STATE SPACE ANALYSIS

11 INTRODUCTION

The state variable approach is a powerful tool / technique for the analysis and design of
control systems. The analysis and design of the following systems can be carried using state
space method.

Linear system

Non-linear system

Time invariant system

Time varying system

Multiple input and multiple output system.
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The state space analysis is a modern approach and also easier for analysis using digital
computers. The conventional (or old) methods of analysis employs the transfer function of the
system. The drawbacks in the transfer function model and analysis are,

1. Transfer function is defined under zero initial conditions.

2. Transfer function is applicable to linear time invariant systems,

3. Transfer function analysis is restricted to single input and single output systems.
4. Does not provides information regarding the internal state of the system.

The state variable analysis can be applied for any type of systems. The analysis can be
carried with initial conditions and can be carried on multiple input and multiple output systems.
In this method of analysis, it is not necessary that the state variables represent physical
quantities of the system, but variables that do not represent physical quantities and those that
are neither measurable not observable may be chosen as state variables.

1.2 STATE SPACE FORMULATION

The state of a dynamic system is a minimal set of variable (known as state variables)
such that the knowledge of these vairables at t = to together with the knowledge of the imputs
fo t > to, completely determibnes the behaivour of the sytem for t > to (or) A set of vairables
which describes the system at any time instant are called state variables.

In the state variable formulation of a system, in general, a system consists of m-inputs,
p-outputs and n-state variabels. The state space representation of the system may be visualized
in Figure 1.1.
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Figure 1.1 State space representation of system
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The different variables may be represented by the vectors (column matrix) as shown
below.
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STATE EQUATIONS

The state variable representation can be arranged in the form of n number of first
order differential equation as shown below.
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The n number of differential equations may be written in vector notation as
X = £(X(1), U®)) s

The set of all possible values which the input vector U(t) can have (assume) at time t
forms the input space of the system. Similarly, the set of all possible values which the output
vector Y(t) can assume at time t forms the output space of the system and the set of all possible
values which the state vector X(t) can assume at time t forms the state space of the system.

1.3 STATE MODEL OF LINEAR SYSTEM

The state model of a system consist of the state equation and output equation. The state
equation of a system is a function of state variables and inputs as defined by equation (1.2).
For linear time invariant systems the first derivations of state variable can be expressed as a
linear combination of state variables and inputs.

Xp=anx +a|2X2+ .......... +a,,,xn +b”u, +b12U2+ ...... +b|mum
)-(2 =azlxl +322x2+ .......... +aznxn +b2]U| +b22ﬂ2+ ..... +b2mllm
Xp=a,X) FapXytnneen. +apnXy +byuy Ebpusy .. tb u 13

where the coefficients ajj and bjj are constants.



In the matrix form the above equations can be expressed as,
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The matrix equation (1.4) can also be written as, X(t) = A X(t) + B U(t) .15

where, X(t) = State vector of order (n x 1)
U(t) = Input vector of order (m x 1)
A = System matric of order (n x n)
B = Input matric of order (n x m)

Note: For convenience the input, output and state variables are denoted as us, Ua,..., y1, Ya,...
and X1, Xo,...; but actual they are functions of time, t.

The equation, X(t) = A X(t) + B U(t) is called the state equation of Linear Time Invariant
(LTT) system.

The output at any time are functions of state variables and inputs.
.. Output vector, Y(t) = f(X(t), U(t)) ...1.6

Hence the output variables can be expressed as a linear combination of state variables
and inputs.
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where the coefficients cij and djj are constants.
In the matrix form the above equations can be expressed as,
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The matrix equation (1.8) can also be written as, Y (t) = C X(t) + D U(t) ...1.9



where, X(t) = State vector of order (n x 1)

U(t) = Input vector of order (m x 1)

Y(t) = Output vector of order (p x 1)

C = Output matrix of order (p x n)

D = Transmission matrix of order (p x m)

The equation Y(t) = C X (t) + D U(t) is called the output equation of Linear Time
Invariant (LTI) system.

The state model of a system consists of state equation and output equation. (or) The
state equation and output equation together called as state model of the system. Hence the state
model of a linear time invariant system (LTI) system is given by the following equations.

X =AX®)+BUL ... State equation.
YH)=CX@®)+DU{X)  ............. Output equation.

1.4  STATE DIAGRAM

The pictorial representation of the state model of the system is called state diagram. The
state diagram of the system can be either in Block Diagram form or in signal flow graph form.

The state diagram describes the relationships among the state variables and provides
physical interpretations of the state variables. The time domain state diagram may be obtained
directly from the differential equation governing the system and this diagram can be used for
simulation of the system in analog computers.

The s-domain sate diagram can be obtained from the transfer function of the system.
The state diagram provides a direct relation between time domain and s-domain. [i.e., the time
domain equations can be directly obtained from the s-domain state diagram].

The state diagram (Block diagram and signal flow graph) of a state model is constructed
using three basic elements, Scalar, Adder and Integrator.

Scalar: The scalar is used to multiply a signal by a constant. The input signal x(t) is
multiplied by the scalar a to give the output, a x(t).

Adder: The adder is used to add two or more signals. The output of the adder is the
sum of incoming signals.

Integrator: The integrator is sued to integrate the signals. They are used to integrate
the derivatives of state variables to get the state variables. The initial conditions of the state
variable can be added by using an adder after integrator.

The time domain and s-domain elements of block diagram are shown in Table 1.1. The
time domain and s-domain elements of signals flow graph are shown in Table 1.2.



Table 1.1 Elements of Block Diagram

Element Time domain s-domain
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Table 1.2 Elements of Signal Flow Diagram
Element Time domain s-domain
d a
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The state model of linear time invariant system is given by the equations.

X(t) = A X(t) + B U(t)
Y(t)=C X () + D U(t)

State equation.
Output equation.

The block time domain diagram representation of the state model is shown in Figure
1.2 and the time domain signal flow graph representation of the system is shown in Figure 1.3.
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Figure 1.2 Block diagram of state model



CONSTRUCTION OF TIME DOMAIN STATE DIAGRAM

In state space modelling, n-number of first order differential equations are formed for
an'" order system. In order to integrate n-numbers of first derivatives, the state diagram requires
n-numbers of integrators. Therefore the first step in constructing the state diagram is to draw
n-numbers of integrators. Mark the input to the integrators as first derivatives of state variables
and so the output of the integrators are state variables. [If initial conditions are given, then they
can be added at the output of integrators using adders].

In each state equation, the first derivative of state variable is expressed as a function of
state variables and inputs. Therefore from the knowledge of a state equation, the state variables
and inputs are multiplied by appropriate scalars and then added to get the first derivative of a
state variable. Now, the first derivative of the state variable is given as input to the
corresponding integrator. Similarly the input of all other integrators are obtained by considering
the state equations one by one.

Each output equation is a function of state variables and inputs. Therefore from the
knowledge of an output, equation, the state variables and inputs are multiplied by appropriate
scalars and then added to get an output. Similar procedure is followed to generate all other
outputs.

1.5 STATE - SPACE REPRESENTATION USING PHYSICAL VARIABLES

In state-space modelling of systems, the choice of state variables is arbitrary. One of
the possible choice of state variables is the physical variables. The physical variables of
electrical systems are current or voltage in the R, L and C elements. The physical variables of
mechanical systems are displacement, velocity and acceleration. The advantages of choosing
the physical variables (or quantities) of the system as state variables are the following,

1. The state variables can be utilized for the purpose of feedback.

2. The implementation of design with state variable feedback becomes straight
forward.

3. The solution of state equation gives time variation of variables which have

direct relevance to the physical system.

The drawback in choosing the physical quantities as state variables is that the solution
of state equation may become a difficult task.

In state space modelling using physical variables, the sta6te equations are obtained from
the differential equations governing the system. The differential equations governing a system
are obtained from a basic model of the system which is developed using the fundamental
elements of the system.



ELECTRICAL SYSTEM

The basic model of a electrical system can be obtained by using the fundamental
elements Resistor, Capacitor and Inductor. Using these elements the electrical network or
equivalent circuit of the system is drawn. Then the differential equations governing the
electrical systems can be formed by writing Kirchoff’s current law equations by choosing
various nodes in the network or Kirchoft’s voltage law by choosing various closed path in the
network. The current-voltage relation of the basic elements R, L and C are given in Table 1.3.

Table 1.3
Element Voltage across the Current through the
element element
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A minimal number of state variables are chosen for obtaining the state model of the
system. The best choice of state variables in electrical system are currents and voltages in
energy storage elements. The energy storage elements are inductance and capacitance. The
physical variables in the differential equations are replaced by state variables and the equations
are rearranged as first order differential equations. These set of first order equations constitutes
the state equation of the system.

The inputs to the system are exciting voltage sources or current sources. The outputs in
electrical system are usually voltages or currents in energy dissipating element. The resistance
is energy dissipating element in electrical network. In general the output variables can be any
voltage or current in the network.

MECANICAL TRANSLATIONAL SYSTEM

The basic model of mechanical translational system can be obtained by using three
basic elements mass, spring and dash-pot. When a force applied to a mechanical translational
system, it is opposed by opposing forces due to mass, friction and elasticity of the system. The
forces acting on a body are governed by Newton’s second law of motion.

The differential equations governing the system are obtained by writing force balance
equations at various nodes in the system. A node is a meeting point of elements. The Table 1.4
shows the force balance equations of idealized elements.

List of symbol used in mechanical translational system are

Displacement, m

y
% dy/dt = Velocity, m/sec



dv/dt = d?y/dt? = Acceleration, m/sec?

Applied force, N (Newton)

Opposing force offered by mass of the body, N

Opposing force offered by the elasticity of the body (spring), N
Opposing force offered by the friction of the body (dash-pot), N

Mass, Kg

Stiffness of spring, N/m

Viscous friction coefficient, N/(m/sec).

Guidelines to form the state model of mechanical translational systems

1. For each node in the system one differential equation can be framed by equating the
sum of applied forces to the sum of opposing forces. Generally, the nodes are mass

element.

Table 1.4 Force balance equations of idealized elements

Element Force balance equations
=Yy
MY
f— M S’ T )
Reference
~ d
- Reference dt
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f-—}————]’_'_ 1=rh=B:|I(Y1“)'2)
B
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»
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marking all the forces acting on it.

of opposing force.

Assign a displacement to each nods and draw a free body diagram for each node. The
free body diagram is obtained by drawing each mass of node separately and then

In the free body diagram, the opposing forces due to mass, spring and dash-pot are
always act in a direction opposite to applied force. The displacement, velocity and
acceleration will be in the direction of applied force or in the direction opposite to that

For each free body diagram write one differential equation by equating the sum of

applied forces to the sum of opposing forces.




5. Choose a minimum number of state variables. The choice of state variables are
displacement, velocity or acceleration.

6. The physical variables in differential equations are replaced by state variables and the
equations are rearranged as first order differential equations. These set of first order
equations constitute the state equation of the system

7. The inputs are the applied forces and the outputs are the displacement, velocity or
acceleration of the desired nodes.

MECHANICAL ROTATIONAL SYSTEM

The basic model of mechanical rotational system can be obtained by using three basic
elements moment of inertia of mass, rotational dash-pot and rotational spring. When a torque
is applied to a mechanical rotational system, it is opposed by opposing torques due to momen6t
of inertia, friction and elasticity of the system. The torque acting on a body are governed by
Newton’s second law of motion.

The differential equations governing the system are obtained by writing torque balance
equations at various nodes in the system. A node is a meeting point of elements. The Table 1.5
shows the torque balance equations of the idealized elements.

List of symbols used in mecanical rotational system

0 = Angular displacement and

do/dt = Angular velocity, rad/sec

d?e/dt? = Angular acceleration, rad/sec

T = Applied torque, N-m

J = Moment of inertia, Kg-m?/rad

B = Rotational frictional coefficient, N-m/rad/sec)
K = Stiffness of the spring, N-m/rad.

Table 1.5 Torque balance equations of idealized elements

Element Torque balance equations
# d #: T=T;= Lt
dt”
T 0
i 3T do
"ara i T=T,=B—
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™ B TR dt
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Guidelines to form the state model of mechanical rotational systems

1. For each node in the system one differential equation can be framed by equating the
sum of applied torques to the sum of opposing torques. Generally the nodes are mass
elements but in some cases the nodes may be without mass element.

2. Assign an angular displacement to each node and draw a free body diagram for each
node. The free body diagram is obtained by drawing each node separately and then
drawing all the torques acting on it.

3. In the free body diagram, the opposing torques due to moment of inertia, spring and
dash-pot are always act in a direction opposite to applied force. The angular
displacement, velocity and acceleration will be in the direction of applied torque or in
the direction opposite to that of opposing torque.

4. For each free body diagram write one differential equation by equating the sum of
applied torque to the sum of opposing torques.

5. Choose a minimum number of state variables. The choice of state variables are angular
dispalcement, velocity or acceleration.

6. The physical variables in differential equations are replaced by state variables and the
equations are rearraged as first order differential equations. These set of first order
equations constitute the state equation of the system.

7. The inputs are the applied torques and the outputs are the angular displacement, velocity
or acceleration of the desired nodes.

EXAMPLE 1.1

Obtain the state model of the electrical network shown in Fig 1.1.1 by choosing number
of state variables.

£ , ;
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//‘//'/ | ’(/,'/»A.
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Figure 1.1.1 Figure 1.1.2
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SOLUTION

Let us choose the current through the inductances i1, i. and voltage across the capacitor
Vs as state variables. The assumed directions of currents and polarity of the voltage are shown

in Fig 1.1.2.

[Note: The best choice of state variables in electrical network are currents and voltages
in energy storage elements ].

Let the three state varaibles x1, X2 and x3 be related to physical quantities as show below.

X1 = Iy = Current through L
X2 = I = Current through L»
X3 = Vo = Voltage across capacitor

At node A, by Kirchoff’s current law (refer Figure 1.1.3),

rj":',_. =0
dt L1

ij+iy +C

On substiuting the state variables for physical variables in Eqn. (1.1.1) we get,

S i SRS 4 dv,
(le,1,=x%, 1,=x, an -E~~43;
%y # %y #Chy =0
Cf(; =—ZI-7»2
%, = X% ’7
- Ramamr— b=t
c’ c” 112
. ) i
-MI’ }' Z i—f%&_———'
e 1 |, &
ce {1 3 Ta )
c - i
I -

4
O

Figure 1.1.3 Figure 1.1.4

By Kirchoft’s voltage law in the closed path shown in Figure 1.1.4 we get,

et)+i,R, +L, ﬂ‘;: v,
dr 113

On substituting the state variables for physical variables in Eqn (1.1.3) we get,

11

(ie., =%, —-=% and V=%

)+ xR AL % =x,
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Also, let u(t) = e(t) = input to the system
Sut R+ LK, =x,

Ll‘il = XJ - Xlk‘ = U

X = oy Xy + ] X :
N BN =Xy =—)
G = Ly 1.1.4
By Kirchoff’s voltage law in the closed path shown in Figure 1.1.5 we get,
di, .
v.=L,—+i,R
e 1.1.5
On substituting the state variables for physical variables in Eqn. (1.1.5) we get,
3 — 2 ; "y
(ie.1,=x,, F%a X; and v_=x,) e 4
A
\3 = lez + X.sz __+v i §_ ‘2R2
szz =—N2R2+\3 =
. R, 1 _
X9 =——=Xy +—X, Figure 1.15
2 2, 1.1.6

The equations (1.1.2), (1.1.4) and (1.1.6) are the state equations of the system. Hence
the state equations of the system are,

*|=’"—'—xl+lX3—Lu
L Ly 7Ly
5(1=-R'31+-I—X3
L T
*]—_lxl"'l_-\'ﬁ
C =

On arranging the state equations in the matrix form we get,

il [ 3 | a0
L, L, "L—l
tl=l o -Ra Lify[+] o [u] -
2 Ly, La|l™ State equation ......1.1.7
X ks e ) X 0
%l |7t 7T thsed LR

Let us choose the voltage across the resistances as output variables and the output

variables are denoted by y; and ys.

Lyi=il Ry

and y2 =12 Ry

...1.1.8
...1.L1.9
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On substituting the state variables in equations (1.1.8) and (1.1.9) we get,

(le. i1=xiand iz = X2)

y1=XiR1 ; y2=XRz

On arranging the above equations in the matrix form we get

Xl R, 0 ]|%
y,_- 0 R,|[x; Output equation ...1.1.10

The state equation (Egn (1.1.7)] and output equation (Eqgn (1.1.10)] together constitute
the state model of the system.

EXAMPLE 1.2

Obtain the state model of the electrical network shown in Figure 1.2.1 by choosing vi(t)
and vo(t) as state variables.

SOLUTION

Connect a voltage source at the inputs as shown in Figure 1.2.2. Convert the Voltage
source to current source as shown in Figure 1.2.3. At node 1, by Kirchofrf’s current law we
can write (Refer Figure 1.2.4).

vi—Vy

R
Vz(l) Vl(t) Vz(t) Vl(t) law v,(0) v’(t) Vz(l) < Vlm

R
R R R v R y R

vEt) -|—C TC V(l)_(i; TIC :If T( ) %R -I—C T C%‘:.‘L],C

Figure 1.2.1 Figure 1.2.2 Figure 1.2.3 Figure 1.2.4

vy —=¥a +CdV| -0
dt 1.2.1

At node 2, by Kirchoff’s current law, we can write (Refer Figure 1.2.5)

R d R 122

Let the state variables be x1 and x2 and they are related to physical variable as shown
below.

A b
R
Vi =X and v2 = X2 v(0) )

Also, Let v(t) = u = input.

Figure 1.2.5
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On substituting the state variables in equation (1.2.1) and (1.2.2) we get,

G — X Ldx
o RS o §

=0
' ...1.2.3
e B B L0
R R o ...1.2.4
X% 0
From equation (1.2.3) we get, R R +Ck; =0
R
mtig y 1
e .. 1.2.5
iz-_ﬁ ﬁ X :E
From equation (1.2.4) we get, R Rt R+ Cly =
i —LV s s l u
S ..1.2.6

The equation (1.2.5) and (1.2.6) are state equations of the system. Hence the state
equations of the system are

—_—

+—X,
RO R

Xy = Lx —2-x +=—U

TR RC Y RG

On arranging the state equations in the matrix form,

£ 1 I

X e O ] 0
. RIC R;: sl 3 Ha
%] | == ==|lxJ) LrC
ke RC 127
The output, y = vi(t) = x1
.. The output equation is y=[! 0][1'} ...1.2.8

The state equation [Eqn (1.2.7)] and output equation [Eqgn (1.2.8)] together constitute
the state model of the system.
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EXAMPLE 1.3

Construct the state model of mechanical system shown in Figure 1.3.1.

SOLUTION

Free body diagram of M is shown in Figure 1.3.2

f(t) 2
d LT 5
Y, fm Ml d x. 2

l(—fml
L
i et b1 =Big (Yl ¥2)
T f =Ki(y1—y2)
Figure 1.3.2

By Newton’s second law, the force balance equation at node M1 is

f(t) = fy + fpy + fig
d2y

ft) = Mld "'Bl'd—()h y2)+ K (y; —¥2)

¥ dy dy
fit)=M, dy'+B, dt[ B, dz"'Kl}'l 19)’2

Free body diagram of M2 in shown in Figure 1.3.3.

dzy dy,
fm2 =M, ~ 22 i fp=B—~ dt
fy) =B, a;()’z -y1) 5 fle=Kays
fi =Ki(y2-y1)

By Newton’s second law, the force balance equation at node M is

rm2+fb1+fbl -H‘kz+f‘kl =0

d d
~ My dd)éz‘*B: jz+BI’—'(YZ-}'!)+KZY2+KI(Y2'_YI)=0
d? Yz de dy, dy, =0
+B -B +K,y, +K y
M, a2 Bz pe dt ldt 2Y2 b . Kiyi

Figure 1.3.1

..1.3.1

Y,
fa

(—fhz
M2 (-—rw
(-ru
(-fu

Figure 1.3.3

..1.3.2

Let us choose four state variable x1, X2, x3 and Xs. Also, let the input f(t) = u. The state

variables are related to physical variables as follows.
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N 2 )
On substituting, ¥,=x, i y,=x,; 2d!/_|= X3} 4, _ X4} iy 3;' =%; and f(t) =u In
equation (1.3.1) we get, t dt dt

u= Ml)’(l + B|x3 - B|X4 + lel _le2
M[XJ = —BiXJ + B'x,‘ = K|X| + K|X2 +v
Ky K, By B

T3 |
..X3— Exl"'M“'xZ—M—X}‘F"’w—X‘; & —
I 1

' ...13.3
- dy d d? .
On substituting ¥, =X, 3 ¥,TX, ;d_l'=x3 ; %ﬂca and Y2 _ X4 1IN
equation (1.3.2) we get, ) ¢
Mz*d + Bzx4 + B]X4 — le3 + leZ + szz p— lel = 0
2o M2*4 = —BZX,‘ = B]X4 + B]x:; s KzXz - K|x2 + K]Xl
==(By +By) x4 +Byx3 = (Ky +K)x; +Kyx,
R h‘;l - (K;{PKZ)XZ £ ;[311 ,{3_(131'\;’1'132),(4
. . . | 134
The state variables x1 = yi.
. .. _ . dx| dyl
On differentiating x: = y1 with respect to t we get, e ¥
t
dx, . d ?
Let T!-= X, and —ayl—'= X3 5 S X=Xy
’ 135
The state variable, x2 = ys.
On differentiating xo = y> with respect to t we get, dxy - dy;
dt dt
axs. . . d N
Let —2—=x2 and —ﬁ-=x4 v Xy =Xy
dt dl “1.3.6

The equations (1.3.3) to (1.3.6) are state equations of the mechanical system. Hence the
state equations of the mechanical system are,

X) X3
\: =X4
K B, B,
=___‘_‘. +._|_\ —-———k1 +—“‘X4 +—U
\3 hfll \] MI 2 M' M| |
¢ 5 B B, +B,)
k= Sy - KitRa) o Ly, - M,
M2 Mz Mz 2

On arranging the state equations in the matrix form, we get,
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%] [ 0 0 1 o fx] [o]
&2 O 0 0 I xz 0

o - Ky Ky _B By X3 | + L [u]
2 M, M, M, M, M,

; | .- (K, +K;) B, =(B;+B,) X4 0

k.'J & M2 i M2 MZ ' M2 JdLE L .

