/4 from support B.

_ ‘Unit-IIT _
i) A rectangular beam 300 mm deep is simply supported over a span of 4

meters, What uniformly distributed load the beam may cary, if the bending | 4 3 |m™m
stress is not 1o exceed 120 MPa. Take I = 225 x 105 mm*.

ii) Explain the following:
3 A) Shear force and bending moment in a beam. 1 3 |™M
B) Hogging and sagging moments. .C) Point of cdtra flexure,

' 5 OR
Determine and draw the shear stress variation along the depth of an I seciion
b | beam having a uniform thickness of 10 munt, for the web and flanges. The total 3

height of the section is 200 mm and overall width of each flange is 100 mm,
The shear force is 250 kN, A

4™




Unit-IVv

1) How can you find slope and defiection in beains using moment area method?

- shell, if the permissible tensile stress in the section4s 20 Nfmm?2,

i
i) A cantilever of length 3m is carrying a UDL of 10 kN/m over a length of
2 m from fixed end. Find the maximum slope and deflection, Assume BI = 4 x ™
102 Nmm?
OR
£) A cantilever beam is.2 m long and has a flexural rgidity of 25MN-mZ It
carries a point Joad of 3 kN at mid length and a2 u.d.l of 2 kN/m along its entire 10M
| length. Calculate the deflection and stope at the free end by Macaulay’s
method,
ii) Write down Mohr’s theorems for slope and deflection of beams, M
Unit-y
Derive the stresses in thin cylindrical vessel with neat sketches aM
OR
1) Calculate minimum wall thickness of a thin cylinder 1 m in diametér if it is to
withstand an intermal pressure of 2 Nfmm*and hoop stress not to exceed 40 ™
N/mm. Also find change in diameter, E = 210 GPa; Poisson’s ratio = 0.3,
i)A thick metallic cylindrical shell of 150 ram internal diameter is required to
withstand an intemnal pressure. of 8 N/mm?, Find the necessary-thickness of the ™
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QNo. Questions KL {CO{Ma

Unit-I
A steel bar of cross-section 500 Inm2 is acted upon by the forces shown

in figure. Find the total elongation of the bar. (For steel, E=200 GN/ m2)

SOKN :
1N 10N 45k K3 |11 |[™
—] — & ——»
500mm im 1.5m
— - i -

Three vertical rods equal in length and each 12 mm in diameter are
equispaced in a vertical plane and together support a load of 10000 N the
rods being so adjusted as to share the load equally. If now an additional load

31 of 10000 N be added determine the stress in each rod. The middle rod is of
copper and outer rods are of steel. Take E -2X105 N/mm’ and E=1X10°
N/mm?, ERC

1 .
K4 {1 |™
OR

Define the terms strain energy derive strain energy for gradually applied | g3 |1 T™M
load?

b A uniform mctal bar has a cross sectional area of 7cm2 and length of

:18m. With the elastic limit of 160 MN/mZ, what will be ifs proof K3 (1 |7M
resilience? Determine. also the maximum value of an applied load which
may be suddenly applied without exceeding elastic limit.

Unit-IT
Draw the S.F gnd B.M dlagrams of the bcam shown in figure 1.
.. GOKIY 40 kN

| “4y - 10 kKN/m -
2 4 i\/\f\/\/\i K312 Im
.J 2m 4 1m 4m T B

Figure 1




L

OR

Determine the shear force and bending moment diagrams for the cantilever

loaded as shown in Figure,

2kN ,I"m ‘SkN

S]"'cm - D \J_/a

A%@m% S ke

14

Unit-TIT

Derive the fundamental law of pure bending

K3

™

Derive section modulus for a hollow circular section.

™

OR

t

3 A beam of I-section is having overall depth as S00mm and over all
| width as 190 mm. The thickness of flanges is 25mm where as the
thickness of the web is 15mm. the moment of inertia about N.A is given

as 6.4x10

section

§ mm4; If the section carries a shear force of 40KN, calculate
he maximum shear stress, Also sketch the bending stress across the

K4

140

Unjt-IV

A beam of length 20m is sixnpiy supported at its ends and carries two
point loads of 6kN and 12kN st a distance of 8m and 12m from left end
respectively. Calculate i) Deflection under each load. ii} Maximum

K4

14M

4 . deflection. Take E=2x106 Nlmrn2 and I= 1x109 mm4.

OR

A cantilever beam AB of length 4m carries a point load of 100kN at free end
and another point load 100kN at 2m from the free end. If E = 10° N/mm?and
I=10° mm*for the cantilever then determine the slope and deflection at the
free end by Moment area method.

K4

14M

> Unitv

3

Calculate the burstihg pressure for cold drawn seamless steel tubing of 60
mm inside diameter with 2 mm thickness. The ultimate strength of steel is

80 N/mm?.

K3

M

Find the thickness of metal necessary for a steel cylindrical shell of internal
diameter 200 mm to withstand an internal pressure of 50 N/mm? The
maximum hoop stress is not to éxceéd 150 N/mm?.

M

OR

What are the assumptions in the theory of pure torsion?

K2

™

b| Motor drives a solid circular shaft transmitting 30 kW to a gear. If the
allowable shear, stress in the shaft is 50 N/mm2. Find the diameter of the
shaft. i) if it runs at 500 rpm ii) if it runs at 3000 rpm,

™
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