Let the displacements y: and y2 be the outputs of the system.
SLY1 =X and y2 =Xxo.
The output equation in matrix form is given by,
y,] 1 0 0 0][x
)'2 i 0 l 0 0 X2
X3

8 138

The state equation [Eqn (1.3.7)] and the output equation [Egn (1.3.8)] together called
state model of the system.

EXAMPLE 1.4
Obtain the state model of the mechanical system shown in Figure 1.4.1 by choosing a
minimum of three state variables.

Zero [riction

Figure 1.4.1
SOLUTION
Le the three state variables be x1, x> and xs3 and they are related to physical variables
as shown below.
>y,
. _ ~dy fu
B had TNy % :'dll =¥t M A
I
Free body diagram of mass M is shown in Figure 1.4.2
ydiag g Figure 1.4.2
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d?y
fa=M—3t 5 fu =Ky i fa=K-yp)

By Newton’s second law, the force balance equation at node M is,

f + Ty +fla =0
dZ
M_dt%-* Ky +Ka(yy =y2) =0
2 :
M%* Ky, +Kay = Kay2 =0
..1.4.1

Put g—)i"-ﬂj v Y =X, Y2 =X inequ(dd.l)
dt?

| My + K)o+ Koy = KaXg =0
' (Yo
Mxy + (K +Ky) x) = KXy =0
Ky + K, x| ,E’il,x}(lﬂ
..1.4.2

The free body diagram of node 2 (meeting point of K, and B).

B-d\—‘ ' Ryt K:(.\‘:—-"l)
dt

Writing force balance equation at the meeting point of K, and B we get,

rg.+rlt=0

pd2, Ka(ya -y =0
dt ?

. K K
Cdyy Ko yy =393

.‘—dT‘ B.

y .'. 2 )'I = .\| ﬂ“d y: = '\‘2‘

B B - 143

The state variable, x1 = y1. On differentiating this expression with respect of t we get

dx, _dn

dt dt
. dy, o B
Lot Lok, and ; SRS T 3
dt ¢ 144
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The state equations are given by equations (1.4.4), (1.4.3) and (1.4.2).

X =X3

- - IN3 Kz\.

Xy =—=X)=—="Xa

2 B ! B

i K, +K, K,

hy = Xy iy
M M

On arranging the state equations in the matrix form,

1] { 0 o 1|
K, K,
il 2 <22 o
X2 B B 3
+K, r Ks
. -J _b_i..i_k_'_ 0 '——= "
R3% I Y \, M L% L4

If the desired outputs are y: and y», then y1 = Xz and y2 = x2

The output equation to the matrix form is given by

s S0

The state equation [Eqn (1.4.5)] and the output equation [Egn (1.4.6)] together
constitute the state model of the system.

EXAMPLE 1.5
Determine the state model of armature controlled dc motor.

SOLUTION

The speed of DC motor is directly proportional to armature voltage and inversely
proportional to flux. In armature controlled DC motor the desired speed is obtained by varying
the armature voltage. This speed control system is an electro-mechanical control system. The
electrical system consists of the armature and the field circuit for analysis purpose. Only the
armature circuit is considered because the field circuit but for analysis purpose, only the
armature circuit is considered because the field is excited by a constant voltage. The mechanical
system consist of the rotating part of the motor and load connected to the shaft of the motor.
The armature controlled DC motor speed control system is shown in Figure 1.5.1.

Load

1L,B

(Output)

Figure 1.5.1 Armature controlled DC motor
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Let Ra Armature resistance Q

La = Armature inductance, H

la = Armature current, H

Va = Armature voltage, V

€b = Back emf, V

Kt = Torque constant, N-m/A

T = Torque developed by motor, N-m

0 = Angular displacement of shaft, rad

® = do/dt = Angular velocity of the shaft, rad/sec

J = Moment of inertia of motor and load, Kg-m? / rad

B = Frictional coefficient of motor and load, N-m/(rad/sec)
Kb = Back emf constant, V/(rad/sec).

The equivalent circuit of armature is shown in Figure 1.5.2.

By Kirchoff’s voltage law, we can write

di
i,R,+L,—+¢e, =V,
dt 1501
: : ; R, L,
Torque of DC motor is proportional to the product of T ok
constant in this system, the torque is proportional to i, alone. ¥ ' i Es + di-\.l
1 2
_ e d e
Ty v T
“Jouge, T8 152 )

Figure 1.5.2 Equivalent circuit of armature

The mechanical system of the motor is shown in Figure 1.5.3. The differential equation

overning the mechanical system of motor is given b
g g Yy g y ; ; 2 ]l

5 o¥ ¥ B
Jﬁ-:—Biq:T o
dt” dt 153 Figure 1.5.3

The back emf of DC machine is proportional to speed (angular velocity) of shaft

_',eboc-:—? _: Backemf, eb=1<,,§ "y
From Egn (1.5.1) and (1.5.4) we get,
i’R“+La%+Kh%?:va 155
From Egn (1.5.2) and (1.5.3) we get,
J£§+ e K,i,

dt dt ... 1.5.6
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The equations (1.5.5) and (1.5.6) are the differential equations governing the armature
controlled dc motor.

Let us choose i1, @ and O as state variables to model the armature controlled dc motor.
The physical variables ia, @ and 6 are related to the general notation of state variables X1, x»
and xsz as shown below.

X1=1a; X2=m=dO/dt and x3=0

The input to the motor is the armature voltage, va and let va = u, where u is the general
notation for input variable.

On substituting the state variables for the physical variables in equation (1.5.5) we get,

Let %—: X, SXR,+L X +Kpx,=u
Xy =——2%, ‘&xz el
L. L. L. ...1.5.7

On substituting the state variables for physical variables in Eqn (1.5.6) we get,

,}_’V
d2x3 Xa3)_
2 2 .
Let R ';3 =%, and E%_:xz’ Ik +Bxy =Ky x,
t
¥y = Kix sz
0Ty o
I 158
The state variable x3 = 6. On differentiating xs = 6 with respect to t we get,
dx; _do
dt dt .
Put 1’(_3-_-5( and — =X
dt odt
vy =g ..1.5.9

The equation (1.5.7), (1.5.8) and (1.5.9) are the state equations of the system.

'
= _&‘_x ——l\—b‘x')’f'"—u
X]""‘L 1 o L.
a a "
K,
X, = —X;— X2
S
X3=x2
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On arranging the state equations in the matrix form,

R, _Ks o-x- I

Xy LL, L (' .l::

R e

I OJ'X’J . 1.5.10

Let the desired outputs be I, ® and 6. Let us equate the desired output quantities to

standard notation y1, y» and ys as shown below.

yi=la; Y2=o=d0/dtandy: =6

On relating the outputs to state variables we get,

Yi=X1,; Y2=X2,¥3=X3

.. The output equation in the matrix form is

y, 170 07[x
Y, =10 0 X4
Y3 90 A% L1511

The state equation [Eqn (1.5.10)] and the output equation [Eqgn (4.5.11)] together

X

R/L,

> Y

% A .

J

X3

constitute the state model of the armature controlled dc motor.

Bl €

K/L I

W Ta

Figure 1.5.4 Block diagram representation of the state model of armature controlled
dc motor

EXAMPLE 1.6

Determine the state model of field controlled dc motor.

SOLUTION

The speed of a DC motor is directly proportional to armature voltage and inversely
proportional to flux. In field controlled DC motor the armature voltage is kept constant
armature the speed is varied by varying the flux of the machine. Since flux is directly
proportional to field current, the flux is varied by varying field current. The speed control
system is an electromechanical control system. The electrical system consists of armature and
field circuit but for analysis purpose, only field circuit is considered because the armature is
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excited by a constant voltage. The mechanical system consists of the rotating part of the motor
and the load connected to the shaft of the motor. The field controlled DC motor speed control
system is shown in Figure 1.6.1.

Load

| 1,B

(Output)

Figure 1.6.1 Field controlled DC motor

Let R = Field resistance,
Ly = Field inductance, H
If = Field current, A
Vs = Field voltage, V
0 = Angular displacement of the motor shaft, rad
® = do/dt = Angular velocity of the motor shaft, rad/sec
T = Torque developed by motor, N-m
Kt = Torque constant, N-m/A
J = Moment of inertia of rotor and load, Kg-m?/rad
B = Frictional coefficient of rotor and load, N-m/(rad/sec).

The equivalent circuit of field is shown in Figure 1.6.2.

By Kirchoff’s voltage law, we can write

Figure 1.6.2

di
Rrif'i‘l.ur"-"[": Vi
dt 161

The torque of DC motor is proportional to produce of flux and armature current.
Since armature current is constant in this system, the torque is proportional to flux alone, but
flux is proportional to field current.

~Teri; Torque, T=K i ..1.6.2

The mechanical system of the motor is shown in Figui \ )

n
governing the mechanical system of the motor is given by g % ’/'r . H—Eﬂ
B

4’8 s ¥ .1 Figure 1.6.3

From Egn (1.6.2) and (1.6.3) we get,

yl i
f’__(f g

dt  dt .1.64
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The equation (1.6.1) and (1.6.4) are the differential equations governing the field
controlled dc motor.

Let us choose ip  and 6 as state variable to model the field controlled dc motor. The
physical variables ip @ and 0 are related to the general notation of state variables x1, X2 and x3

as shown in below.

X1=if; X2 ==d0/dt; x3=0

The input to the system is the field voltage v+. Let v¢=u, where u is the general notation
for input.

On substituting the state variables and input variables for the physical variables in Eqn
(1.6.1) we get,

v %yl dt
Let ._J-::yl y '.Rr.’f,'*‘L[x’-u
[
Ly © Ly ...1.6.5

On substituting the state variables for the physical variables in Eqn (1.6.4) we get,

2,
J ,4_{'}_.,, Bé@“ = Ky %
dt* dt

2 dx e ~
[t qd'{:.’ = :}.z and —Jt']": Azs -~ JXZ + sz B K‘f X)
t#

J J ...1.6.6

The state variable x3 = 6. On differentiating xs = 6 with respect to t we get,

dx, 9
dt dt

p, Jid I]V_;

dy
=%y and — = %3 LKy =Xy
dt ’ &

..1.6.7

The equations (1.6.5), (1.6.6) and (1.6.7) are the state equations of the system.

\l = ——‘!-Nl fr o— ]
i § i
Ke. B
\2 ='—"R|"'—\:
J J
X3 =X,
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On arranging the state equations in the matrix form,

- - T )
X, | .. 0 0 x,} I
L -
| _|Ke B ;
Xa| & T —T 0 X |+ 0 [u]
[ X3 | 0 1 oflxs] [0 16.8

Let the desired output be m and 0. Let us equate the desired output quantities to standard
notation y: and y» as shown below.

Yyi=o; V2=06
On relating the outputs to state variable we get,
Yi=X2; ¥2=X3
The output equation in the matrix for is
)=l o 1l
Y2 0 0 1])|x,
” ..1.6.9

The state equation [Eqn (1.6.8)] and the output equation [Egn (1.6.9)] together
constitute the state model of the system.

Ky =Xy

I 5('_1_ x!
g g
; B/ fe >

ﬁyl

Figure 1.6.4 Block diagram representation of the state model field controlled dc motor
1.6 STATE SPACE REPRESENTAION USING PHASE VARIABLES

The phase variables are defined as those particular state variables which are obtained
from one of the system variables and its derivatives. Usually the variable used is the system
output and the remaining state variables are then derivatives of the output. The state model
using phase variables can be easily determined if the system model is already known in the
differential equation or transfer function form. There are three methods of modelling a system
using phase variables and they are explained in the following sections.

Method 1

Consider the following n™ order linear differential equation relating to the output y(t)
to the input u(t) of a system.
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n. (n-1). (n-2) . ) ' .
yra; Yy +8y ¥ teiesanen +a, 5 ¥+a,_ y+ta,y=bu o

By choosing the output y and their derivatives as state variables, we get,

hY =¥
Xp =Y
Xq =j'. s
(n—1) .. n+
wew ¥ 5 Aoy

On substituting the state variables in the differential equation governing the system
[Eqn (1.10),] we get,

Xp +2X, F 89X g Piiirerrenses A, X3 +an_,x2 +ﬂnx| =hu

=8, 1Xg =8, 0% isssasccanas —8)X, —a;Xx, +bu

X=X

Xz ‘—'XJ

Xp-1 = Xy

Xn ==8pX) =81 X3 ~ 8 2X3=wirenennns ~87X,-) =2 X, +bu

On arranging the above equations in the matrix form we get,

w1 [0 1 £ 0 som 00 x, ] [0

ﬁz 0 0 1 0 - 0 X2 0

X 0 0 0 s 0 X 0
1= . ' |
& 0 0 0 D s 1 . 0

L o L-an =1 TApg "3 e —Hyl L. ¥ <

R F .. L11
OrX=AX+BU
Here the matrix A (system matrix) has a very special form. It has all 1’s in the upper

off-diagonal, its last row is comprised of the negative of the coefficients of the original

differential equation and all other elements are zero. This form of matrix A is known as Bush
form (or) Companion form.
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Also note that B matrix has the speciality that all its elements except the last element
are zero. The output being y = x1, the output equation is given by,

y=[1 0 0ureeess 0] ™

X2

X3

'x"‘ 112
(o) Y =CX

The advantage in using phase variables for state space modelling is that the system state
model can be written directly by inspection from the differential equation governing the
system.

Method 2

Consider the following n™ order differential equation governing the output y(t) to the
input u(t) of a system.

=1) « : = +by 0 Fanen +b,_u+bu
R - Aoy FH8aY =Dy WHD: SR E
Letn=m=3
; Shg ii +b,0+bju
Sy +a,y +ayy tasy = byl +byii + b0+ 03 114
On taking laplace transform of Eqn (1.14) with zero initial conditions we get,
S'Y() +a15"Y(5) 5 Y() +23Y(5) = bgs U(S) + by U(s) + bysUs) + b,
(53 +a|52 +a25+a3)Y(s) = (b053 +b|52 +b2$+ b3) U(S)
" Y(S) G bos3 +b152 +b25+b3
TUi) +als2 +a,5+a,
' b b, b b, b, b
) sB(bo +?'+s—22+s—§’) _ bo +:1+S_22+;§3_
31 c3L, 2 3;) _[_ﬂ_a_z_?;
s(.{’-s-ﬁsz-’-s3 ] S S2 53 1.15
From the Mason’s gain formula, the transfer function of the system is given by
1
T(S) :IZ PKAK
K 116
Where Py = path gain of K" forward path.
A = 1 — (sun of loop gain of all individual loops)
+ (sum of gain products of all possible combinations of two non-
touching loops) - .....
Ak = A for that part of the graph which is not touching K" forward path.
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The transfer function of a system with four forward paths and with three feedback loops
(touching each other) is given by,

__P+P+P+P
T(s) =
1= (P + Py +Pj3) . 1.17

On comparing equation (1.15) and (1.17) we get,

b b b,
bl 3 p2=_s_‘ : P3=-ST2 and P4=-;3—

ay a, a3
P, =——L: Pp=-— and Pjy=-—
1 . ) s

Hence for this system represented by the transfer function as that of equation (1.15), a
signal flow graph can be constructed as shown in the Figure 1.4. The signal flow is constructed
such that all Ax =1 and all loops are touching loops.

Let us assign state variables at the output of each integrator in the signal flow graph.
Hence at the input of each integrator, the first derivative of the state variable will be available.
The state equations are formed by summing all the incoming signals to the nodes, whose values
corresponds to first derivative of state variables.

Figure 1.4 Signal flow graph of the system represented by the equation 1.15

By summing up the incoming signals to node X1 we get, (Refer Fig. 1.4a)

" 0 xl =“a](xl +b0U)+X2+b~IU
X, & ] B
ol G Xy ==Xy + X +(by —a;by)u 18
Figure 4.4a T
By summing up the incoming signals to node %> we get, (Refer Fig. 1.4b)
2 bgt *2 — _az(xl + boU) +X3 + bzu
3 s /’
& Xq = —a‘le + X3 +’(b2 = azbo)u 1.19

Figure 4.4b
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By summing up the incoming signals to node x3we get, (Refer Fig. 1.4c)

Bl 5(3 = _aJ(X| + boll) + b3u
s S(3 = -a3x| +(b3 -a3bo)u 1.20
Figure 4.4c

The output equation is given by the sum of incoming signals to output node.
The output equation is given by the sum of incoming signals to output node.
L Yy=Xi+hbou ...1.21

On arranging the state equations and the output equations in the matrix form, we get,

ks -a, 1 0][x by —a;bg
Xy |=|-ap 0 1||xz|+|by—asbg|[u]
X3 -a; 0 0f[x; b; —asb, ... 1.22

] .
y=[1 0 0][xy| +bou

3 ..1.23

The above results can be generalized for an n™ order differential equation, and the
general state model for m = n is given below.

- - -

F*' T '—ﬂ' l 0 -------- 0 xl bl _albn
iz "az 0 l ........ 0 x2 b2 -ﬂzbo
: o 1
i"_' —an_, 0 Ou----u l xl‘l—l bf‘-l —-an_lbo
| %p- | —-a, 0 0....... O_J_xu ] |ba —agby J o
y=[1 0 O.ccecees o) [%
X2
XJ +b9u
. 125
Method 3

Consider the following n' order differential equation governing the output y(t) to the
input u(t) of a system.
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4 ) : . -1).
¥ER ¥ i +an_|y+any=bonl'l+b,(mu)+ ,,,,, +by,_ju+bu

Letn=m=3,

Sy+aytazy+asy =byii+bii+byi+bju

On taking laplace transform of Eqn (1.27) with zero initial conditions, we get.

$’Y(s) +2,57Y(s) +2,5Y(5) +2,Y(s) = bos’U(s) + bys?U(s) + b,sU(s) + bs U(s)

(53 +a'Sz +azs +33)Y(S) = (bosj + b|52 * bzs o1 b;) U(S)

CY(s):_ bys’ +bys’ +b,s+by
TUG) s +as’ taysta,
Y6 _Xi(5) Y©)
Us) UGy ™ X,(s)

Where X163 _ - !
U(s) s’ +ajs® +a,5+a,

Let

Y(s)

= bys® + b,s? + b,s+
X,) oS~ +bys” +bys+ b,

and

On cross multiplying the Eqn (1.28) we get,

~ r

A 3
,\I(s)[s +a|sz+azs+a3] = U(s)

s'X,(s) + a|~"'2FX|(~‘;) +a,5X,(5) +a,X,(s) = U(s)

On taking inverse laplace transform of Eqn (1.30) we get,
.ﬁ] +a|i| +4':12?'\'| 4'83.\" =u

Let the state variable be, X1, X2 and X3
where, X2 =X1
and X3=X1=X2; .. X3= X1
On substituting the state variables in equation (1.31) we get,
X3 +a;X3 +a5X, +a3X; = u
LXKy = —83X) —=@Xy —8;X3 + U
The state equations are,

X3 ==—a3X; —a,X, —3;X;+U
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On cross multiply the Eqn (1.29) we get,

Y(s) = bps’ X, (s) + bys> X (s) + bysX, (s) + b3X, ()

.1.32
On taking inverse laplace transform of Eqn (1.32), we get,
i ] s .-r + b X

)‘ bux’+b|x|+b2\| 3 133
On substituting the state variables in Eqn (1.33) we get,
y = byky + byxz + byX; + b3, ...1.34
Put %; = —a;X; —ayX; —a;X3 tu in equ(4.34)

y= (b3 —aSbO)xl -l-(b:, —'ﬂzbo).\'z +(b| "'albo)x;. +b0ll 135

The equation (1.35) is the output equation.

On arranging the state equations and output equations in the matrix form, we get,

% o 1 o]fx] [° ! |

0f(u
0= 0 0 1 |[*|” . [ . 136
X; —a; —8, ~AlLG

y=[(bs.~ a;by) (b2 —a,bg) (by —a,bg)] | X2 +[b°] " ... 1.37
X3

The above results can be generalized for an n' order differential equation and the
general state model for m = n is given below.

_’_“ B r 0‘ 1 | SRR TS 0 ] -"1 ] m-
X3 0 0 Lo 0 ||x; | |0
" : P+ [u]

£y B 0 Doasw 1| xpt| |[©

| %y | L~8p -~ 8p-1 " Bp-2 e 1% L ...1.38
R
X2

y=[(b, —2,bg) (bp1 ~3nibg) -eonv (by —a3bg) (b —aybg)] [ i | +hov

. ‘ Xn-1

L %a ...1.39
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Advantages of Phase Variables

The state space model can be directly formed by inspection from the differential
equations governing the system. The phase variables provides a link between the transfer
function design approach and time-domain design approach.

Disadvantage of Phase Variables

The phase variables are not physical variables of the system and therefore are not
available for measurement and control purposes.

EXAMPLE 1.7
Construct a state model for a system characterized by the differential equation,

dsy dly dy
—_— 6'—.'- ll—— - - 1
dt? de’ # dt-i =g,

Give the block diagram representation of the state model.
SOLUTION

Let us choose y and their derivatives as state variables. The system is governed by third
order differential equation and so the number of state variables are three.

The state variables x1, x> and x3 are related to phase variables as follows.

X=X
dy
X2 = I = x.l
d2
X3 = Ezz‘ = X»
dy d-y ik ; .
Puty=x,, i x‘z and ? = X3 and 8?3— = X3 in the given equation,

A ).(J +6X3 'i‘]].’(z +6x| +u=0
or Xy=-6x;—11x; —6x;-u.

The state equations are

X =%y
5(2=X3
X3 ==0a; =11x; —6x3 -1

On arranging the state equations in the matrix form we get,

% ] [~0 10 7[x 0]
%0=[0 0 1 [[x;]+| 0|[u]
-6 —-11 ~6]]1x5]| |=I

E ]

X3
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Here y = output

But, y =x
y=Xu X,
. The output equation is, y=[1 0 0]|x;
X3

The state equation and output equation, constitutes the state model of the system, The
block diagram form of the state diagram of the system is shown in Figure 1.7.1

U -U % X; =X, X, = X, y=X;
1 1 11 ] >

*+ 6x

3

el 6
11x
et 11k
6xl
6

Figure 1.7.1 Block diagram form of state diagram
EXAMPLE 1.8

The state diagram of a system is shown in Figure 1.8.1. Assign state variables and
obtain the state model of the system.

y,®

u,(t)

¥,(0)

Figure 1.8.1

SOLUTION

Since there are 4-integrators in the state diagram we can assign, 4 state variables. The
state variables can be assigned at the output of the integrators as shown in Figure 1.8.2. Hence
at the input of the integrator, the first derivative of the state variable will be available. The state
equations are formed by summing all the incoming signals to the input of the integrator and
equating to the corresponding first derivatives of the state variable.
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Figure 1.8.2

On adding the signals coming to the 1% integrator we get, (refer Figure 1.8.3).
X, = — 4x,4 +3u,

On adding the signals coming to the 2" integrator we get, (Refer Figure 1.8.4)
Ky = X, = 3Xg + Uy + 212

On adding the signals coming to the 3™ integrator we get, (Refer Figure 1.8.5)
Xy = —Xg+3U

On adding the signals coming to the 4" integrator we get, (Refer Figure 1.8.6)

.‘.\'.‘g = :\.3 _"‘;.":4

) 3:(] - xl x" S ."(,
u (9 8 A : N
3}1—) &
2u, 4X4
Figure 1.8.3 Figure 1.8.4 Figure 1.8.5 Figure 1.8.6

The state equations are

X, =—dxy +3y,

.{ia =xl -‘3.‘2 +u1 +2u2

i; — _XZ -+ 3U2

..\'4 =N —4X4

The output equations are, y1 = y> and y» = Xa.

The state equations and output equations are arranged in the matrix form as shown
below. The state equations and output equations together constitute the state model of the
system.
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5‘:] 0 0 0 -4 X 30 U
(1 -3 0 of[x| |12l
5,0 [0 =1 0 of[x;| |03
%] [0 0o 1 -4f[x,] [00

010 0f|x
000 1[|x;

X3

]

EXAMPLE 1.9

The state diagram of a linear system is given below. Assign state variables to obtain
the state model.

Figure 1.9.1
SOLUTION

Since there are three integrators (1/s) we can assign three state variables. The state
variables are assigned at the output of the integrator as shown in Figure 1.9.2. At the input of
the integrator we have the first derivative of the state variable. The state equations are formed
by summing all the signals at the input of integrator and equating to the corresponding first
derivatives of state variable.

Figure 1.9.2

On adding the signals coming to node-5, we get, (Refer Figure 1.9.3)
X1 = X2
On adding the signals coming to node-4, we get, (Refer Figure 1.9.4)

X2 = -2X2 + X3

Us X,=x, s ) 1 X Is
O——p——o—— > Xy
&% R Ny
Figure 1.9.3 Figure 1.9.4
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On adding the signals coming to node-=2, we get, (refer Figure 1.9.5).

*3 = _'().{2 +2xl)—x2 —x3 +4y = —).(2 —-2xl _sxz _xa.{. ﬁ
Put 5(2 = -2)(2 + X, -

O3 5(3 =+2X2—X3—ZX| —Xz"xl"'u-'—_-—zx‘ +X2—2X3 +u

Figure 1.9.5

The state equations are

Xy = =2X; + X5
X3 ==2X| + X5 = 2% + U

The output equation is obtained by adding the signals coming to output node (refer
Figure 1.9.6)

*2
b 2:\'1 +5(2 !; 1 |
Put X, ==2x; +X
2 2 3 2)(I @ 0)
v =2x, +(—2%; +X;)
y =2, —2X; + X3 Figure 1.9.6

The state equations and the output equation are arranged in the matrix form as shown
below.

] [0 1 0]x] 0]y
*2= 0"'2 1 x2+0

y=[2 -2 1][x

EXAMPLE 1.10
Obtain the state model of the system whose transfer function is given as,

Y(s) _ 10
Us) s +4s8+25+1
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SOLUTION

Method 1

Y(S) s 10
Us) & +4s +2s+1

Given that, ...1.10.1

On cross multiplying the Eqn (1.10.1) we get,

V@5’ + 45t + 25+ 1] = 10UO)

SY(s) + 4sY(S) + 25 Y(s) + Y(s) = 10U() 1102

On taking inverse laplace transform of Eqn (1.10.2) we get,

y+4y+2y+y = 10u ..1.103
Let us define state variables as follows,

X, =y ; X=¥ 3 %=7

Put ¥=1X; 3 ¥=x: » o ¥=x, andy = x, in the equation (1.10.3)

S Xy FAXy +2x, +X; =10u

or ).‘3 = -X| —2XZ _4){3 + 10u.
The state equations are
XI=Xy ; X2=X3 ; X3=-X;=2%,—4x;3+10u.

The output equation is y = X1

The state model in the matrix form is,
5170 1 0][x] [0]
%o |==] O 0 1 {|xy|+| 0O
%3] [-1 -2 -4[xs] [10
y-_-[l 0 0] X |-
X2
X3

Method 2

Y(s) 10 5 L
UGs) s +4s’ +2s+1 SB('*%“L':TJ%)

10/s°
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The signal flow graph for the above transfer function can be constructed as shown in
Figure 1.10.1 with a single forward path consisting of three integrators and with path gain 10/s>.
The graph will have three individual loops with loop gains — 4/2, -2/s?, and 1/s*.

‘0 .)‘(3 1/s x3 1 )'(2 ‘/5 x: 1 f\'l 1/s- x| |

Figure 1.10.1

Assign state variables at the output of the integrator (I/s). The state equations are
obtained by summing the incoming signals to the input of the integrators and equating them to
the corresponding first derivative of the state variable. Refer Figure 1.10.2 to Figure 1.10.4).

The state equations are %,

.\.L; = -IXI '1"‘-\'2

s X3

..\‘ - —.. +
~=X

The output equation is, y = X1

Figure 1.10.4
The state model in the matrix form is,
5] [ 10][x,] [0][u] ; y=[1 0 0][x,
X =]=2 0 1]|x, [+] O X,
i:, -1 0 0 .\3 IO - X4

1.7 STTE SPACE REPRESENTATION USING CANONICAL VARIABLES

In canonical form (or normal form) of state model, the system matrix A will be a
diagonal matrix. The elements on the diagonal are the poles of the transfer function of the

system.

By partial fraction expansion, the transfer function Y(s)/U(s) of the n™ order system can
be expressed as shown in Eqgn (1.40).

RO o BT RN 2+y”
2@ P tTe T ...1.40
where Ci, Cz, Cs.....Ch are residues and A1, Ag,........... An are roots of denominator

polynominal (or poles of the system).

The equation (1.40) can be rearranged as shown below.
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Y() = by +— C‘l + sz  — +—91‘r
US " sa+ly sa+l2) s (1+°1)
S S $
= by + C'/_S + By a8 Fiiidisasinid +-—Cﬂi
14X /s 1+Ay/s 1+A,/s

Y 1/
2 Y(s)=Db, U(s)+[ _5___‘.(; y 115
=78y, | VO | gy, <G | VO *

...... +[__' L — c,,J U(s)

1+(1/s)x X, 141

The equation (1.41) can be represented by a block diagram as shown in Figure 1.5.

¥ g DL 3
+/ >

Figure 1.5 Block diagram of canonical state model

Assign state variables at the output of integrator. The input of the integrator will be first
derivative of state variable. The state equations are formed by adding the incoming signals to
the integrator and equating to first derivative of state variable. The state equations are,

i‘l = -l,xl +u

*2 — —szz +u
Xp = =ApX, tu

The output equation is, y=C x,+CX, * e C.x +b,u.

The canonical form of state model in the matrix form is given below.

40



$l N & 0 s 0] [x ] '1'[u]
iz 0 —;—z | EPOPAE 0 X2 1

;3 ....... 0 I3+l

]

<

. L
|

>
w

s ' ...1.41
s |, 501 5 o SR C,) x|
X2

[%a] 142

The advantage of canonical form is that the state equations are independent of each
other. The disadvantage is that the canonical variables are not physical variables and so they
are not available for measurement and control.

When a pole of the transfer function has multiplicity, the canonical state model will be
in a special form called Jordan canonical form. In this form the system matrix A will have a
Jordan block of size q x g, correspond to a pole of value A1 with multiplicity g. In the Jordan
block the diagonal element will be the poles and the element just above the diagonal is one.

Consider a system with poles A1, A1, A1, As, As, ... An Where A1 has multiplicity of three.
The input matrix (B) and system matrix for this case will be as shown in Eqn (1.41a). The
system matrix is also denoted as J.

7 Jordan block of size 3x3
o 'f—'i,""i""b'E 00 ]
0 e iy 1 -
! § 0 =% 0.0
B=l - A=J=..0.....0.....0..—M :
1 Lo 0 0 0.2, o

The transfer function of the system for this case is given by Eqn (1.40a) and the block
diagram is shown in Figure 1.5a.

C, C3+C‘+ ...... +;§i—
n

Y(s) _ & +
Ue P TEeny Gem)t sthr sthe
....1.40a
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X X Y(s
—)%—'——) /s —_ c, >+ )
)"l
X, X
%%)——) s E_Je
ll <
U(s 3 X X
(,) 3 /s . > G
: | n
X
‘l 4 /s > C4
; .
I
k ya

2
A

Figure 1.5a Block diagram of Jordan canonical state model
EXAMPLE 1.11

A feedback system has a closed-loop transfer function

Y(s) 10 +4)
Us) s(s+1(6+3)

Construct three different state models for this system and give block diagram
representation for each state model.

SOLUTION
Mode 1
' 1040
q 4 : =

A signal flow graph for the above transfer function can be constructed as shown Figure

1.11.1 with two forward paths and two individual loops. The forward path gains are 10/s? and
40/s3. The loop gains are -4/s and -3/s2.
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Assign state variables at the output of integrator as shown in FIGURE 1.11.1 and so the
input of integrator is first derivative of state variable. The state equation are obtained by
summing all the incoming signals to the integrator and equating to the corresponding first
derivative of the state variable. [Refer Figure 1.11.2 to 1.11.3]

Figure 1.11.1

The state equations are

X; 10u,
)'(l = -4XI +x2 Xs_)x X x:
. - 3 40u —)o
X ==3x; +x3 +10u —4x,

X3 =40u Figure 1.11.2 | Figure 1.11.3 Figure 1.11.4
The output equation is, y = X1

The state model is obtained by arranging the state equations and the output equation
in the matrix form as shown below. The block diagram representative of this state model is
shown in Figure 1.11.5.

J'(I -4 10 Xi 0 [u] )’=[IO 0] X,
."(2 ==3 0 1 Xa |+ 10 : X4
%3] L0 0 0f|x;] [40 X; |
3 Kk
u X3 XJ SN X, X y X
2 2 1
3 40 -[ [ ++ J- J ! >
10 10u 4 J ‘
Figure 1.11.5
Model 2 ‘
. Y(s) _  10(s+4)
Give that, UGs)  sGD)(+3)
i Y(s) & Xi(s) Y(s) = 10(s+4)
Us) UG)  Xi(s) ss+1)(s+3)
ana, 1 and &) _ 10 (s+4)

UGs)  s(s+1) (s+3) X, (s)
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Xy(s) _ I | X (s) |

Us) s(s+1)(s+3) —m COTUG) aas? 43

L1
On cross multiplying the Egn (1.11.1) we get,
Xl(s)[53 +4s? 4+ 35] = U(s)

o 8" Xy (s) +45 X, (s) + 35 X, (s) = U(s) .1.11.2

On taking inverse laplace transform of Eqn (1.11.2) we get,
X +4%, +3%, =u L1113
Let the state variables be x1, X2 and xs; where x2 = x1 and X3 = X1.
Put %=X, X =x; and¥ =k, inEqn(1.11.3),
X3 HAXy F3Xy =u o (o) X3 =-3x, —4x5u
The state equations are
X=Xy | X3=X3 ; K3==3x3-4x3+u
Consider the second part of transfer function,

ﬂ= 10(s+4)=10s+40
X (s) . L1114

On cross multiplying Egn (1.11.4) we get,

V{s) = 10s X,(s) + 40 X (s) 1.11.5

On taking inverse laplace transform of Eqn (1.11.5) we get,

y =10x%, +40x,
Put %, =x,, 5y =10x; +40x; =40x, + 10x,

Here, y = 40x; + 10x; is the output equation. The state model in the matrix form is
shown below. The block diagram representation of this state model is shown in Figure 1.11.6.

7o 1 0 x," [0 [u] y=[40 10 0][x,
*2 =|-O 0 ] X2|+ 0 H KI

0 -3 -4 xJJ |_l x4

AN



Figure 1.11.6
Model 3

Y(s)  10(s+4)
Uis) s(s+1DG+3)

By partial fraction expansion Y(s) / U(s) can be expressed as,

Y(s) 10(s+4) _
Us) s(s+D(s+3)
__10(s+4) | _10x4_40
_(5+1)(s+3)]’_o_ Ix3 3

.
S

s+1 s+3

’IO(s+4) _IO(-I+4)=10><3=_'5
s(+3) )., -l(-1+3) -1x2

_lO(s+4) _IO(—3+4)= 10x1 =_5_
sG+1) |,y —3(-3+1) -3x(-2) 3

Y(s) _40/3_ 15  5/3
Uis) s s+l s+3

The equation (1.11.6) can be rearranged as shown below

Y(s) 40/3 15 S/3
Uts) s s(i+1/s) s(1+3/5)

40 1/s /s 5
Y(s)=[lx—] U(s)— i x 15| U(s) + 5 x3 U(s)
. Ls 3 1+-x1 1423
L]

The block diagram of the Eqn (1.11.7) is shown in Figure 1.11.7

u@s) x, 1 1 40

i :
@0 |-
w

Figure 1.11.7

45

ol -l

...1.11.6
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Assign state variables at the output of the integrator as shown in Figure 1.11.7. At the
input of the integrator, the first derivative of the state variables will be available. The state
equations are obtained by adding incoming signals to the integrator and equating to the
corresponding first derivative of the state variable.

The state equations are
5(1 =u
)'(2 ==Xa+1u
*3 = ‘—3X3 +u
L. 40 5
The output equation is y = s 15x, +3%

The state model is the matrix form is shown below. The Figure 1.11.7 is the block
diagram representation of this state model.

3 3

?'(3 0 0 -3 x] ] x]

%7 [o o 0][x,T [v][u] y=[ig 18 2] Xy

EXAMPLE 1.12

Determine the canonical state model of the system, whose transfer function is
T(s) = 2(s+5)/[(s+2) (s+3) (s+4)]

SOLUTION

By partial fraction expansion,

Yo) 26+5) A B C

UE) G+ (+3)(s+4) s+2 s+3 s+d
_2(s*3) 2-2+5) . _2x3 _,
(+3)(s+4)|., (2+3)(2+4) 1x2

B= 2(s+5) . 2(-3+5) =2x2=_4
(s+2)(s+4)|s3 (-3+2)(-3+4) ~-l1xl

__ A-4+5)  _ 2x1
T (4+2)(-4+3) -2x(-1)

A=

s
T (5+2)(5+3)

g

11201
The equation (1.12.1) can be rearranged as shown below.
YO _ 3 4 .
U(s) s(1+2/s) s(1+3/s) s(l+4/s)
1 ! E |
S Y(s) = : x 3| U(s) - —8 4 | U(g) +| —8 y
I 4 U(s) — | (s
l4+-x2 . - . (%)
S s 5 “‘
w O A L1122
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The equation (1.12.2) can be represented by the block diagram in Figure 1.12.1

Assigns state variables at the output of the integrators as shown in Figure 4.12.1. At the
input of the integrators we have first derivative of the state variables. The state equations are
formed by adding all the incoming signals to the integrator and equating to the corresponding
first derivative of state variable.

The state equations are

:‘l-‘———)-\" +U H }.\z 7*—3;‘2 +u , '\l __'x'_' u
U % .
(s) X I/s * 3 c ' Y(s)
% (D
X X,
- e — ¢ X
i e
X, X
__K%_)J I/s )
4
Figure 1.12.1
The output equation is, y = 3X1 — 4X2 + X3
The state model in matrix form is given below.
1 [-2 o o]fx] [11r " [x; ]
| [T vl e o]
X;|=| 0 =3 0} \:|+‘l ’\:;
X3 0 o0 -4)|x] |1 [\.J'

1.8  SOLUTION OF STATE EQUATIONS
SOLUTION OF HOMOGENEOUS STATE EQUATIONS
(Solution of State Equations without input or excitation)

Consider a first order differential equation, with initial condition, x(0) = Xo.

x
—=ax ; x(0)=
dt BTy 1.43

On rearranging Eqgn (1.43) we get, E.}i =adt ...1.44
X

On integrating Eqn (1.44) we get,
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logx=at+C

nx=eltt0 C

_.at
=g .e ...1.45

When t = 0, from Eqn (1.45) we get, x = x(0) = e°
Given that x(0) = X0 ; ..e% = Xo

On substituting the initial condition in Eqn (1.45), we get the solution of first order
differential equation as

X = e Xo. ....1.46
X 1 ] n

We know that, €’ =[I+x+§xz+ ......... — X ] 147
From Eqn (1.46) and (1.47) we get,

T fren . L

R XO 2 3

) ..1.48

Consider the state equations without input vector, (i.e., homogeneous state equation)

X=AX® ; X0)=X, 1.49

Where X(0) is the initial condition vector.

By analog of the solution of first order differential equation [Egn (4.48)], the solution
of the matrix or vector equation can be assumed as shown in Eqn (1.50).

2 3 i
X()=A, +At+AL +AL + ... AL T 150

Where Ao, A1, Az, .... Ai... are matrices and the elements of the matrices are constants.

On differentiating the Eqn (1.5) we get,

' Eook e v HA L ...
B =iy £ S 151
On multiplying Equation (1.50) by A, we get,
AX(():A[AO+A,t+A2t2+A3t3+ ........ +At ..., ]
' ..1.52

From Eqgn (1.49), we know that X(t) = A X(t). Therefore we can equate the coefficients
of equal powers of t in equations (1.51) and (1.52) as shown below.
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On equating constants we get, On equating coefficients of t? we get,
' 3A3 -_-'A Az
Al = A Aﬂ l
On equating coefTicients of t we get, sA, =-3-,A_ A,
2A, =AA y
2 | Put A, =5A2 Ap
|
Ay =—AA
1
2 .-.A,:le—A’AO
1 43
: =— A"A
oo Az =“2‘A AAO A3 3! 0
1 .2 Similarly, on equating coefficient of t' wege
Az =—2' A Ao l
A' o Al Ao
i!

In the above analysis, the matrices A1, Az, As, etc., are expressed in terms of A and As.
Hence replace the matrices Az, A2, As.... Aj in the assumed solution of X(t) [i.e., Eqn (1.50)]
by the equivalent terms of obtained above.

WO T BT T L .
.'. X(t)=A0 +AAOt+EA Ao[ +3!A Aot + .......... il 0

: I Sazn o 1 o83, +_1_A‘t‘+ ....... } Ao
=[l+At+zA t +3!A i S .

..1.53

where | is the unit matrix.
| tis given that, whent =0, X(t) = X(0) = Xo ...1.54
From Egn (1.53) when t = 0, we get
X(O],no =X(O) = 2 ..1.55
From Equations (1.54) and (1.55) we get,
Ao = Xo ... 1.56
On substituting for Ag from Eqn (1.56) in Eqgn (1.53) we get,
X(t)=[1+m+-;,«’ﬂ A +_1A‘:'+ ....... ]x,,

; it ..1.57

Each of the term inside the brackets is an n x n matrix. Because of the similarity of the
entity inside the bracket with a scalar exponential of e, we call it a matrix exponential, which
may be written as,
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M = T+ At+ A% 4]

e 7 L
2 3!At+ ......... +7;At+ ........

r ...1.58

Hence the solution of the state equation is
X(t) =eM X, 1.59
The matrix e is called state transition matrix and denoted by ¢(t). From the solution of

the state equations it is observed that the initial state Xo at t = 0, is driven to state X(t) at time t
by state transition matrix.

SOLUTION OF NON HOMOGENEOUS STATE EQUATIONS
(Solution of state equations with input or excitation)

The state equation of n'" order system is given by

XMW =AX@®+BUW ; X(0)=X, ...1.60

where Xp is initial condition vector.

The state equation of Egn (1.60) can be rearrangement as shown below.
X1 -A Xt =BUWY ...1.61
Premultiply both sides of Eqn (1.61) by e

e M[X(W)-A X()]=¢ B U
MK +e M (-A) X(1) =M B U(t)

...1.62
Consider the differential of et X(t)
4 (e x) = XO +e M (-A) X()
dt ...1.63
On comparing equations (1.62) and (1.63) we can write,
_‘_]_(c“'“ }((()) =¢"M B U
dt
d(c- Al X(t)) = c-l\l B U([) dl
...1.64
On integrating the equation (1.64) between limits 0 to t we get,
1
e M X({)=Xo + J’c-m B U(t) dt
v ...1.65
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where Xo = Initial condition vector = Integral constant
T = Dummy variable substituted for t.

Premultiply both sides of Eqn (1.65) by et

l

cMe M X () =eM X, +c“j ¢~ B U(1) dt
0
l

X(t)=e™ Xo +e[ e B U(T) dr
0 ...1.66

The term e independent of the integral variable t, and so e™! can be brought inside the
integral function.

t
X=X M BUD
0
t
X(1) =eM X, +J M B U(T) dr
¢ ..1.67

The equation (1.67) is the solution of state equation, when the initial conditions are
known at t = 0. If initial conditions are known at t = to then the solution of state equations is
given by Eqgn (1.68).

X(t)=e M) X(ty) + jc"“")B. U(x).dt
K. ...1.68

The state transition matrix e”t is denoted by the symbol ¢(t), i.e., ¢(t) = e

Hence, eAtt) can be expressed as, At = ¢(t-to) ...1.69
and, e*®9 can be expressed as, eA¢? = (t-1) ...1.70
The equation (1.67) and (1.68) can also be expressed as

]
X(0) = &(0) X(0) + [¢(t - 1) B.U(z).q¢ if the initial conditions are knownt = 0 171
L[]
t
X(0) =6t = to) X(ty) + [¢(t —t)B,U(x).0¢  if the initial conditions are knownt = to ... 1.72
v.

PROPERTIES OF STATE TRANSITION MARIX

1. #(0) =™ =1 (unit matrix)

A - o ¥
2. dO)=c" =(c MU =l0-0]" or 470 = b(-1)
3. Mirty) =M o () (A< g01,) 00,) = 61y) . 60,
COMPUTATION OF STATE TRANSITION MATRIX
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Method 1: Computation of e” using matrix exponential.

Method 2: Computation of e* using laplace transform.

Method 3: Computation of e by canonical transformation.

Method 4: Computation of et using Sylvester’s interpolation formula (or computation
based on Cayley-Hamilton theorem).

The computation of state transition matrix using matrix exponential and laplace
transform are presented in this section.

Computation of state transition matrix using matrix exponential

In this method, the e™ is computed using the matrix exponential of Eqn (1.58), which
is also given below,

1 1 1
Al _ e By o I e e I Al
[ _l+A!+2!A|'+3!At Fiveresss +-l.!AI+ .......
where, e”l = State transition matrix of order n x n
A = System matrix of order n x n

I Unit matrix of order n x n.

The disadvantage in this method is that each term of e will be an infinite series and
the convergence of the infinite series are obtained by trial and error.

Computation of State Transition Matrix by Laplace Transform Method
Consider the state equation without input vector, X(t) = A X(t) ...1.73
On taking laplace transform of equation (1.73) we get,
s X(8) - X(0) = A X(s)
s X(8) - A X(s) = X(0)

sIX(s)-AX(s)= X(0).

(s1-A) X(s) = X(0) where | is a unit matrix.

Premultiply both sides by (sl — A)?
X(s) = (sl-A)™" X(0)
On taking inverse laplace transform we get,
X0 =L [s1-A)"' X(0)] : X@®=L"[T-A)"]X(0) ...1.74
On computing Eqn (1.74) with the solution of state equation, X(t) = e X(0) we get

et =L [(51-A)" ] or  L[eM]=(sl-A)" ...1.75
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We know that, © =¢@ “rleu = r8M1=6 @) .(1.76)

where, ¢(s) = (sI-A)? and it is called resolvant matrix.

From the system matrix, A the resolvant matrix, ¢(s) can be computed. By taking
inverse laplace transform of resolvant matrix, the state transition matrix is computed, from

which the solution of state equation is obtained.

The solution of state equation is given by

X(t) = eM X(0)
s X =" [¢(s)] X(0) (177

where, ¢(s) = (sl-A)*

Consider the state equation with forcing function (input or excitation)

X =AX+BU .. 178
On taking laplace transform of Eqn (1.78), we get

s X(s) — X(0) = A X(s) + B U(s)
sl X(s) — A X(s) = X(0) + B U(s),

(sI-A) X(s) = X(0) + B U(s) where | is the unit matrix. ...1.79
Premultiply the Eqn (1.79) by (sl-A)*

=~ X(s) = (sl-A)" X(0) + (sI-A)™" B U(s)
= ¢(s) X(0) + ¢(s) B U (s) ...1.80

On taking inverse Laplace transform of Eqn (1.80) we get,
X(t) = ¢(t) X(0) + L' [¢(s) . B.U(s)] 181
The equation (1.81) is the solution of state equation with forcing function.

EXAMPLE 1.13

Consider the matrix A, Compute e” by two methods.

S
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SOLUTION
Method 1

Ui =[l+m+'_
21

AU 4 LAY ]
2
fuf ¥
-

woanels s )
R i R B

L [6 7)[0 1[4 -15
M:A'A:[—M _1s)[-2 -3)7[ 30 3

|22+ L AN A e
cAt=I+At+;A1 +-5—!A(+“A

-14 =15
Lo 10 ! il _3t2+l S l’+—]-[ | ]l‘»f...
= + 3 t"’E 6 7 6| -14 ~15 24| 30 3

0 1] |2 -
5y | 5
10 0 t] |2 3Bel e %t’ '514 _?4
[ ]+ 2' -3l . 2 + + --------
=lo 1f |- N, 12| | e S| |2 3Ly
3t -il —-3—- > = =
(- 4ot =2

5
7.5, 8 .
-2t+3|2—-3—12+zt o sh=cifac

The each term in the matrix is an expansion of e, The convergence of series obtained
by trial and error. Consider the expansion of et and e?.
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c'=l-tr%t2—}!t’+£}t“ ...... =|-t+—t? t%%t4 ........

._--1*=|..21+§'12212 ;123t’+::—!2‘t“ ...... =1-2t+2t2 t3+§t‘

2t o2 =221+ = +—tt -1+ 2022 + 13—%“4 ,,,,,
o L P

el - =11 #%t’ —ét3+2—]4-t4.......-.l+2t—2t2 +§t3 -—%—t" e
-t-—;-t2+%t3—§t‘+ ............

2¢7 +2¢7H =2+2t-12 +%t3 —llzt“+.....+2 -4t +4¢2 -%ﬁ +§14..... :
)

=—21+3t?—zt’+-5-t“ .........
3 4
| b | l 4 8 4 4
-1 -2 2 ] 1 2 )
- =- e S sl St S5 R T T TS R L]
e "+ 2¢ I+t > 6 24 3 3
7. 5,5 314
LR R | B Sl U ecesee
V=3 2 2 24

i - -1 -2
26~ -0~ e -¢ J

. oM =
: “2et 42 —e 42e7
Method 2

0 1
A =

-2 -3
emgzq,(t)nl."[{s]—h}"]

Lo][o 1] [so][© I=[5 "}

SI-A-{D !]_L' 3| 7o s |2 -3] |2 s*?
Let, & =|sl = A|=determinant of (sl - A)

nA=[s1-Al= =s(s+3)+2=5" +3s+2=(s4+2)(s+1)

S
-
-~

_[Cofactor of (sl - A)]" _ [Cofactor of (s1 - A"

$)=[s1-A]"
b=l ] determinant of (sl = A) A
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. b 1 s+3 |
=9 (st (s+2)|-2 s

s+3 1
s+1 2 +1)(s+2

(s+1)(s+2) @+ E+2)

By partial fraction expansion, ¢(s) can be written as,

Al B| A?. B!

+ +
()= s+1 s+2 s+l s+2
s+1 s+2 s+l s+2

Coges A B | el e B
(s+1)(st2) s+l s+2 (s+1)(s+2) s+l s+2
|
s+3 " A, = =
l=3-¥-2s _1?2 $+ 205y
1
Bl=$'+‘31 = . By=—o  =-l
S+l S=-2 S+] s,_:
-2 = AJ o B.‘ S = A.‘ 5 B‘
(*D(s+2) st 542 G+DE+2) s+l s+2
- -2 =2 A4= S =]
A'x--‘S’*“:’.-,aq §+2g_y
s
..2| Bt =2
BJ:S'?“F_«:Z ' S+l$--2
2 1
s+1 s5+2 s+1 s+2
Sé(s)= A A 2
s+l+s+2 s+1 s+2

On taking inverse Laplace transform ¢(s) we get ¢(t), where ¢(t) = e

i -1 -2t
2e'-e 2 e'-e

Iy ¢ S =
50l R é(t) —Ze-' +2€-2| _e-l +2e-2!

It is observed that the results of both the methods are same.
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EXAMPLE 1.14

c 0 0 o c ® -
Giventhat A, = P A= A= compute €.
0 o -0 0 -0 C

SOLUTION

Here A = A, + A,

- e
A el\l - e(A' A:, = eAﬂ.c "

sonfy Fo bl M 2
A, _—_|51_AI|='S-‘-)0 5—00‘=(S_0)2 ;

_—l 0
i il A =_'__[S-o o]= —
[Sl_Al] ..Xl_ s (s— )2 = ! 0 |

s-0C
e'dl 0
P Ry
eM =L [(Sl Al) ] [0 .
1 0] [0 o] [s0]]0 mJ~|:s _m}
SI—AF{O 1| -0 0f [0s] [-@ 0] [@5
S -0
Aj =lsl - Ay|= =s:+m2
. -
2 [}
[Sl—/\zl-'-_l. s o] s o] |FraZ Faw?
A ] s -52 +(Dl s . = - :
s+’ 2 L2

l' ! ][(SI_A ) l] CO
Si“(ﬂl COos mt

-t .
: 0 cos wt sin wt
CI“ - CA'I.OA’l - )
0 ot |[-sint cost

e “'eoswt e ®'sinot
cAl -

_c’dl sinot c“” oot
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EXAMPLE 1.15

For a system represented by state equation X(t) = A X(t)

-

| " 1
The response is X(t) ={ : _2‘] when X(0) = [_2]

-1 l
and X(1) = [e _‘:\ when X(0) = [_]]
-e

Determine the system matrix A and the state transition matrix
SOLUTION
The Solution of State equation is, X(t) = e X(0)

Premultiply the Eqn (1.15.1) by e

e~M X (1) = e eM X(0)
L eMX(t) = X(0)

c-:'( IJ
ic X()= and X(0) = i
One of the response is X(t) = [—25“} ind X(0) [_2

On substituting the response in equation (1.15.2) we get,

Lctc;"‘=[c" sz]
€ ©x

From equation (1.15.3) and (1.15.4) we can write

On multiplying the equation (1.15.5) we get the following two equations.

=21 _ -N =
e, e 2012 e I

C,

=2 A =
5 € 2c22 c 2
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-1
The second solution of state equation is  x(t) = [e } and X(0) = [ l]
B -1

On substituting this solution in equation (1.15.2) we get,

o S

From Eqgn (1.15.4) and (1.15.8) we can write,

b BT

On multiplying the equation (1.15.9) we get the following two equations,

e ¢cl—g_e'=
i 12 ' 1.15.10

-t _ o -
czlc czze =-1

. 1.15.11

equation (1.15.10)  x o' = T

equation (1.15.16) X | = e, e —2¢, e - |
=) (+) (=)

On subtracting epe™ = e'-1

From Egn (1.15.12) we get

e'-1 e 1

= s O 2
€12 e_z[ e_zl e_zt =€ .—C L
...1.15.13
. 2t
From equation (1.15.6), ¢, = 1+Qelzzle s
=
- N 2ty -2t -t -t _
Pute, =e' —e*, e, = 1+2(e _2? X l+2e2 2 2~
€ e e 2
-t
e
¢ ¢
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equation (4.15.11) xe™* = ey e —e), € =—¢™

equation (4.15.7) x1 = ey e ey, 67 =2

- & )
=2 =
On subtracting Cpe ™ =2-¢
From Eqn (1.15.14) we get,
—et+2_—¢ 2 _ _etize™
ey = = = e T+ JR=T =

From Equation (1.15.11), o il

—1+(-e' +2e™)e”

=—e'+2¢%, €= =
Putey, =—e'+2¢~, €2 et
t t
~1-142¢" -2 2e
e ____l__.l-—-——.—-—_-‘—+—j=—2e‘+2c2‘
21 et et 8
b1l
: 2¢' =¢*' il
o o B . 2 by 2e?
o ey 2 e’ +2e -¢c +2ZC
-[_c—

o -21
2c # e'-c ]
Al
S had— -2 -1 -2t
et 42e7 —¢ T +2e
e”lis the state transition matrix.

We know that, I'[em]=¢(s)

Where $®)=6I-AY" 3 28 =(s1-A) or A =sI-¢(s)"

2 1 1 : 1
s+1 s+2 s+1 s+2
ok e’m, !
¢(S) [\ 4 --2 2 —] 2

N

+ +
s+1 s+2 s+1 s+2
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[2(s+2)—(s+1) (s+2)—(s+1)
(s+1)(s+2) (s+1)(s+2)
T —2s+2)+2s+1)  ~(s+2)+2(s+1)
(s+1)(s+2) (s+1)(s+2)
s+3 ]
_[ G+ (5+2)  (s+1)(s+2)
— -2 s
[ (s+1) (s+2)  (s+1)(s+2)
Determinant of ¢(s) =_ SG+N+2 _  s* +35+2
+12+2)? (s+1)? (s+2)°
(s+1)(s+2) |

1 (s+1)? (s+2)? & (s+1)(s+2)

S -1
4,(5)—1:; (S+l)($+2) (s+|)(s+2) B 5 =2 |
(+1)(s+2 5 S * (e e

[ s+1)(s+2) (s+1)(s+2)

A=sl—¢>(s)"'.-:{] 0]_-3 -1 [so]fs -17 [0 !
& 2 s+3 Os~2 s+3| |-2 -3

RESULT

A ={ ¢ l] . M 2¢' - ¢l
R =d 27 +2¢® ¢t 427

EXAMPLE 1.16

A linear time-invariant system is characterized by homogenous state equation.

MEN

Compute the solution of the homogenous equation, assuming the initial state vector.

%=
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SOLUTION

L P i e

Isl—Al:S—l " \2(5—1)2—0=(S-‘)2
2 s—1
b 4§
\ s-1 0 - s—1
(s1-A)" =— 2{1 | ] .
(s=1) G s

R L
o = g =17 (6011 (6 - A=

e' e

. . A B B e
The solution of the state equation is, x()=¢™ X, = .e [ ]=
te' ¢'||0 te'

1.9 STATE SPACE REPRESENTATION OF DISCRETE TIME SYSTEMS

The state variable analysis techniques of continuous time systems can be extended to
the discrete-time system. The discrete form of state space representation is quite analogue to
the continuous form.

In the state variable formulation of a discrete time system, in general, a system consists
of m-inputs, p-outputs and n-state variables. The state space representation of discrete-time

system may be visualized as shown in Figure 1.6.

Let. State variables = X,(K), X,(K), X,(K)y wooenicen. x (k)
Input variables = u,(k}, u,(k), uy(K), -oeroe u_(k)
Output variables =y, (k), ,(k), y,(k), ..cccoccec y (k)
, u, (K)— — vy, (k) @
'?:: é w (k)= 2 x E yz(k) "f '—:‘é Discrete time v
g ? Jus(k)—.> cl;;s‘:zt:ytsrtr:; - y,(k)} é ; U —=>| Control System [—
= ; : -0
I e —y,(k) ° U
L 4 L X

x, (9 %,00 x50 %8

n number of state variables

Figure 1.6 State space representation of discrete time system
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The different variables may be represented by the vectors (column matrix) as shown
below.

uy (K) yi(k)] M,
lnput o u;(k) : Ouput = ¥, (k) . State variable gl \:“\)‘
vector 0= : vector =1 T e LS l

Uy (K) ¥y (K) X )]

Note: The simplified notation x(k), y(k) and u(k) are used to denote x(kT), y(kT) and
u(kT) respectively. Also for convenience the variables are denoted, X1, X2, Xs,....: y1, Y2, y3, and
U1, U2, Us.....

The state equation of a discrete time system is a set of n-numbers of first order
difference equations.

xl(k+l)=f,(xl, XZ, ...... Xn; U|, U:..... um)
Xz(k'i' |)= fz(x|. X2y ceeers Xps Up, Us . Um)
xp(k+ 1) =1 (x), X9, -..... X 3 O3y Wy ceer Vi)
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ANALYSIS AND DESIGN OF CONTROL SYSTEM IN STATE SPACE
2.1 DEFINITIONS OF INVOLVING MATRICES

Matrix: A matrix is an ordered array of elements which may be real numbers, complex
numbers, functions or operators. In general the array consists of m rows and n columns. When
m = n, the matrix is called square matrix. When n = 1, the matrix is called column matrix or
vector. When m = 1, the matrix is called row matrix or vector.

Diagonal matrix: It is a square matrix whose elements other than main diagonal area
all zeros.

Unit matrix: It is a diagonal matrix whose diagonal elements are all equal to unity. The
elements other than diagonal are all zeros. It is denoted by I.

Transpose: If the rows and columns of an m x n matrix A are interchanged, then the
resulting n x m matrix is called the transpose of A. The transpose of A is denoted by AT.

Determinant: A determinant consisting of the elements of a square matrix (in the order
given it the matrix) is called the determinant of the matrix.

Symmetric matrix: A square matrix is symmetric if it is equal to its transpose, i.e.,
AT = A If A is a square matrix, then A + AT is a symmetric matrix.

Skew-symmetric matrix: A square matrix is skew-symmetric if it is equal to the
negative of its transpose, i.e., AT = -A. If A is a square matrix then A-AT is a skew symmetric
matrix.

Orthogonal Matrix: A matrix A is called an orthogonal matrix if it is real and satisfies
the relationship AT A= AAT = |.

Minor: If the i row and j™ column of determinant A are deleted, the remaining (n-1)
rows and columns form a determinant Mj;. This determinants is called the minor of the element
dij.

Cofactor: The cofactor Cjj of element ajj of the matrix A is defined as Cjj = (-1)™) M;,
where Mij, is the minor of ajj.

Adjoint matrix: The adjoint matrix of a square matrix A is found by replacing each
element a;; of matrix A by its cofactor Cjj and then transposing.

Singular matrix: A square matrix is called singular if its associated determinant is
zero. If the determinant of the matrix is non zero then the matrix is non singular.

Rank of matrix: A matrix A is said to have a rank r if there exists an r x r submatric of
A which is non singular and all other q x q submatrices are singular, where q > (r+1).

Conjugate matrix: The conjugate of a matrix A is the matrix is which each element is
the complex conjugate of the corresponding element of A. The conjugate of A is denoted
by A*.
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Real matrix: If all the elements of a matrix are real then the matrix is called real matrix.
A real matrix is equal to its conjugate.

2.2 EIGENVALUES AND EIGENVECTORS

A nonzero column vector X is an eigenvector of a square matrix A, if there exists a
scalar A such that AX = A X, then A is an eigenvector (or characteristic value) of A. Eigenvalue
may be zero but the corresponding vector may not be a zero vector.

The characteristic equation of n x n matrix A is the n'" degree polynomial of equation.
X1 - A] = 0, where 1 is the unit matrix. Solving the characteristic equation for A gives the
eigenvalues of A. The eigenvalues may be real, complex or multiples of each other.

Once an eigenvalue is determined it may be substituted into AX = AX and then that
equation may be solved for the corresponding eigenvector.

PROPERTIES OF EIGENVALUES AND EIGENVECTORS

1. The sum of the eigenvalues of a matrix is equal to its trace, which is the sum of the
elements on its main diagonal.

2. Eigenvectors corresponding to different eigenvalues are linearly independent.
3. A matrix is singular if and only if it has a zero eigenvalue.
4. If X is an eigenvector of A corresponding to the eigenvector of A and A is invertible,

then X is an eigenvector of A corresponding to its eigenvalue 1/A.

5. If X is an eigenvector of a matrix then KX is also an eigenvector for any nonzero
constant K. Here both X and KX correspond to the same eigenvector.

6. A matrix and its transpose have the same eigenvalues.

7. The eigenvalues of an upper or lower triangular matrix are the elements on its main
diagonal.

8. The product of the eigenvalues (counting multiplicities) of the matrix equals the

determinant of the matrix.

9. If X is an eigenvector of A corresponding to eigenvalue of A, then X is an eigenvector
of A-CI corresponding to the eigenvalue A-C for any scalar C.

DETERMINATON OF EIGENVECTORS
Case 1: Distinct eigenvalues

If the eigenvalues of A are all distinct, then we have only one independent eigenvector
corresponding to any particular eigenvalue Ai. The eigenvector corresponding to Ai may be
obtained by taking cofactors of matrix (Ai I-A) along any row.

Let, m;= Eigenvector corresponding to Ai
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Now the eigenvector m; is given by

m=| . ;k=lor 2or,..n

20
where Cki, Cka,...Ckn are cofactors of matrix (Ai I-A) along k™ row.
Case ii: Multiple eigenvalues

In this case the eigenvectors corresponding to the distinct eigenvalues are evaluated as
mentioned in case (i).

If the matrix has repeated eigenvalues with multiplicity “q”, then there exists only one
independent eigenvector corresponding to that repeated eigenvalue. If A, is a repeated
eigenvalue, then the independent vector corresponding to As can be evaluated by taking the
cofactor of matrix (A1 1-A) along any row as mentioned in case (1). The remaining (q-1)
eigenvectors can be obtained as shown in Eqgn (2.2).

Let, m, = p™ eigenvector corresponding to repeated eigenvalue Ai

m, = p!dA; 3 p=|,2,3,---(q-l)

.22
where Cki1, Ckz, Cks. ...ckn are cofactors of matrix (i 1-A) along k™ row
2.3  SIMILARITY TRANSFORMATION

The square matrices A and B are said to be similar if a non singular matrix P exists such
that

PLAP=B .23

The process of transformation is called similarity transformation and it is a linear
transformation. Thematrix P is called transformation matrix. Also the matrix, A can be obtained
from B by a similarly transformation with a transformation matrix P2,

i.e., A=PBP? .24

The similarity transformation can be used for diagonalization of a square matrix. If an
n x n matrix has n linearly independent eigenvectors (i.e., with distinct eigenvalues) then it can
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be diagonalized by a similarity transformation. If a matrix has multiple eigenvalues then it will
not have a complete set of n lineraly independent eigenvectors and so it cannot be diagonalized.
However such a matrix can be transformed into a Jordan matrix (Jordan canonical form).

The transformation matrix for diagonalization or converting to Jordan form can be
obtained from eigenvectors. For a system with n state variables we can find numbers of
eigenvectors my, my, ms, ....... , mn. The eigenvectors are column vectors of order (nx1). The
transformation matrix is obtained by arranging the eigenvectors columnwise as shown in Eqn
(2.5). This transformation matrix is also called Modal matrix and denoted by M.

Modal matrix, M=[mimz; mz.......... M ] ..2.5

The similarity transformation will not alter certain properties of the matrix. A property
of a matrix is said to be invariant if it is possessed by all similar matrices. The determinant,
characteristic equation and trace of a matrix are invariant under a similarity transformation.
Since the characteristics equation is invariant the eigenvalues are also invariant under a linear
or similarity transformation.

PROOF FOR INVARIANCE OF DETERMINANT

Let A and B are similar matrices and P be the transformation matrix which transforms
A to B by a similarity transformation, P* AP = B.

. B=PtAP ...2.6
On taking determinant of Egn (2.6) we get,
IB| = |P* AP| 2.7

Since the determinant of a product of two or more square matrices is equal to the
product of their individual determinants, the Eqn (2.7) can be written as,

B[ = [P~'| |A[ [P = |A] [P-'| |p
= |Al [P P|= A |1| i )
=|A| . { li=1)

From the above analysis it is evident that the determinant of a matrix is invariant under
a similarity transformation.

PROOF FOR INVARIANCE OF CHARACTERISTIC EQUATION AND
EIGENVALUES

Let A and B are similar matrices and P be the transformation matrix which transforms
A to B by a similarity transformation, P AP = B.

The characterisrtic equation of matrix B is given by
[A1-B|=0 ..2.8

On substituting B = P AP is Eqn (2.8) we get,
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IAI - B| =Ml - P AP |
= [AP-'P - P-'AP | ‘ (P-'p=1)

=P (M- AP 2.9

Since the determinant of a product is the product of the determinant, the Eqn (2.9) can
be written as,

[A1 = B| = [P'| [AI = A] [P|=[AI—A[ [P~ |P|

=M =A| P P|
= [M =A ]I (+P'P=1)
=M - Al (- =1)

From the above analysis it is clear that the characteristic equations of A and B are
identical. Since the characteristic equations are identical, the eigenvalues of A and B are
identical. Hence the eigenvalues are invariant undr a similarity (linearity) transformation.

PROOF FOR INVARIANCE OF TRACE OF A MATRIX

Let A and B are similar matrices and P be the transformation matrix which transforms
A to B by a similarity transformation, P* AP = B.

S tr B=trPTAP ...2.10

For an n x m matric C and m x n matrix D, regardless of whether CD = DC or CD #
DC, we have,

tr (CD) =tr (DC) L2011
Using the property of Egn (2.11), the Egn (2.10) can be written as,

tr B=tr AP P
=trAl = trA (PP =Tand Al=A)

From the above analysis it is clear that the trace of a matrix is invariant under a
similarity transformation.

24  CAYLEY -HAMILTON THEOREM

The Cayley — Hamilton theorem states that every square matrix satisfies its o wn
characteristics equation.

Consider an n x n matrix A and its characteristics equation [Eqgn (2.12)].

JAI=A]=A+a, AP d e +ﬂ"_]l+3n=0 L2112

By Cayley-Hamilton theorem, the matrix A has to satisfy its characteristic equation,
hene Eqgn (2.12) can be written as,

Ar+ aI A""l“l' — an__lA-i- ﬂnl=ﬂ ,,_2,13
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PROOF OF CAY-LEY HAMILTON THEOREM

Let A be a square matrix. The characteristic equation of A is given by

I;L[._,q|=;l,,ﬂ+a[1"'l+ajl“'z+ .......... +aﬂlz+an_ll+a“=n )14
We have to prove that A satisfies the characteristic equation,
i+c+, AP +a| Al 4 a, ATt + a_, Al + ﬂ"_lA + &h I=0
...2.15
where | is the unit matrix of order (n x n).
Consider the matrix (Al — A). Let the matrix B be adjoint of (Al — A).
~B=adj(Al-A) 516

The elements of adj (A1-A) are the cofactors of the elements of (AI-A). Therefore each
element of B will be a polynominal in A of degree (n-1) or less. We know that every matrix
whose elements are ordinary polynominals can be written as matrix polynominal. Hence the
matrix B can be written as a matrix polynomial as shown in Eqgn (2.17.).

1-IB —_— B'I_ ln_] -+ E: ;'1_,"_2 + BJ l“_a g e +Bn_z )“2 -!;Bn-l l * B"

..2.17
From equations (2.16) and (2.17) we get,
adj(Al-A) =B, A"+ B, A+ B A2+ ... +B __ A*+B_ A +B
; e =l 2 ..2.18
We know that, (AI-A) (A-A)1=1
But, (1-A)" =2 A1=A)
‘ |Al = A
adj (A1 - A)
LAI=A) ——— =
( ) |Al=A|
(M -A)adj (M- A)=[AI-A] 1
Using equations (2.12) and (5.18), the equation (5.19) can be written as,
(M=A) (B, A"+ B, A2 + B, A" +.......+B_, A +B_ A +B,)
=(A"+a A +a, A" +a ,AM+a_ A+a)l
(B, A"+ B, A" + B A"+ +B_, A +B_ A*+B_ %)
—AB A" — AB,A"? —AB A" _....._AB_,* ~AB_A-AB,
= I?&"+alll""+azll"'z+ ......... +an_zl73+an_|[)\.+anl 919
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On equating the coefficient of like powers of A in Eqn (2.18) we get the following (n+1)
equations

B,=1 e m )
B, —AB; =2, e )
B;—AB; =a,] e 3)
: + (n+1) equations
B,  ~AB,p=a,2l e (-1
B, —AB,; =2, PP (11
~AB,=8,,] = (n+1) |

On premultiplying both si(_les of equations (1), (2_), (3),... (n-1), _(n) and (n+1) by A",

A™ A2 A2 Aand | represectively we get the following (n+1) equations.
An xqu(l) - AnBl =Anl l
An-l ¥ equ(2) = A"‘le -.-An B, =aA 1
A2 xequ(3) = An_zsj —Au-IBZ = aZAn-zl
, - : > (n +1) equations

. 2
Alxequn-1) >  A’Bp-A’Bpp=2,A"l
Axequ(n) = AB,- A’B, =2, Al

Ixequ(n+l) = -AB,=a,1 |

On adding the above (n+1) equations we get, (i.e., all the left hand side terms gets
cancelled and becomes zero),

0=A"+a, A" T+ay A" I+..... 40, A +a, Al +a,]

A A" 42 AM 3, A" e, oA 2, A el =0

...2.20

The Eqn (5.20) shows that the matrix A satisfies its characteristic equation. Thus
Cayley-Hamilton theorem is proved.

COMPUTATION OF THE FUNCDTION OF A MARIX USING CAYLEY-
HAMILTON THEOREM

The Cayley-Hamilton theorem provides a simple procedure for evaluting the function
of a matrix. Consider a matrix A of order (n x n) with eigenvalues A1, A2, As,.... An. The
characteristic equation gq(A) of matrix A will be as shon in Eqn (2.21)

. = —_— ="+ n.n.i"" ........ +a ;-+a =0
~q(h) =l - Al 2, ot T B, ..2.21

Let f(A) be a function of matrix A and f(A) can be expressed as a matrix polynomial.
Let f(A) be a scalar polynominal obtained from f(A) after substituting A by A.

On dividing f(A) by q(A), we get
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R(%
LMI,_—.Q(?\.-)-{"——{ ]

a() a(n) 222

where Q(A) = Quotient polynoinal
and  R(A) = Remainder polynominal

~f(h)=Q(%) g(h) + R(%) ..2.23

If we evaluate the Eqn (5.23) using the eigenvalues A1, A2, A3, ....An then from Eqn
(5.23) we get, g(A) = 0 and we have,

%)= R%) ...2.24
where1=1,2,3,...n
The remainder polynominal R(A) will be in the form of Eqn (2.25) shown below.
R =a,+a A +o,A? +...4a_ A
: n- ...2.25
where oo, 01, 02, ....., On-1 are constants
From equations (2.24) and (2.25) when A = A we get,

)=, + ok +o,A? + .t A 506

where1=1,2,3,...n

On substituting the n number of eigenvalues in Eqn (2.27), one by one, we get n number
of equations. There equations can be solved to find the constants oo, 0,....,0n-1.

f(A)=Q(A) q(A) +R(A) .2.27

The Cayley-Hamilton theorem says that every square matrix satisfies its characteristic
equation and so g(A) = 0. Therefore the Eqn (2. 28) can be written as,\

s .28
From Eqgn (2.28) we get,

R(A) = )] + oA +0,AT +ot ol AT ..2.29
From equations (2.28) and (2.29) we get,

f(A) = Cf-nl + &|A +c"1A1 Fooret mn—l An! ...2.30
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The Eqgn (2.30) can be used to evaluate the function f(A). On substituting the
eigenvalues in Egn (2.26) we get n-number of linear equations. The constants oo, 01, 02, 03, ....
an-1 are obtained by solving these n-number of linear equations.

The Eqn (2.26) can be used to form n-number of independent equations only when all
the eigenvalues are distinct. If the matrix A have a multiple eigenvalue with multiplicity in then
only one independent equation can be obtained by substituting the multiple eigenvalue in Eqgn.
(2.26). The remaining (m-1) equations are obtained by differentiating Eqn (2.26) after replacing
Ai by A and then evaluating with A = X, where A, is the multiple eigenvalue, as shown in Egn
(5.31). [The equations corresponding to distinct eigenvalues are obtained by substituting the
eigenvalues in Eqn (2.26)].

- J
e, I 231

] J )
d—dﬁ o] = Ll [aﬂ +ot o+ e oty A" ] Lﬁ_.

where j=1,2,3, ...., (n-1)

The equation (2.30) can also be used to compute the state transition matrix of continous
time system e”! by taking f(A) = e”' and the state transition matrix of discrete time system A¥
by taking f(A) = AX,

Note: In order to solve f(A) = e, when the eigenvalues are distinct the equations (2.26)
and (2.30) can also be obtained by using the sylvester’s interpolation formula given below

1 % B 2t okt
. : _—
1 B B i ALt gl

EXAMPLE 2.1

. 0 3
Find f(A}:A’furA=L- 51‘

SOLUTION

1 0] 0 3] [A. =3
[AI-A]=2 = -
0 1 2 <812 Aws
N, =3
pu-le:_’z i sl=k(k+5)+3x2=?..2+51+6 = (A+2) (A +))
+

The characteristic equation is given by

[AI-A|=0, S (A+3)=0
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The eivenvalues A1, A2 are roots of charactertistic equation.

Given that, f(A) = A7, ~f(}) = A7
whenL =1 =-2 ; f(A)=f(-2)=(-2)'=-128

whend =4,=-3 ; f(A,)=1f(-3)=(-3)"=-2187

We know that , f(A) =a,+ o, A + o, A2 +ota AT
Here n=2, ~fA) =o,+o A

From Eqn (2.1.1) and (2.1.3) when i = A1 = -2, we get,
fn) =o,+a,

-128 =g, + 0, (-2)
so =20, —128

From Eqn (2.1.2) and (2.1.3) when Xi= A1 = -3 we get,

fh) =a,+a i,
=2187=a,+ o, (-3)
3a,=a, +2187

ay 2187 1
oy ==y + 720
2 2 &

On substituting for a: from Eqgn (2.1.5) in Egn (2.1.4) we get,

o =2 ((1/3) og +729) 128
og =(2/3) @ +1458-128
oy -(2f3) ag=1330

(1/3) @y =1330 = oy =3x1330=3990"
On substituting the value of oo in Egn (2.1.5) we get,
a, = (1/3) (3990) + 729 = 1330 + 729 = 2059

We know that. flA)=a l+a A

3990 0 0 6177] [ 3% 6177
=[ o 3990| |—~ns -1020s] |~4118 -6305

L [39% 617
SATEl s -6308
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ALTERNATE METHOD

o 3][o 3] [ -5
AT =AA= [_2 -5 -2 -5 10 19
30 57

-6 -13 0 3 7
3_a2 = s
At=ATASL S )| -5] |38 -65

30 57 0 3 -114 -195
' RN =
A'=A"A [-38 =651 1=2 =5 130 211

[ 30 57} [3990 6177
-38 -650 [—4118 -6305

oo s ([SHIR —195}
= =A AT 130 211‘

EXAMPLE 1.2

"0 I’
For A=
o T |

Compute the state transition matrix e using Cayley-Hamilton theorem.

SOLUTION
Given that, , .| * 'AI
2

tol [0 1] [ I

[M"A]“klo | 2 -3 2 a3
A =l )

M- A= 4 A (M3 4 122202 43042
2 . A3

= (A1) (h+2)
The characteristic equation is given by
Al = Al=0, * LD (+2)=0

The eigenvalues A1, A2 are roots of characteristic equation.

Let f(A)=ch L=
whend =A,=-1 ; fQ)=f-I)=¢"
whenA =A,=-2 ; f(A) =f(-2)=c?

We know that , f(A,) = oy, + o, A, + o, A2 +......... o
Heren=2, S AA) = oyt oA

From Egn (2.2.1) and (2.2.3) when Ai = A1 = -1, we get,
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f(A,) = o, + oA,

et = oty (=1

SO =0, e 224
From Eqn (2.2.2) and (2.2.3) when A = A2 = -2, we get,
fA,) =a,+a,A,

e =i+ a, (-2)

= — g2t
2o, =, —-¢

1 1 _
T =§c'_0__2_ e 2t

...2.25
On substitutign for oz from Eqgn (2.2.5) in Eqn (2.2.4) we get,
O = lao ‘—Le-zl +et

2" 2

1 1
Og —3 Oy = —5 '3_214- et

1 N
-y =8  —— .
i 1

Log=2e —e .

On substituting the vaue of ap in Eqn (2.2.5) we get,
c-h =%{2e—l _e-zc)__;_ e

wr: Losge Lo Sp
alze‘——em——en:el—en

By Cayley-Hamilton theorem,

f(A)=agl+04A

1 0} 0 1
LfA)=(2e7 - + (et -
@ = N | Flrsatl o
2c-l bid c—zt_ 0 0 e“l ¥ e—z(
= +
0 27t~ ~2et +2e7H
2t - et —e
) [—Ze" +2e —ct42e
.. State transititon matrix, oAt ,{

2!~ et —e™
et 426 ety a2t
EXAMPLE 2.3

G -
The system matrix A of as discrete time systme is given by A = [-2 -3J
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Compute the state transitiotn matrix A using the Cayley-Hamilton theorem.

SOLUTION
.
Giventhat, A =

-2 -3
10 o 1A -1

S P e
0 1] [-2 -3/ [2 A+3
n -1

[r1-A]= 1=).(l+3)+lx2=7»2+3)»+2

2 A+3
' =(A+1) (A +2)

The characteristic equation is given by
A -Al=0, LA A+2)=0

The eigenvalues A1, A, are roots of characteristic equation.

~A ==, A, =-2,
Let f(A) = A* s nf()=Ak
whend =4 =-1 ; f(A) =f(=1)=(-I)k 231
whenL=A,=-2 ; f(A) =f-2)=(-2)k ...2.3.2
We know that , f(A) = oy + o A, + o, A2 +......... +or A
Heren=2, .'.f(?\.l.) =ao+oc,li 233
From Egn (2.3.1) and (2.3.3) when Ai=A1=- 1 we get,
ﬁll) = c"ﬂ i “Ilﬁ
1)*=a,+a,(-1)
SOy =0ty o+ (=1 ...234
From Egn (2.3.2) and (2.3.3) when Li=A2= -2, we get,
ﬂ}"z) =ﬂ'n+u1' ;Lz
-2)* = o, +a,(-2)
20, =@, - (~2)*
1o
B el ()
P2 235
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On substituting for a1 from Eqn (2.3.5) in Eqn (2.3.4) we get,

1 1 :

Qg = Eﬂ-u 'E(—Z}k +(-1k

tg = = (-1t — Lok
2 0 __2_(-2)

S =(-D* -1 (g

2 2

crg =2(-1)F —(-2)F

On substituting the value of oo in Eqn (2.3.5) we get,

1 gy
o =2 (20" -(-2)") 5 (-
cronk Lo o 1o ooy
o =) -2(D* -2

oy =(-)F - (-2)¥

By Cayley-Hemilton theorem,

f(A)= ao] + ulA

0 0
“(A) = (2(-D* —(—2)")[:) 1] + (0t _(_2)1-)[_2 -13}

[2t-nF-2* o - ]+[ 2 D" - (2"
5 2-0¥ - (2% | [-2(-D* +2(-2)%  -3(-1)k +3(-2)

2A-nE-(2)F D= ]
(- +2(-2)° -~ (-DF +2-2)"

State transition mat]'iX} Ak =|:2(-1)} —(_2‘)k .('l)k o (—2)k }

of discrete time system 2-D5+2(=2)*  —(=D* +2(2)¥

25 TRANSFORMATION OF STATE MODEL

The state model of a system is not unique and it canbe formed using physical variables
phase variables or canonical variables. The physical variables are useful from application point
of view because they can be measured and used for contorl purposes. However, the state model
using physical variables is not convenient for investigation of system properties and evaluation
of time response. But the canonical state model is most convenient for time domain analysis.
In canonical model the system matrix A will be a diagonal matrix. Therefore each component

state variable equation is a first order equation and is decoupled from all other component state
variable equation.

When a non diagonal system matrix A has distinct eigenvalues, it can be converted

diagonal matrix by a similarity transformation using modal matrix, M. Due to this the state
model is transformed to canonical form.
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When a non diagonal system matrix has multiple eigenvalues, it can be converted to
Jordan matrix by a similarity transformation using modal matrix, M. Due to this the state model
is transformed to Jordan canonical form.

CANONICAL FORM OF STATE MODEL

Consider the state equation of a system, X = AX + BU, where X is the state variable
vector of order n x 1. Let us define a new state variable vector Z, such that X = MZ, where M
is the Modal Matrix or Diagonalizaiton matrix.

The state model of the n™ order system is given by

X =AX+BU
y=CX+DU

On substituting X = MZ in the state model of the system, we get

X = AMZ + BU 232

Y; CME‘I"DU ...2.33

Premultiply Eqgn (5.32) by M

# M™% =M"'AMZ+M™'BU ..2.34
The relation governing X and Z is, X = MZ. ...2.35
On differentiating Eqn (2.35), we get, X = MZ ..2.36

On premultiplying the Egn (2.36) by M we get
M1X =Z ..2.37

From Egn (2.34) and (2.37), we Qet,

Z=M*AMZ + M1 BU ..2.38
Li M1 AM =~ (called grammian matrix) ...2.39
M'B=X=8 ... 2.40
CM=C ..2.41
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CONCEPTS OF CONTROLLABILITY AND OBSERVABILITY
CONTROLLABILITY

The controllability verifies the usefulness of a state variable. In the controllability test
we can find, whether the state variable can be controlled to achieve the desired output. The
choice of state variables is arbitrary while forming the state model. After determining the state
model, the controllability of the state variable is verified. If the state variable is not controllable
6then we have to go for another choice of state variable.

Definition of controllability

A system is said to be completely state controllable if it is possible to transfer the system
state from any initial state X(to) to any other desired state X(to) in specified finite time by a
control vector U(t).

The controllability of a state model can be tested by Kalman’s test or Gilbert’s test.
Gilbert’s method of testing controllability

Case (i): When the system matrix has distinct eigenvalues

In this case the system matrix can be diagonalized and the state model can be converted
to canonical form.

Consider the state model of the system,

X =AX+BU
Y =CX + DU

The state model can be converted to canonical form by a transformation, X = MZ, where
M is the modal matrix and Z is the transformed state variable vector.

The transformed state model is given by

Z=naZ+BU
Y =CZ+DU

where A=M"'AM
B=M"B
C=CM

In this case the necessary and sufficient condition for complete controllability is that,

the matrix B must have no rows with all zeros. If any row of the matrix B is zero then the
corresponding state variable is uncontrollable.

Case (ii): When the system matrix has repeated eigenvalues

In this case, the system matrix cannot be diagonalized but can be transformed to Jordan
canonical form.
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Consider the state model of the system,

X = AX +BU
Y =CX + DU

The state model can be transformed to Jordan canonical form by a transformation.
X =MZ, where M is model matrix and Z is the transformed state variable vector.

The transformed state model is given by,

7 =17+BU
'Y:EZ-I' DU

where  j=m'AM
B=M"'B
c=CcM

In this case, the system is completely controllable if the elements of any row of B that
correspond to the last row of each Jordan block are not all zero and the rows corresponding to
other state variables must not have all zeros.

Kalman’s method of testing controllability

Consider a system with state equation, X = AX + BU. For this system, a composite
matrix, Qc can be formed such that,
.30
where n is the order of the system (n is also equal to number of state variables)

In this case the system is completely state controllable if the rank of the composite
matrix, Q¢ is n.

The rank of the matrix is n, if the determinant of (n x n) composite matrix Qy is non-
zero. i.e., if |Q¢| # 0, then rank of Q¢ = n and the system is completely state controllable.

The advantage is kalman’s test is that the calculations are simpler. But the disadvantage
in kalman’s test is that, we can’t find the state variable which is uncontrollable. But is Gilbert’s
method we can find the uncontrollable state variable which is the state variable corresponding
to the row of B which has all zeros.

Condition for complete state controllability in the s-plane

A necessary and sufficient condition for complete state controllability is that no
cancellation of poles and zeros occurs in the transfer function of the system. If cancellation
occurs then the system cannot be controlled in the direction of the cancelled mode.

OBSERVABILITY

In observability test we can find whether the state variable is observable or measurable.
The concept of observability is useful in solving the problem of reconstructing unmeasurable
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state variables from measurable ones in the minimum possible length of time. In state feedback
control the estimation of unmeasurable state variables is essential in order to construct the
control signals.

Definition of observability

A system is said to be completely observable if every state X(t) can be completely
identified by measurements of the output Y(t) over a finite time interval. The observability of
a system can be tested by either Gilbert’s method or Kalman’s method.

Gilber’s method of testing observability
Consider a state model of n™ order system, X = AX + BU ;Y =CX + DC

The state model can be transformed to a canonical or Jordan canonical form by a
transformation, X = MZ, where M is the modal matrix and Z is the transformed state variable
vector.

The transformed state model is,

7= AZ+BU g Z=JZ+BU
Y =Cz+DU Y=CZz+DU

where A = M AM:; if eigenvalues are distinct ; B = M B
J= M AM; if eigenvalues have multiplicity; ¢ = CM

The necessary and sufficient condition for complete observability is that none of the
columns of the matrix C be zero. If any of the column’s of C has all zeros then the
corresponding state variable is not observable.

Kalman’s Test for observability
Consider a system with state model, X = AX + BU ; Y = CX + DU

For this system, a composite matrix, Qo can be formed such that,

[er atct (A7) C (AT CT e ATY™ T
Q-[c" aTcT (A7) € (A7) Wi e] 32

where n is the order of the system (n is also equal to number of state variables)

In this case, the system is completely observable if the rank of composite matrix, Qo
is n. The rank of the matrix is n, if the determinant of n x n composite matrix Qo is non-zero.
The disadvantage is Kalman’s test is that, the non observable state variables cannot be
determined.

Condition for complete observability in the s-plane
The necessary and sufficient condition for complete observability is that no cancellation

of poles and zeros occurs in the transfer function. If cancellation occurs, the cancelled mode
cannot be observed in the output.
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RELATIONSHIPS BETWEEN CONTROLLABILITY, OBSERVABILITY &
TRANSFER FUNCTIONS

The concepts of controllability and observability play an important role in the design
of control system is state space. They govern the existence of a complete solution to the control
system design problem. The solution to this problem may not exist if the system considered is
not controllable.

It is important to note that all physical systems are controllable and observable.
However, the mathematical models of these systems may not posses the property of the
controllability or observability. Then it is necesasry to know the conditions under which a
system is controllable and observable and the designer can seek another state model which is
controllable and observable.

Duality property

The concepts of controllabilitu and observability are dual concepts and its is proposed
by Kalman as principle of duality. The principle of duality states that a system is completely
state controllable if and only if its dual system is completely observable or viceversa. [i.e., if
the system is observable then its duly is controllable]. Uusing the principle of duality, the
observability of a given system can be checked by testing the state controllability of its dual or
vice-versa.

Consider the system S1, described by the state model shown below.

X = AX+BU
Y=CX

Let the dual of system Si be denoted as Sz and the dal system S; is described by the
following state model.

Z=A"Z+Cly
N=B"z

where, Z = State vector of dual system
V = Input vector of dual system
N = Output vector of dual system

For the system S; the composite matrix, Qc: for controllability is given by Eqgn (3.3)
and the composite matrix, Qa for observability is given by Egn (3.4).

Q,=[B AB AB...... A" B] .33

Q,=[CT ATCT (ATCT............ (}\T)--—' cT .34

For the dual system S, the composite matrix, Qc for controllability is given by Eqgn
(3.5) and the composite matrix Qc. for observability is given by Eqn (3.6).

ch:; [C'I ATCT (AT:I: CT...‘.‘....M (A[)“J Cli .o .3.5

Qa: = [A AB AEB vrverereene AT B] N _3.6
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From equations (3.3) and (3.4) we get Qc: = Qc2, hence if the system Sy is controllable
then its dual system Sy is observable.

From equations (3.5) and (3.6) we get Qc1 = Qc2, hence if the system S; is observable
then its dual system S is controllable.

Effect of pole-zero cancellation in transfer function

The concepts of controllability and observability are closely related to the properties of
the transfer function. Consider an n order system with distinct eigenvalues. The transfer
function of the system can be expressed as a ratio of the two polynominals as shown in Eqgn.
(3.7).

Y(s) _ bgs™ +by;s™ ' +.....4b b
_Y(s) _bg il m-15 + : e
U(s) s"+as"T e, s+ay 37

m

T(s)

_K(s+By) (s+By) ... (s+By)
(s+A)) (s+Ay) e (s+21,)

By partial fraction expansion technique the Eqn (3.8) can be written as,

Y _ S Ca A | LS
T S P Y T 38

where C1, Cy, Cs,..... Chare residues.

If the transfer function has identical pair of pole and zero at B; = Ai, then C; = 0. The
effect of this cancellation on controllability and observability properties depends on the choice
of state variables [or depends on the method of forming state model].

In one method of state space modelling using canonical of variables, the Ci; = 0, will
appear in input (control) vector B and the state xi is uncontrollable. In another method of state
space modelling using canonical variables, the Ci = 0, will appear in output vector C and the
state x; is shielded from observation.

From the above discussion we can conclude that if cancellation of pole-zero occurs in
the transfer function of a system, then the system will be either not state controllable or
unobservable, depending on how the state variables are defined (or chosen). If the transfer
function does not have pole-zero cancellation, the system can always be represented by
completely controllable and observable state model.

EXAMPLE 1.6

Write the state equations for the system shown in ve
Figure 3.1 in which x1, X2 and X3 constitute the state vector.
Determine whether the system is completely controllable and
observable.

Figure 3.1
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SOLUTION
To find state model

The state equations are obtained by writing equations for the output of each block and
then taking inverse Laplace transform.

With reference to Figure 3.2 we can write,
J X.(5)-X,09) [ 1%
2 sis+1) —
X,(9) =% - %] | {55y
s(s+1) X;(5) = 2X2(8) = 2X5(5) Figure 3.2
s X,(S)+SX|(5) =2X2(5)"'2X3(S)
Xij} }{[{a’_‘
On taking inverse laplace transform — —ﬂ«’——
k| + %) = 2% —2%3 Figure 3.3

...3.6.1
With reference to Figure 3.3, we can write,
X3(s) = sX1(S)
On taking inverse laplace transform

X3 = X1 ...3.6.2

With reference to Figure 3.6.4 we can write

Figure 3.4

2
X,(5)=[U(s) - X(s)] [;:5]

X, (s) (s+3) =2U(s)-2X,(9)
sX,(8) + 3X,(s)=2U(s) - 2X,(s)

On taking inverse Laplace transform

Xy + 3%y =2u- 2%

g =2y 3y £ 20 ..3.6.3
From Egn (2.6.2), x1 =X3; ..X1 = X3

Put x1 = X3 and ¥1 = x3 in equation (3.6.1)

& \1 +.\3 =2x2 “2.\'3
..\3 =2X?_ —2XJ - X3

:\3 = 2,\2 = 3X3

The state equation are given by equations (3.6.2), (3.6.3), and (3.6.4)
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The output equation is y = X1

The state model in the matrix form is
X 0 0 1ff{x | (O Xy
%o |=|-2 =3 Of|xp|+|2{u y=[1 0 0] | xa
%5 0 2 -3||x;] |0 X3
To find eigenvalues

0 0 1
Here the system matrix, A=[-z -3 o]
0 2 -3

The characteristic equationis |A I —A|=0

ool[o o 1] 0 -l
1 0f|-|-2 -3° 0|=|2 A+3 O
o1]]0 2-3f] (0 -2 A+3

o o —-

(M—A)=k[
A 0 -1
M-Al=2 A+3 0 =M +3)* - 1(=4) = M(A? + 61 +9) + 4
0 -2 A+3 /
A==1 |1 6 9 4
—23 1602 +9h+4= (A +1) (AP +50+4) ll ek
=(1+1)(1+1)(1+4)=(x+n2 +4) ! 1 s 4 o

The eigenvalues are A1 = -1, A2 =-1, and A3 = -4,

To find eigenvectors
1oo0] o 0o T (M T,
(M1-A)=X |0 ] 1R el i bty
l oo 1| |0 2-3] 1[0 =2 %43

Let Ci1, C12 and Ca3 be cofactors along I* row of the matrix (A1 I-A)

M+3 0 [ 32 =2%46M +9
N e Ji=d
2 0 ), U
s — (20 +3)) =-2)
Ca=EDf) 5 43 (20
2 MEx
C|3=(+]) 0 - -4
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c, |1 [A2+60+9] [1-6+9 4

m; = Cpp |= —2%1—6 = 2-6 |=|—4
Cis ~4 =% =
[ s |
wlnl »
Y 2M,+6| [-2+6 4
d
m,=[—Cyp |=| -2 |=| -2 [=]|2
ay 0 0 0
d
—C
o, 3]

100][0 0 1][4 0 -l
(As1-A)=(=4)[0 1 0f-|-2 -3 0|=[2 -1 0
0010 2-3/]0 -2 -l

Let C11, C12 and Ci3 be the cofactors along I row of the matrix (A3 I-A):

R 2 0 Z =1l
Cy=(+) i3 _1‘=1 ;. Ca=(-1 ‘0 _ll=2 ; Cia=(+1) [0 _2]
c,] 1
.'.m3= C|2 = 2

To find canonical form of state model

The modal matrix, M is given by

4 4 1
M:[m] L m3]= -4 -2 2
-4 0 -4

M- = [Cofactor of M" M” .
= 4 _ e

Determinant of M A

M

4 4 |
Am =4 -2 2=4(8)-4(24)+1(~8) = 32-96-8 = 72
-4 0 —4 .
8 -24 g 8 16 10
M =16 - '
cof 12 -16| =[-24 -12 -2
10 -12 8 -8 -16 8

o o 8 16 10 [ -4 -2
M =_—72 -24 -12 -12 =ﬁ 6 3 3
-8 <16 8 |2 a -2
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1-2-4—2,5 0 0 1[4 4 1

J=M"AM=§ 6 3 3/1-2 -3 0|4 -2 2

. 2 4 -2]|0 2 -3|]|-4 o0 —g4
M8

; 7 551[4 4 1
=<6 <3 u3||4 =2 2
-8 -16 8||4 0-4

i [ -4 -25][0] [-8n8] [~
B=M"'B=ﬁ é§ 3 302 =[ 6/18 |=| 3/9
2 4 -2[of [818] | 49

4 4 1
_ 2 .—_'[4 4
=_cM=1 0 0]f-4 -2

The Jordan canonical form of state model is shown below.

7 =1Z+BU v =Cz+DU (Here DU is not defined)
Z=J12+BU; =

z
; -1 1 0}]|z -4/9 i
:l o -1 oflz|+ 39 [u] Yy=[4 4 1|z
zz 0 0 -4]|z] | 4/9 Z,
CONCLUSION

It is observed that the elements of the rows of B are not all zeros. Hence the system is
completely controllable (or state controllable).

It is observed that the elements of the columns of C are not all zeros. Hence the system
is completely observable [i.e., all the state variables are observable].

ALTERNATE METHOD

KALMAN’S TEST FOR CONTROLLABILITY

o o 1][0o o 1 0 2 =3
A2=AA=|-2 -3 o||2 -3 o|=[6 9 -2
o 2 -3|lo 2 -3] [4-12 9

[0 0 1 0 0
AB=|-2 -3 0} [2 {—6}
|0 2-3 o| |4
[0 . 2 -3][0 4
A’B=| 6 9 —2] H:[ 18]
-4 -12 9] [0] |-24
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The composite matrix for controllability, < =[s A A’B]

0 0 4
Determinantof Q. =|2 -6 18|=4x8=32 : Since Q| # 0, the rank of Q.=3.
0 4 -—24

Hence the system is completely state controllable.

KALMAN’S TEST FOR OBSERVABILITY

o2 ojjo =2 0] [0 6 -4
(AT)'= <3 9l e <3 gl=t 2 & =
1 0o 3|1t o3 |32 9

0o -2 0 1[1 0
ATcT =|o -3 2 [|o| =|0
1o =3 Jlo] D
o0 6 -41]1
(AT) cT=| 2 9 -12||0]| =] 2
-3 2 9]0 -3

10 0
. L% 2
The composite matm} o, =[CT ATt ( AT) CT]= V6 5
for observabl‘hty 01 -3
10 0
Determinant of Qo =| 0 0 2| =1x-2=-2; Since |Qo|#0, the rank of Q, =3
01-3

Hence the system is completely observable (or all the state variables of the system are
observable).
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3.7 CONTROLLABLE PHASE VARIABLE FORM OF STATE MODEL

A controllable system can be represented by a modified state model called controllable
phase variable form by transforming the system matrix, A into phase variable form (Bush form
or companion form).

Consider the state model of n™" order system with single-input and single output as
shown below.

X =AX + Bu ...3.9
y=CX + Du ..3.10

Let us choose a transformation, Z = Pc X to transform the state model to controllable
phase variable form.

Here Z = Transformed state vector of order (n x 1)

P. = Transformation matrix of order (n x n)

(z, (Pn Pi2 P13 ** Pm
Z; P21 P22 P23 *** P2n
Z=|z and P _=|P3 P32 P33 ** Pin
| Zy . LPnt Pn2 Pn3 *** Pnn |

On premultiplying the equation Z = P X by Pc* we get
PeZ = Pt P X

o X=P1z

On differentiating the equation X = Pc1Z we get,

X =P'Z

On substituting X = Pc*Z and X = Pc*Z in the state model (equation (3.9) and (3.10))
of the system we get,

Pt Z =AP:1Z+Bu L2301
y=CP:1Z+Du ..3.12
On premultiplying the equations (3.11) by P. we get,

Z =PAP*Z + PBu

y=CP:1Z+Du

Let1 PC APC-l = AC ; PCB = Bc and CPc_l = CC
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. Z=AcZ+Bcu ...3.13
y=CcZ+Du ...3.14

The equations (3.13) and (3.14) are called the controllable phase variable form of state
model of the system.

Note: In controllable phase variable form of state model the matrices Ac, Bc and Cc
will be as shown below.

1 0 - 0] 0
0 0 1 ¥ 0 0
0+ 0 6 w» 0
Ac=| | . . . Be=],| 3 Ce=I[cy €13 €5 010l
0 0 0 -1 0
_"an B T i Y B _l_

Determination of transformation matrix, P.

The n x n transformation matrix, Pc and be expressed as n-numbers of row vectors
(Matrices) as shown below.

P11 P12 P13 Pin | P
P2| p22 p23 Y p2n P2
Pc= Psi P12 P33z * P | = P3
o pan] * LPal
| Pat Pn2z Pn3 " Pl L 3.15
Where  p =[py; piz P13 Pin)
P, =[pn P22 P23 *** Pl
P3=[p3| P32 Pa3 '’ pjn]
P, =[pnl Pn2 Pn3 ° Pnn]
The transformation Z = P X can be written in the expanded form as,
2] [pu P2 Pi3 = P X1 |
z3| |pa P2 P2 P | X2
z3|=|p31 P32 Px3 v P || ¥3
LG_ LPml Pn2 Pn3 " Pon | Xn 316
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From equation (3.16) we get,

e . R : +P, x
Z, =Py X, PP Xt Py Xy T e P.x,

=[P P12 P13 e P [%1]
%
%3
_xl'l_
e .37

On differentiating equation (3.17) we get

71=P:X ..3.18
On substituting for X from equation (3.9) in equation (3.18) we get

7, =P, X = P;(AX +Bu) = P,AX + PBu

Since the transformed state variables are functions of state variables alone, the term P1B
will be zero (i.e., P1B =0)

~.z1=P1 AX ...3.19
We know that, z1= 2>

~22=z1=P1 AX ...3.20
On differentiating equation (3.20) we get

Z2 = P1IAX 321
On substituting for X for equation (3.9) in equation (3.21) we get,

2, =P, A(AX +Bu) = P,AZX +P,ABu

.e B:O)
=PAZX Sk

We know that, z» = z3

.. 23 = P1AX ...3.22

Similarly the k™ transformed state variable zx can be expressed as
Zk — P‘A(k“)x and P‘A(k—Z)B = 0

Hence the n-numbers of transformed state variables can be expressed as shown below.
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e Z] = Pl|}{
Ly = PEAX

zy =PAZX
z;, = BALUX

z, =P AIX

On arranging the above equations in the matrix form we get

?ﬂ [P -|
£ P|A

Zn LPIA(“‘IJ |

...3.23
Providing P1B = P1AB = ... = P1A2 B =0 and P, A B = 1.
The equation (3.23) is same as Z = PcX we can write,
P,
P A
P, = PA*
PACT ..3.24

On arranging the elements P1B, P1AB, P1A%B,...,P1A™UB as column vector we get

2 -2 -hg| =
[P,B PAB PAZB - PATYB pA" n} =[000--01]

P[B AB A’B - ACB AUB] = [0 0 1]
PQ. = [000-01]

P, = [000-01]Q; ..3.25

where, Qc = [B AB A’B ... A B A™) B ALB)] ...3.26

Using the equation (3.24), (3.25) and (3.26), the transformation matrix, P. can be
evaluated.

Alternate method to find transformation matrix, P.

Let A be the system matrix of original state model. Now the characteristic equation
governing the system is given by Eqn (3.27).

[AL—A]=A"+a A" +a, A" 4ta,  Ata =0 ..3.27



Using the coefficients ai, ay,...an2, an-1 Of characteristics equation [Eqn (3.27)] we can
form a matrix, W as shown in Eqgn (3.28).

ks ...3.28
Now the transformation matrix, Pc is given by

Pc=(QW)* ..3.29

(o) Pct=(QcW) ...3.30

Where,Q = [B AB A?B....A™B A(1B]
EXAMPLE 1.7

The state model of a system is given by

X) 0 0 1]fx 0 y=[100][x
X[ =(2-3 0 (x| +[2][u] ; X,
x3 0 2 _3 X3 0 x3

Convert the state model to controllable phase variable form

SOLUTION

The given state model can be transformed to controllable phase variable form, only if
the system is completely state controllable. Hence check for controllability.

Kalman’s test for controllability
From the given state model we get,

D 9 0

A=-2 -3 0 [andB=]2

023 0
0 0 170 01 0 2 =3
Al=AA=|-2-3 0| |[2-3 0 6 9 =2
0 23] 1 0 2-3 “d<ig 9
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AB=|-2-3 0| |2]|=|-6
0o 2-3||o 4
0o 2 =3]Jo 4
A'B=| 6 9 -2||2|=] 18
-4 -12 9]|o -24
0 0\ 4
The composite matrix for controllability, Q.=[B AB AB)=|2 -6 18
0 0 4 o4 =24
Determinant of Q =Ag =[2 -6 18| =4x8§ =32,
0 4 -24

Since, Aqc # 0, the rank of Q¢ = 0. Hence the system is completely state controllable.

To find transformation matrix P.

The system state model can be converted to controllable phase variable form by
choosing a transformation matrix, Pe.

Py
Where l’c = I,I/\ and P' = [ 0 0 I] Qc‘l
p A’

'r ol.
. [Cofactor of Qc]” _ Qc,eo
¢ " Determinantof Q. Agc

72 48 8 [72 16 24
Q r=[16 0 0| =48 0 8

24 8 0 8§ 0 0

72 16 24 225 0.5 0.75
o"=_'- 48 0 8 |=1[15 0 025
€32

8 0 0 025 0 0

225 05 0.75
po=[001Qd=[ o 1]ft5 0 025 = [025
025 0 0
[0 0 1
A =[025 0 0][-2-3 0]=[0 0 025]
0 2-3
0 2 -3
pAZ=[025 0 0)| 6 9 -2|=[0 05 -075]
-4 =12 9 |
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P, 025 0 0
- Transformation matric, P, = [PBA | =|0 0 0.25

l’,/\2 0 05 -075
To determine the controllable phase variable form of state model
The controllable phase variable form of state model is given by,
Z =AZ +Bu
y=CZ (Here D is not given)
Where A; = P.AP:? ; Bc=PcB and C; = CP?

025 0 0.

The transformation matrix, p,=lo0 o  o25

0 0.5 -0.75

cpla [Cofactor of Pc]T _ pr

— &, cof
Determina-it of P, Ap.

0250 o
Ap.=|0 0 0.25|=025 x (—JOS x 025)=-0.03125
0 0.5 -0.75
0125 0 0 17 [-0125 o 0
T
Pc.wr= 0 -0.1875 -0.125 =|0 -0.1875 -0.0625
0  -00625 0 0 -0125 0
-0125 0 0 4 0 0
1
SPl'=————— | 0 -01875 -00625| =
§ -0.03125 ) B 8 5 “
; 0 0125 0 0 4 0
T025 0 0 0 0 1174 o o
Ac=PAP'=| 0 0 025|{-2-3 of|l0 6 2
0 ;05 -075{| 0 2-3|lo 4 o
0 0 0251[4 0 0] [0 1 o
=l 0.05-075||0 6 2[=| 0 o 1
-1 -3 225||0 4 o A s
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s

025 0 0 0 0
B, PN 0 0 0.25 2 ]
0 |

c.-cptull 0 0]j0 6 2| =[4 0 0]
—e [
04 0

The controllable phase variable form of state model is given by,

] [0 1 0 [ B
2| =0 0 1]z |[+|[0[u
%, -4 =9 -6) | 7 | LT,
g
y=[4 0 0]| 2
.

Alternate method of find P,

From the given state model we get,

00T
A=[-2 -3 0
O 23

T 0 01 [o o 1A 0 -1
[Al=A]=A|0 1 0O]=|-2

o
-
—_
=
o
>
—
=

[M-Al= 2 A+d 0 A ED)T =1 (A mA(AT +6A + 914
0 =2 A43| =AT46AT 40N

The characteristic equation is A* + 6A2 + 9L +4 =0

The standard form of characteristic equation when n = 3 is given by
MBradi+ai+az=0

On comparing the characteristic equation of the system with standard form we get,

a1=6, &2=9 andas =4
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4 0 0
LB‘.T= 0 6 2 X 5 P{: =T-1
0. 4 0
R 40 0
Cofactorof T]" T,
7t o [oRelor st Car 2o = e
Determinant of T~ A T 6 2=4(-4x2)=-32
) 4
5 N Gy = 5 0
:of =l 0 0 -16| =| 0 0 -8
0 -8 24 0 -16 24

-4 0 0 025 0 0
TT

.'.PC=T-l=ff—=—— ‘ 0 .0 -81= 0 0 0.25
0 -16 24 0 05 -075

1.8 CONTROL SYSTEM DESIGN VIA POLE PLACEMENT BY STATE
FEEDBACK

In the conventional approach to the design of a single-input, single-output control
system, a controller or compensator is designed such that the dominant closed-loop poles have
a desired damping ratio, ¢ and undamped natural frequency, wn. In the compensated system the
output alone is used as feedback signal to achieve desired performance. In state space design
any inner parameter or variable of a system can be used for feedback. If the state variables
(inner parameters or variables of the system) are used for feedback, then the system can be
optimized for satisfying a desired performance index.

In control system design by pole placement or pole assignment technique, the state
variables are used for feedback, to achieve desired closed loop poles. The advantage in this
system is that the closed loop poles may be placed at any desired locations by means of state
feedback through an appropriate state feedback gain matrix, K. The necessary and sufficient
condition to be satisfied by the system for arbitrary pole placement is that the system be
completely state controllable.

Consider the n'™ order single — input single-output system with and without state
variable feedback as shown in Figure 3.5. The state model of the system without state feedback
is given by.

X =AX +Bu ...3.31

Y =CX ...3.32
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il Bu X X y,l :
- B 3 i Crm !
1 < ! AX :
: AX : A ||
I A ! -
a1 | . K :
.-~ WS State variable feedt™

Figure(a) System without state feedback Figure(b) System with state feedback
Figure 3.5 The n'" order single — input single — output system

Let  r= System input when state variable feedback is employed.
o = Feedback signal obtained from state variables.
U = Plant input.

The feedback signal, ¢ is obtained from state feedback and it is related to the state
variables by the equation,

c =KX ...3.33
where K = State feedback gain matrix of order (1 x n) and
K= (kik2Ks ... kn) ...3.34

In system employing state variable feedback, the plant input, u is the difference
between system input, r and feedback input, c.

- Plant input,u=r—-o ...3.35
On substituting, 6 = KX in equation (3.35) we get,

u=r—-KX ...3.36
The equation (3.36) is called control law.

The state equation of the system with state variable feedback is obtained by substituting
the expression for u, from equation (3.36) in equation (3.31).

X = AX +Bu=AX + B (r—KX)
= AX + Br-BKX = (A -BK) X+ Br

Therefore, the state model of the system with state variable feedback is given by the
following equations [Eqgn (3.32) and (3.33)].

X = (A-BK) X + Br ...3.32
y=CX ...3.33
where, K = [Kky, k2, K3 ... kn]
and r=u+KX
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This design technique starts with the determination of desired closed-loop poles to
satisfy transient response and/or frequency response requirements. By choosing an appropriate
gain matrix, K for state feedback, it is possible to force the system to have closed loop poles at
the desired locations, provided that the original system is completely state controllable. In this
design technique it is assumed that all state variable are measurable and are available for
feedback.

DETERMINATION OF STATE FEEDBACK GAIN MATRIX, K

The state feedback gain matrix can be determined by three methods. In all the three
methods, the system has to be first checked for complete state controllability.

The state model of the original n'" order system is given by
X =AX + Bu
Y =CX

To check for controllability of original system, determine the composite matrix for
controllability Q..

Where, Q. = [B AB A’B ... A"1B]

Then calculate the determinant of Qc. If the determinant of Q. is not equal to zero, then
the rank of Qc is n and so the system is completely state controllable. (Here n is the order of
the system). If the rank is not equal to n then arbitrary pole placement is not possible. When
the system is completely state controllable any one of the following method can be used to find
K.

METHOD - 1|

1. Determine the characteristic polynomial of original system. The characteristic
polynomial is given by |Al1 — A] = 0.

Let, |M-A[=An+a 42, A2+ +a_A+a.

2. Determine the desired characteristic polynomial from the specified closed loop poles.
Let the specified or desired closed loop poles be p1, Ho, M3, .... pn.
Now the desired characteristic polynomial is given by

(A1) A=) (Apy) oooe (At) = A7+ 0 A1+ @, AT 2+t 0 A,

3. Determine the transformation matrix, Pc which transforms the original state model to
controllable phase variable form.

The transformation matrix, P.=



and, P1=[00 ...0 1]Q%

4. Determine the state feedback gain matrix, from the following equation.
K=[oc—a o _—8_ -« 6-8, o-8]P,

Note: If the given system state modal is in controllable phase variable form then P¢ = 1, unit
matrix.

METHOD - 11

1. Determine the characteristic polynomial of the system with state feedback, which is
given by, | A1-(A-BK) | = 0.
Here take, K = [ky, ko, k3 ... kn]
Let A1-(A-BK) | = A1-A+BK| = A" + by A" + by A2 + ... bpa A + by,
The coefficients of this polynomial by, b, bs,... by will be functions of k1, ko, Ka,... kn.

2. Determine the desired characteristic polynomial from the specified closed loop poles.
Let the specified on desired closed loop poles be p1, M2, U3, ... un. Now the desired
characteristic polynomial is given by,
A=) A=) Qo)A ) = X0+ ok 02 4 ko, o+ .

3. By equating the coefficients of polynomials obtained in step-1 and step-2, we get n-
number of equations.
e, bi=a1; b= R o ] and by = an.
On solving these equations we get the elements ki, ko, ... kn Of state feedback gain
matrix, K.

Note: Method — Il is suitable only for low values of n (i.e. for 2" and 3" order systems)
otherwise calculations will be tedious.

METHOD - 11l

1. Determine the desired characteristic polynomial from the specified closed loop poles.
Let the specified or desired closed loop poles be i, po, U3, ... pn.
Now the desired characteristic polynomial is given by,
(=1, (=) A-py) o ) = A"+ o A1+ @, A2 e d+o

2. Determine the matrix ¢(A) using the coefficients of desired characteristic polynomial.

$A)=A"+a A" +a, A"+ 4o Ata L
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3. Calculate the state feedback gain matrix, K, using the Ackermann’s formula given
below.

K=[00...01] Qc*¢ (A)
Where, Q:=[B AB A’B ... A" B]
EXAMPLE 1.8

Consider a linear system described by the transfer function

Y(s) _ 10
Us) s(s+1)(s+2)

Design a feedback controller with a state feedback so that the closed loop poles are
placed at -2, -1 +j1

SOLUTION

To determine the state equation of the system

. Y(s) _ 10
On cross multiplying the equation (3.8.1) we get,
Y(s) [s(s+1)(s+2)] = 10 U(s)
Y(s) [s(s*+3s+2)] = 10 U(s)
Y(s) [s*+3s2+2s] = 10 U(s)
~.8'Y(s) + 382 Y(s) + 2sY(s) = 10 U(s) 180
On taking inverse laplace transform of equation (3.8.2) we bet,
y+3y+2y=10u 383

Let us define state variables as follows,

X| =y X, =¥ X3=Y

V=1t V=Xq; v =X ahd)':xl
Pt Yy deXy i 3502 in equation (3.8.3)

s Xy +3x3+2x; =100

or k3 = —2X; —3X3 +10u

The state equations governing the system are
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:k|=}l2
X=X

The state equation in the matrix form is

X21={0 0 1||x,|+]|0]u
X3 0 -2 -3 |x, 10
...3.84
Check for controllability
Giventhat, A={0 1 0l andB= [0
00 1| 0
0 -2 -3 10
A=A A= 1 1
s HEagag
o Jay 6 7
23] |h~2=3] 10 385

o1 o]fo] [0
=1
-3

AB=|0 0 1|0 0’
0 -2 -3]{10] 0

o 0 1][0 [ 10

AEB =10 =2 -3 0] = =30

o6 7)) | 7]

0 0 10
Composite matrix forcontrollabi‘lity, Qc=[B AB AzB]= 0 10 -30
10 =30 70
0 0 10
Determinant of Q¢ =8qc = 0 10 -30{=10(-10x10)=-1000
10 =30 70

Since, Aqc # 0, the system is completely state controllable.
To find Qc™?

From equation (3.8.6) and (3.8.7) we get
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0 0 10
Q.=| 0 10 30| and A, =-1000.

10 =30 70

[ 610 -300 -100]"
_ foofactorof Q1" _ 1 | 300 _j00 o

Q= :
Determinant of Q A
) S T 0
610 300 -100] -061 03 0.1
——! 130 -100 0 |=]|-03010

-1000

-100 0 0 | 01 0 0

To find desired characteristic polynomial
The desired closed loop poles are

p,==2,p,==l+jland p,=-1-jl
Hence the desired characteristic polynomial is

Oo=pty) b =pta) (h=p3) = (A +2) (L +1=jI) (A +1+ 1)
=(+2) ((n+ 17 =(i)?)
=(1+2) (P +21+1+1)
=(+2) (7.3+2x+2)
=23 +202 +20 4232 +40.+4

=2 +422 16)+4

The desired characteristic polynomial is

W+ 4N+ 60+ 4=0

To determine the state variable feedback matrix, K

Method — |

Characteristic polynomial of original system is given by | A1 — A| =0

1 o 0] [o 1 0] [o-1 0
[M-A)=2f0 1 o|-f0 0o 1]=[0 A -

0 0 1 0 -2 -3 0 2 A+3
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A-l0
3. wa?
M-Al =0 & -1 [=aAR@++2]=@+D+2h = K+ +20
0 2 A+3

The characteristic polynomial of original system is,
23 + 34 +20=0 ...3.8.10

From Eqn (3.8.9) we get the desired characteristic polynomial as

A 4N +6A+4=0 3811

From equation (3.8.8.) we get,

-061 03 Ol
QF =| -03 01 0
o1 0 O
-061 03 01
p=[0 0 jos'=001]| -03 01 O =[01 0 0]
o1 0 0
010
pA=[0100](0 O = [0 01 0]
lo-2-3
0 0 I
pAZ=[0100][0-2 3= [0 0 01]
06 7
P, 01 0 0
~P.=|PA |=| 0 0Ol 0
PAZ 0 0 0l

The state feedback gain matrix, K=oz —a3 a2 —a2 o1 —a1] Pec
From equation (3.8.11) we get, 03 =4; o2 =6; a1 =4

From equation (3.8.10) we get, a3 =0; a2=2; a1=3

. K=[4-0 6-2 4-3] P

01 0 0
=[441]| 0 01 0 |=[04 04 0.I]
0 0 0l
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Method — |1

From the given state model we get,

010 0
A=|0 0 1| and B=|0
633 10

Let, K=[k1 ka2 ks]

The characteristic polynomial of the system with state feedback is given by,

|1 - (A-BK) | = |A1-A +BK| =0

1 00] o 10 0 1% &, ks
[MI-A+Bkl=A[0 1 0|-|0 O 1|+]| O
R 10
A 0 0 01 0 0 0 0
<{o x]-0 o ¥|£] 0 0 0
p o af lo-g-s 1ok, 10k, 10
"% -1 0
=| o A sy
| 10k, 2410k, A+3+10k;

A -1 0

[r1-A+BK|=| o A <

10k 2410k, A+3+10k,
=A[MA+3+10k)+2+ 10k, ]+ 1[10k,]
=2 +3+10ky) +(2+10k,) A + 10k,
=2 +(3+10ky) 22 +(2+10k,) A+ 10K,

The characteristic polynomial of the system with state feedback is

MB+(3 +10k,) A2 + (2 +10k,) & +10k,=0 3812

From equation (3.8.12) we get the desired characteristic polynomial as,

Ay + 403+ 6+ 4 =10
..3.8.13

On equating the coefficients of A° term (constant) is equations (3.8.12) and (3.8.13) we
get,

10k,=4 ; -~k =—r=04
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On equating the coefficient of A term in equations (3.8.12) and (3.8.13) we get,

3+10ky=4 ; k3=
The state feedback gain matrix, K=[k1 k2 ks]=[0.4 0.4 0.1]

Method - 111

From equation (3.8.9) we get the desired characteristic polynomial as,
1 +4=0
W+ 407+ 6A+4 ..3.8.14

Here, p(A) = A*+ a1 A+ o2 A +as |
From equation (3.8.14) we get, a1 = 4; 02 = 6; a3 = 4.

From the given state equation and equation (3.8.5) we get,

01 0 00 1
A=l0 0 1| and A?|0-2-3
0-2-3 06 7

oo 101 o] [0 -2 -3

A3=A2A=0:2‘3 00 1(=|0 6 7

06 7]|lo-2-3] [0-14-15

S 0(A) =A% + 0 A7 + A +al

[0 2 -3 00 0 0
=0 6 7+4o-2—3+6001+4[ 0
0 -14 ~15] 06 7 -2 -3 1
0 2 -3] [0 0 0 4 00
=10 6 7|+|0 -8 -12(+|0 O 040}
[0 -14 -15| [0 24 28 0-12 18| [0 0 4

-061 03 0l
From equation (3.8.8) we get, Qc'=|-03 01 0
01 0 0

From Ackermann’s formula we get,
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K =[001] Q;' ¢ (A)
-061 03 01][4 4 1
=[00|][-o.3 01 o} {o 2 IJ
Lo o0 o][0o-2-1

4 41
=[01 0 o][o 2 1} =[04 04 0.1]

0-2 -l
The state feedback gain matrix K=10.4 0.4 0.1]

Note: It is observed that the values of ki, ko, ks obtained by all the three methods are
same. Because for a given set of poles the values of k1, kz, ks, ... will be unique.

EXAMPLE 1.9

A single input system is described by the following state equations.

X, =10 0] [x, 10
0= 1 =2 0f[x,|+[1]u
X, 2. T 3] |x% 0

Design a state feedback controller which will give closed-loop poles at -1 + j2, -6.

SOLUTION

Check for controllability

1-1 0 0 10
Giventhat A=]1 =2 0 |and B=| 1
2 1 =3 0
=] B -1 0 0 1 0 0
Ataak=l 1 <2 O] +-2 0|=|=3 4 9
9 1. 3|2 13 =7 S Y
-1 0 1007 [-10]
AB=| 1 =2 of|1 |=]38
2 1 3|0 21 |
1 0o o][10 10]
AB=|-3 4 0 1 =|-26
7 -5 9|0 75
, 10 -10 10
Composite matrix} Qc=[B AB ABB]=|1 8 -26
for controllability 0 21 -75

109



. - =. 1
Determinant of Q.= Boe

10 -10 10
g =26
l o 21 =75

t e =10[8x(-75)-2! % (~26)] +10 [=75)+ 10 [21]

=-540-750+210
=-1080

Since, Agc # 0, The system is completely state controllable.

To find Qc?

From equations (3.9.2) and (3.9.3) we get,

10 -10 10
Q=|! 8 26| and A, =-1080.
0 21 =75
p B rst 715 2aT
qnt = JoofuctorofQcT” 1 1540 750 -210
€~ Determinant of Q¢ Boc 180 270 90

_s4 -540 1807
=_'_0 75 =750 270| =
—1080f 51 210 90

[ 0.05 0.5 -0.1667
-0.0694 0.6944 -0.25

-0.0194 0.1944 -0.0833

To find desired characteristic polynomial

The desired closed loop poles are,

+j2,n,==1-j2Zand p, =-6

Hence the desired characteristic polynomial is,

A=) A=p) A =p3)=A+1=j2) A +1+j2) (A +6)

= (A +D? -

(12)*) (A +6)

=(A? +20+1+4) (A +6).

=(A? +2A+5) (L +6)

=A% +20% +50 + 602 + 124 + 30

=27 +8A2 #174 +30

The desired characteristic polynomial is A% + 812 + 171+ 30 =0
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To determine the state variable feedback matrix, K
Method - |

The characteristics equation of original system is given by,

100] [-1 0 o0 A+l 0 0
[MI-Al=Al0 1 O|-|1 -2 0f=| -1 A+2 O
00 1 2 1 -3 -2 =1 243
A+l 0 0
A=Al =1- 242 0 |=@G&+DA+2)(A+3)
-2 -1 A+3

=(A+1)(A2+50+6)=A+5 2+ 6L+ A2+ 50 +6
=23+ 602+ 11A+6

The characteristic polynomial of original system is.
A +6M2 +112+6=0 ..3.9.6
From equation (3.9.5) we get the desired characteristic polynomial as

A3+ 8A2 + 174 +30=0 ...3.9.7

From equation (3.9.4) we get,

0.05 0.5 ~0.1667
Qg =|-0.0694  0.6944 -0.25
00194  0.1944  —0.0833
0.05 0.5 ~0.1667 ]

=[0 0 1]|-0.0694 0.6944  -0.25
-0.0194  0.1944  -0.0833

= [-0.0194 0.1944 -0.0833]

PI = [0 0 l] QEl

-1 0 0
p A=[-0.0194 0.1944 —00833]| 1 2 0
l o 5 1 <3
=[0.0472 —0.4721 0.2499]
I 0
" 4 0
2_r_00194 0.1944 —0.0833]|-3 .
Sl o 5 9

=[-0.0195 1.1941 -0.7497]
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P _0.0194 0.1944 —0.0833

1

P. = |PA 0.0472 -0.4721  0.2499
PA’ ~0.0195 1.1941 -0.7497

The state feedback gain matrix, K = [0z —a3 a2 —a2 o1 —a1 ] Pe
From equation (3.9.7) we get, a3 =30; 02 =17; 01 =8
From equation (3.9.6) we get, a3 =6; a2=11; a1=6

~K =[30-6 17-11 8-6]F

. -0.0194 0.1944 -0.0833
=[24 6 2]| 0.0472 -0.4721 0.2499
-0.0195 1.1941 -0.7497

=[-022 422. -2]
Method — 11

From the given state model we get

- -1 0 0 10
A=l1 =2 0| and B=|1
' 2 1 -3 0|

Let, K=[k, k, ks

The characteristic polynomial of the systems with state feedback is given by,

M- (A—BK)| =M —A+BK|=0

A0 o] [-1 o o7 [i0k, 10k, 10k,
=10 A 0= 1 =2 0|+ Kk, Kk, |k
00 A {2 1 3|0 o o0

A+1+10k, 10k, 10k,
=| -1+k, A+24k, Kk,

-2 -1 A+3
A+ 1+10Kk, 10k, 10k,
JM-A+BK|=| -1+k, A+24k, Kk
-2 -1 A+3
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get,

=(A+1+10ky) [(A+2+K;y) (A +3)+k3]= 10k, [(=14+ k) (A +3) +2k,]
+10k3[=(=1+k}) +2(h +2+ky)]

= [A+ (1410k)] [A? 30420 + 64+ Nk, + 3k, + k|
— 10K, [—A = 3+ Ak, + 3K, + 2k, ] +10k;[1 = Kk, +20 + 4+ 2k, ]

= [+ (1 +10k)] [A? + G +K;) A+ (643K, +ky)]
—10k, [(~1+k) A +(-3+3k, +2k3)]+ 10k, [24 + (5 -k, +2k,))

=23+ (5+k,) A2 +(6+3k, +k;) A
+(1+10k AT +(1+10k,) (5+ kDA + (1410K,) (6 + 3k, + k)
~10k, (=1 + k) — 10K, (=3 + 3k, +2k;) + 20k )1 + 10k, (5 - k, + 2k, )

=A% +(6+10k, +k;) A% +(6+3k, +k,y +5+k, +50k, +10k k,
+10k, = 10Kk, +20k;) A +(6+3k; +k; +60k, +30k,k,
+10Kk K + 30k, —30k k; =20k, k; +50k; —10k k; +20k,k;)

=A% +(6+10k, +K;) A2 +(11+50k, +14k, +21k,) &
+(6+ 60k, + 33Kk, +51k;)

The characteristic polynomial of system with state feedback is

A +(6+ 10K, + kAT + (11 +50k, +14k; +21k)h+(6:+60k, +33k; +31ky)=0 394
From equation (3.9.5) we get the desired characteristic polynomial as,

Ad+8A2+ 170+30=0 399

On equating the coefficients of A2 term in equations (3.9.8) and (3.9.8) we get,

6+ 10k +k,=8
10k, +k,=8-6

10k, k=2 ..3.9.10

On equation the coefficients of A term in equations (3.9.8) and (3.9.9) we get,

I1+50k, + 14k, +21k, =17
50k, + 14k, +21k,= 17 =11
~50k, + 14k, + 21k, =6 ..3.9.11

On equating the coefficients of A° term (constant) in equation (3.9.8) and (3.9.9) we
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6+ 60k, +33k,+ 51k, =30
60k, +33k, + 51k, =30-6

©.60k, +33k,+51k, =24 ..3.9.12

The equations (3.9.10), (3.9.11) and (3.9.12) can be arranged in the matrix form and ki,
k> and ks are solved using cramer’s rule as shown below.

10 1 0] [k 2
60 33 51| |ky| |24

101 01 10014 x51-33x21)=1(50x51-60%21)
A=|50 14 21

60 33 51|=210-1290=-1080

2 1 0
Bi=l6 14 21| =2(14x51-33x21) = 1(6x 5124 x 21)
24 33 5 :
= 42 +198'=240
0 2 o
B,=(50 6 21| =10(6x51-24x21)=2(50% 51 - 60 x 21)
60 24 5|
= ~ 1980 - 2580 = — 4560
0 1 2
8;=150 14 6 |=10(14x24-33%6)~1(50%24 —60%6)
60 33 24
+2(50%x33-60x14)
= 1380 - 840 + 1620 = 2160
k,=~ﬁ—‘= 2. s
A -1080
k2=ﬂ=:@=4,22
A -1080
o8y 2160
T A -1080

The state feedback gain matrix, K = [ky k2 k3] =[-0.22 4.22 -2]
Method — 111

From equation (3.9.5) we get the desired characteristic polynomial as,
A +8A2+ 171 +30=0 ...3.9.13

Here, p(A) = A*+ o1 A2+ oz A+ as |
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From equation (3.9.13) we get, a1 =8 ; a2 =17 ; a3 =30

From the given state equation and equation (3.9.1) we get,

-1 0 0 1 0 0
A=| 1 2 0| and A’=|-3 4 0
2 1 -3 -7 -5 9

"1 08 [SF 0 0 “1 0 0
SAY=mALA= =3 40 153 0 7 «8 0
Sk Bl |2 1«3 20 19 27

il

SO (A) =AY oA A

0] [¥ po -1 00 100

=7 -8 0 |+8 -3 4 0f+17| 1 =2 0|+30]0 1 0
2019 27| |-7-5 9 2 1 -3 [oo0
(=10 ) [& 9O B -17 0 O 30 0 0]
=|7 -8 0|+|-2432 0[+]17 =34 0 [+[0300]
Lzo 19 =27 [-56 —40 72 34 17, =51 0 0 30
(20 0 0

=0 20 0

|2 4 24

From equation (3.9.4) we get,

0:05 0.5 -0.1667
Q;' =[-0.0694 0.6944 -025
~0.0194 0.1944 —0.0833

From Ackermann’s formula we get,

K=[00 1]QZ ¢(A)
005 05 ~-0.1667][20 0 0
=[0 0 1]|-0.0694 0.6944 —025 || 0 20 0
~0.0194 0.1944 -0.0833 || 2 —4 24

200 O

: 5
=[-0.0194 0.1944 ~0.0833]| 0 20 0 | = [-022 42 '
54 24

The state feedback gain matrix, K=[-0.22 4.22 -2]

Note: The result obtained from all the three methods are same.
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19 OBSERVABLE PHASE VARIABLE FORM OF STATE MODEL

An observable system can be represented by a modified state model called observable
phase variable form by transforming the system matrix A into the transpose of bush of
companion form as shown in equation (3.34)

...3.34

Consider the state model of a n'" order system with single-input and single-output as
shown below.

X = AX + Bu ...3.35
y=CX + Du ...3.36

Let us choose a transformation Z = P, X to transform the state model of observable
phase variable form.

Here, Z = Transformed state vector of order (n x 1)
Po = Transformed matrix of order (n x n)

On premultiplying the equation, Z = P, X by Po™* we get,
Pot Z =Pyt PoX

" X=PolZ

On differentiating the equation X = P, Z we get,
X=PotZ

On substituting X =Po* Z and X =Py Z in the state model [equations (3.35) and (3.36)
of the system we get,

PotZ=APstZ+Bu ...3.37
y=CP,Z+Du ...3.38
On premultipling the equation by P, we get,

7=P, A p;' Z+P,Bu

y=CP;' Z+Du,

Let PBAP;t=A;PoB=Band CP,1=C,

Z =AZ+Bou ...3.39

y = CoZ +Du ...3.40
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The equation (3.39) and (3.40) are called observable phase variable from of state model
of the system.

Note: In observable phase variable form of state model the matrix A.

DETERMINATION OF THE TRANSFORMATION MATRIX Po

Let A be the system matrix of original state model. Now the characteristic equation
governing the system is given by equation (3.41).

RI-Al=A*+a A+ A=+ ___+8 . itz =0

- = * ...3.41

Using the coefficients a1, a2, .... aa2 aa-1 Of characteristic equation. [equation 3.41] we
can form a matrix was shown in equation (3.42)].

i‘!:-l O 3: 2 0 |

2,2 23, 3-—2 1 0]
w=| : :

|2, 1 .—0 o of

L 3 D

L 0 o0 o ...3.42
Now the transformation matrix Py is given by
Po:WQoT ... 343

Where Qo = [CT ATCT (AT:CT .... (AT)™ CT]
EXAMPLE 1.10

The state model of a system is given by

) U 0 M%7 T y=[1 0 0][x
%] =|=2 -

o B I | E RS AT X
X3 0 2 -3 X3 0 X3

Convert the state model to observable phase variable form.
SOLUTION

The given state model can be transformed to observable phase variable form, only if
the system is completely observable. Hence check for observability.
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Kalman’s test for observability

From the given state model we get,
0\0 1
A=|-2 -3 0| and C=[1 0 0]
0 2 -3 ~
o o 1] o -2 o0
AT=|=2 -3 o] =l0 -3 2
“lo 2 -3 1 0 -3

0 -2 o0ff0 -2 0 0 6 -4
ATY=lo -3 2]|0. -3 2|{=|2 9 =12
1 o -3t 0 -3 -3 -2 9

0
o -2 0][1] [o 0 6 -47M1] [o°
A’lcT=lo -3 2]|0]= ol; A" C"=| 2 9 -12||o|=|2
1 o -3flo) [1] b =2 9 1ol |~3
| 0 0
The c\\mp\\silc m'.\(ri\IQ 2[(..1 _'\'C‘ (.*\‘):C‘l" 0 0 2
for observability | 0 1 =3

1 0 0
2 1(=2) =2
Determinant of Q, =, [0 0 2|= I(
0 1 -3

Since Aqo #, the rank of Qo = 3. Hence the system is completely observable.

To find transformation matrix, P,

From the given state model we get, A =| -

(=T IS N ]
|

o W o

W O
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1 0o of[o o 1] [~ o0 -1l

-a]=a0 1 0f-2 -3 0|=]2 A+3 0
00 1|]]o 2-3] [0 -2 A+3
A0 -l

M-A]=[2 2+3 0 =A(A+3) = 1(=49) =A(A* +61+9) +4
0 -2 A+3] =N +61+90+4

The characteristic equation is,
2I+6AT+9L+4=0
The standard form of characteristic equation when n = 3 is given by,

7\.-"+a:7k.’+azl+a3=0

On comparing the characteristic equation of the system with standard form we get,

aa=6 a2=9 andaz =4

T96‘100T961100923
P=“Q°=10002=610001=601
10001~310002—3100
,_ [Cofactorof BT" P,
°  DeterminantofP, A,
9 2 3
Ay=[6 0 1|==2(-1)=2
1 0 0 '
o 1 oo o 2
2 9 -12 0 2 -12
0O 0 2 0 0 1
pioLpr _Llli 23 of=los -15 45
S Ap, of 2
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To determine the observable phase variable form of state model
The observable phase variable form of state model is given by,
Z=As Z+Bou

Y=CoZ (Here D is not given)

Where, Ao =Py APyt : Bo=PoBand Co=C Pyt

o 2 31[o o 1jfo -0 1
N D - 05 -1.5. 4.
papi=l6 0 1]|=2 -3 O g
{1 o 0|LO0 2 -3{1 O 1 -6
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SAMPLED DATA CONTROL SYSTEMS
4.1 INTRODUCTION

When the signal or information at any or some points in a system is in the form of
discrete pulses, then the system is called discrete data system. In control engineering the
discrete data system is popularly known as sampled data system.

The control system becomes a sampled data system in any one of the following
situations.

1. When a digital computer or microprocessor or digital device is employed as a
part of the control loop.

2. When the control components are used on time sharing basis.
When the control signals are transmitted by pulse modulation.

4. When the output or input of a component in the system is a digital or discrete
signals.

The controllers are provided in control systems to modify the errors signal for better
control action. If the controllers are constructed using analog elements then they are called
analog controllers and their input and output are analog signals, which are continuous functions
of time. The analog controllers are complex, costlier and once fabricated it is difficult to alter
the controllers.

A digital controller can be employed to implement complex or time shared control
functions. [In time shared controller, a single controller will perform more than one function].
The digital controller are simple, versatile, programmable, fast acting and less costlier than
analog controllers.

The digital controller can be a special purpose computer (microprocessor based system)
or a general purpose computer or it is constructed using non-programmable digital devices.
When computer or microprocessor is involved then the controller becomes programmable and
its easier to alter the control functions by modifying the program instructions.

A sampled-data control system using digital controller is shown in Figure 4.1. The input
and output signal in a digital computer will be digital signals, but the error signal (input to the
controller) to be modified by the controller and the control signal (output of the controller) to
drive the plant are analog in nature. Hence a sampler and an analog-to-digital converter (ADC)
are provided at the computer input. A digital to analog converter (DAC) and a hold circuit are
provided at the computer output.

............................................

rt) c(t):: Snm;()]lcr f(k'[')\ Digital g(kT)| PAC and f"( t) ( l‘lfml ¢lt)
; /fll;C ”|Computer “[hold circuit " | ienein] |
e .‘ ................ Dlgnulcon(roll(.r ............
; ¢(t) - Error signal (Analog) i f(kT) - Digital error signal
u(t) - Control signal (Analog) : g(kT) - Digital control signal.

Figure 4.1 Sampled-data control system
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The sampler converts the continous time-error signal into a sequence of pulses and
ADC produces a binary code (binary number) for each sample. These codes are the input data
to the digital computer which process the binary codes and produces another stream of binary
codes as output. The DAC and hold circuit converts the output binary codes to continous time
signal (Analog signal) called control signal. This output control signal is used to drive the plant.

ADVANTAGES OF DIGITAL CONTROLLERS

1. The digital controllers can perform large and complex computation with any desired
degree of accuracy at very high speed. In analog controllers the cost of controllers
increases rapidly with the increase in complexity of computation and desired accuracy.

2. The digital controllers are easily programmable and so they are more versatile.
3. Digital controllers have better resoultion.

ADVANTAGES OF SAMPLED DATA CONTROL SYSTEMS

1. The sampled data systems are highly accurate, fast and flexible.

2 Use of time sharing concept of digital computer results in economical cosst and space.
3. Digital transducers used in the system have better resolution.
4

The digital components used in the system are less affected by noise, non linearities
and transmission errors of noisy channel.

5. The sampled data system require low power instruments which can be built to have
high sensitivity.

6. Digital coded signals can be stored, transmitted, retransmitted, detected, analysed or
processed as desired.

7. The system performance can be modified by compensation techniques.
4.2  SAMPLING PROCESS

Sampling is the conversion of a continuous-time signals (or analog signal) into a
discrete-time signal obtained by taking samples of the continuous time signal (or analog signal)
at discrete time instants. Thus if f(L) is the input to the sampler as shown in Figure 4.2, the
output is f(KT) where T is called the sampling interval or samplnig period. The reciprocal of T,
i.e., 1/T=Fs is called the sampling rate (or samples per second or sampling frequency). This
type of sampling is called periodic sampling, since samples are obtained uniformly at intervals
of T seconds.

10} , ey
flv ¢
Analog Discrete-time
signal signal or sequence "
(Input) (output)
! 1 0 234356
. . . Fig.c Discrete signal or
Fig. a Sampler Fig.b Analog signal g g

sequence

Figure 4.2 Periodic sampling of an analog signal

123



(Inthis book only periodic sampling of signals is considered, because periodic sampling
is most widely used in practice. The other forms of sampling are multiple-order sampling,
multiple-rate sampling and Random sampling.

Multiple-order sampling: A particular sampling pattern is repeated periodically.

Multiple-rate sampling: In this method two simultaneous sampling operations with
different time periods are carried out on the signal to produce the sampled output.

Random sampling: In this case the sampling instants are random.

The sampling frequency Fs (=1/T") must be selected large enough such that the sampling
process will not result in any loss of spectral information. (i.e. if the spectrum of the analog
signal can be recovered from the spectrum of the discrete — time signal, there is no loss of
information). A guideline for choosing the sampling frequency is given sampling theorem
given below.

SAMPLING THEOREM: A band limited continuous time signal with highest
frequency (bandwidth) fy hertz, can be uniquely recovered from its samples provided that the
sampling rate Fs is greater than or equal to 2f, samples per second.

From the sampling theorem we can infer that the knowledge of frequency content of a
signal is essential while choosing the sampling frequency.

For processing the sampled signals by digital means, it has to be converted to binary
codes and this convertion process is called quantization and coding. The process of converting
a discrete time continuous valued signal into a discrete time discrete valued signal is called
guantization. In quantization the value of each signal sample is represented by a value selected
from a finite set of possible values called quantization levels. The difference between the
unguantized sample and the quantized output is called the quantization error. The coding is the
process of representing each discrete value by an n-bit binary sequence (or code or number).
The process of sampling, quantization and coding are performed by sample/hold circuit and
ADC.

1.3 ANALYSIS OF SAMPLING PROCESS IN FREQUENCY DOMAIN

The sampling process explained in the previous section is equivalent to multiplying the
analog signal, f(t) with a impulse train, 57(t) to produce the sampled signal, fs(t). Let the impulse
train consists of pulses of area, A. Hence the impulse sampled signal, fs(t) can be expressed as,

I;U}:r{l)ﬁﬁT[l] 41
Mathematically, the impulse train, d(t) can be expressed as,

Se0)= 3 8(1—kT)
K= ...4.2

LM =ARD) T 8(t-KT)

foe

.. 43

where T is the sampling period.

124



A typical analog signal, f{(t) [Fig a]; the impulse train, 67(t) [Fig b] and the impulse
sampled signal, fs(t) [Fig c] are shown in Figure 4.3.

o 8,()
; K
[ t I t
. . : . Fig.c. Impulse sampled
Fig.a. Analog signal Fig.b. Impulse train

analog signal

Figure 4.3 Impulse sampling of an analog signals

The frequency content (frequency response) of a signal can be obtained from the fourier
transform of the signal [i.e., Fourier transform converts the time domain signal to frequency
domain signal]. Hence the frequency response of the impulse sampled signal can be obtained
by taking fourier transform of Eqn (4.3).

The fourier transform of a single-valued function, f(t) is defined as

“F {80} =F(w) = | ft) eIa

.44
On taking fourier transform of fs(t) using the definition of fourier transform we get,
F{f(1)}= Fs(fo) = T £.(1) e Iy
TAf(l) Z 8(t = kT) c-jurtdl
h ...4.5

Mathematically the Eqn (4.5) represents, the convolution of two signals, f(t) and o(t-
kT). The convolution theorem of fourier transform says that, the convolution of two time
domain signals is equivalent to the product of their individual fourier transforms. Therefore,
fourier transform of fs(t) can be expressed as a product of fourier transform of f(t) and &(t —
KT).

:t"s(m) =% F{f(y)) .F { Z a(t- kT}}

i ...4.6

Let, F {f(t)} = F(o) 47
F{ 3 (- kT)} =m5kf 8(0 ko)

e ""G 48

where, os = 2/T = sampling frequency in rad/sec.

Using equations (4.7) and (4.8), the equ (4.6) can be written as,

F(w)= —xF{mem _Z 8w - kms]-

lul,}
—f|f.;’

Ti'i F(0) 5(0 - ko )
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Since F(®) 8(o - kas) = F(o - ko)

F,J(:)]:% EF{GJ—-](D]!}
Tk ke ...4.9

The equation (4.9) gives the frequency spectrum of the impulse sampled signal.

Let f(w) be a band-limited signal with a maximum frequency of wm. The frequency
spectrum of F(w) is shown in Figure 4.4(a), which is a plot of |F(w)| Vs ®. The frequency
spectrum of impulse sampled signal, i.e., |[Fs(®)| Vs o, is shown in Figure 4.4(b), when ws > 2
ws and in Figure 4.4(c), when when os < 2 om.

In Figure 4.4(b) the frequency spectrum of original signal is repeated periodically with
period ws and there is no overlapping of original spectrum. In Figure 4.4(c) the periodic
repeatition of original spectrum overlaps.

IF(w)] Low-pass ﬁlter 5 L)

® o) ? [\ [\

= 0 = 25
mm {IJm 10 o, ©. 0 o

w

(©)

Figure 4.4 Fourier spectra of input signal and its impulse sampled version

From fig 4.4 it is observed that, as long as @s > om, the original spectrum is preserved
(since there is no overlapping) in the sampled signal and can be extracted from it by low-pass
filtering. This fact was proposed as shanon’s sampling theorem, which states that the
information contained in a signal is fully preserved in the sampled version as long as the
sampling frequency is at least twice the maximum frequency in the signal.

44  RECONSTRUCTION OF SAMPLED SIGNALS USING HOLD CIRCUITS

The hold circuits are popularly used in the process of analog-to-digital conversion
(ADC) and digital-to-analog conversion (DAC). In ADC process the hold circuit is used to
hold the sample until the quantization and coding for the current sample is complete.

In DAC process various types of hold circuits are used to convert the discrete time
signal to analog signal. The simplest hold circuit is the zero order hold (ZOH). In zero order
hold circuits the signal is reconstructed such that the value of reconstructed signal for a
sampling period is same as the value of last received sample. The schematic diagram of sampler
and zero order hold (ZOH) is shown in Fig 4.5. The signal reconstruction by zero order hold
(ZOH) circuit is illustrated in Fig 4.6.
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f(v) f(0) 0 O Original signal
& 0_75_0 nstruclcd W." H“‘/‘t{Samplcd signal
signal 3
T,
Figure 4.5 Sampler and ZOH \ l ]
f“(() . | 5;.:; structed
The high frequencies present in the reconstructed rf'"‘fw : 'l
signal are easily filtered out by the various elements of the d #
control system, because the control system is basically a ol T
low-pass filter. signal E

. i Figure 4.6 Sampler
In a first-order hold, the last two signal samples  reconstryction by ZOH

(current and previous sample) are used to reconstruct the

signal for the current sampling period. Similarly higher order hold circuits can be devised. First
or higher-order hold circuits offer no particular advantage over the zero order hold. In sampled
data control systems, the zero-order hold when used in conjunction with a high sampling rate
provides a satisfactory performance. An ideal sample / hold circuit introduces no distortion in
the conversion process. However, in practical sample / hold circuits the following problems
may be encountered.

1. Errors in the periodicity of sampling process.
2. Non linear variations in the duration of sampling aperture.
3. Droop (changes) in the voltage held during conversion.

45 DISCRETE SEQUENCE (DISCRETE TIME SIGNAL)

A discrete sequence or discrete time signal, f(k), is a function of an independent
variable, k, which is an integer. It is important to note that a Discrete time signal is not defined
at instants between two successive samples. Also, it is incorrect to think that f(k) is equal to
zero if k is not an integer. Simply the signal f(k) is not defined for non-integer values of k. A
discrete-time signal is defined for every integer value of k in the range - « < k < co. Since a
digital signal is represented by a set of numbers it is also called a sequence. (i.e., the terms
signal and sequence refers the digital or discrete time signal).

METHODS OF REPRESENTING A DISCRETE TIME SIGNAL OR SEQUENCE

1. Functional representation )
Ky=1 3 k=013 Figure 4.7 Graphical
2 i e , ' ' representation of a
' ) | et ] disorder time sianal
0 ; otherk
2. Graphical representation

The graphical representation of a discrete sequence is shown in Figure 4.7.

3. Tabular representation

(kY ... 06 0 | 4,,
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4, Sequence representation

An infinite duration signal or sequence with the time origin (k=0) indicated by the
symbol 1 is represented as

fk) {....1,2, % 4,1,0,0.....}

An infinite sequence f(k), which is zero for k<0, may be represented as

f(k)={2,1,4,1,0,0 ...} (or) f(k)={2,1,4,1....}
T

An finite duration sequence with the time origin (k=0), indicated by the symbol 1 is
represented as

f(k)={3, -1,-2,5,0,4 ...}
T

A finite duration sequence that satisfies the condition f(k) = 0 for k < 0 may be
represented as

f(k)={2, 1, 4, 1} (or) f(k)={2, 1, 4,1}

T
SOME ELEMENTARY DISCRETE TIME SIGNALS
1. Digital impulse signal or unit sample sequence
B(K) « [ k=0
[0 ken

An impulse delayed by ko,

i k=ky

Oydly =6l ky)
0 kek,

2. Unit step signal

L k2o

JI
|l”'v"'| ; '1,-‘(’

0

An unit step signal delayed by ko

0. R

) = e - g l
1t ks

The unit step is related to digital impulse by the
summation relation

u(k) ‘) ok -~ m)

m-l
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Figure 4.8 Digital impulse signal

|
[ k“ EaR

Figure 4.9 Delayed impulse signal

n‘(l.)

uk) 4

1,

Figure 4.10 Unit step signal

u,(k) 1

Figure 4.11 Delayed unit step
signal



3. Ramp signall u (k)

K Jl: k)
W0 s k<o X
ial ci Figure 4.12 Ramp signal
4. Exponential signal \gure amp signa
B(k)
K :
i k()
p(k) b, ,
' o & k=0

MATHEMATICAL OPERATIONS ON

DISCRETE TIME SIGNALS Figure 4.13 Exponential signal

1. Shifting in time

A signal f(k) may be shifted in time by replacing the independent variable k by (k-m),
where m is an integer. If m is a positive integer, the time shift results in a delay by m units of
time. If m is a negative integer, the time shift results in an advance of the signal by |m| units in
time. The delay results in shifting each sample of f(k) to right. The advance results in shifting
each sample of f(k) to left.

Example
Let, fk)=1 k=0 |[Now, f,(k)=f(k +2)=1 k=-2[and f,(k)=fik—2)=1 k=2
3 k=2 3 k=0 3 k=4
£K)
3
1 2
01234 k
2. Folding or reflection or Transpose

The folding of a signal f(k) is performed by changing the sign of the time base k in the
signal f(k). The folding operation produces a signal f(-k) which is mirror image of f(k) with
respect to time origin k=0.

Example

Let f(k) =k -3<k<3 ; fi(k)=f(k)=—k -3<k<3
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3. Amplitude scaling or scalar multiplication

Amplitude scaling of a signal by a constant A is accomplished by multiplying the value
of every signal sample by A.

Let c(k) be amplitude scaled signal of f(k), then c(k) = Af(k)

Let (k)= 20 k=0 and A =0,

c(k)=2.0 k=0
36 k=1 3.6 k=1
40 k=2 40 k=2
=15 k=3 =15 k=3
4. Time scaling or down sampling

In a signal, f(k), if k is replaced by pk, where p is an integer, then it is called time
scaling or down sampling.

Example: If f(k)=a*; k>0, then fi(k) = f(2k) = a* for even values of k

ftk) O<n<l| f(k) 0<a<l|
I l l Lie I -
R 0123456+ F
5. Signal (or vector) addition

The sum of two signals fi(k) and f2(k) is a signal c(k), whose value at any instant is
equal to the sum of the samples of these two signals at that instant.

i.e. c(k) = fi(k) -+ f;(k); —<k<o

Example

Let fll(k.)"_-' { 1,2, -1 ,2} and fz(k] ={-2, 1,3,1
c(ky = (k) + (k) = {~1,3,2,3}
6. Signal (or vector) multiplication
Signal multiplication results in the product of two signals on a sample-by-sample basis.
The product of two signals fi(k) and fo(k) is a signal c(k), whose value at any instant is equal
to the product of the sample of these two signals at that instant. The product is also called
modulation.

Example

Let f,(k) = {1,2,~1,2} and fy(k)= {-2, 1,3, 1}
e(k) = f,(k) . (k) = {~2.2,-3,2}
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1.6 z-TRANSFORM

Transform techniques are an important tool in the analysis of signals and linear time
invariant systems. The Laplace transforms are popularly used for analysis of continuous time
signals and systems. Similarly z-transform plays an important role in analysis and
representation of linear discrete time systems. The z-transform provides a method for the
analysis of discrete time systems in the frequency domain which is generally more efficient
than its time domain analysis.

DEFINITION OF Z-TRANSFORM

Let, f(k) = Discrete time signal or sequence
F(z) = z{f(k)} = z-transform of f(k)

The z-transform of a discrete time signal or sequence is defined as the power series

F@)= ¥ fk)z*
k=—= ...4.10

where z is a complex variable.

The sequence of equ (4.10) is considered to be two sided and the transform is called
two sided z-transform, since the time index k is defined for both positive and negative values.
If the sequence f(k) is one sided sequence, (i.e. f(k) is defined only for positive value of k) then
the z-transform is called one sided z-transform.

The one sided z-transform of f(k) is defined as,

F(z) = f fi(k) z7%
k=0

REGION OF CONVERGENCE

Since the z-transform is an infinite power series, it exists only for those values for z for
which the series converges. The region of convergence, (ROC) of F(z) is the set of all values
of z for the which F(z) attains a finite value. The ROC of a finite-duration signal is the entire
z-plane, except possibly the point z =0 and / or z = co. These points are excluded, because z*
(when k > 0) becomes unbounded for z = 0 and z* (when k > 0) becomes unbounded for
z=0.

The complex variables z can be expressed in the polar form as,
Z=re LAl
where r =|z|and 6 = £z

On substituting for z from equ (4.11) in equ (4.10) we get,

Fo= 3 fk) 25 = T (k) () = ¥ f(k)r e-i%k
ot ko ke 412
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Now, [F@l= ¥ |f(k) v

k==mo
In the ROC of F(z), |F(z)| < oo.

Fromequ (4.13) we observe that |F(z)| is finite, if the sequence (k) r* is absolutely
summable.

To find the ROC, the equ (4.13) can be expressed as,

B@i= T 100 = 316k r¥pe 3 100k 1]
k== Kk=wm k=0
- 2w et E |5
et =1p 414

If F(z) converges in some region of the complex plane, both summations in equ (4.14)
must be finite.

If the first sum of equ (4.14) converges, there must exist values of r small enough for
f(-k)r* to be absolutely summable. Hence the ROC for the first sum consists of all points in a
circle of radius, r1 as shown in Figure 4.14, where ry > .

If the second sum of equ (4.14) converges, there must exist large values of r for which
f(k) / r* is absolutely summable. Hence the ROC for the second sum consists of all points in a
circle of radius, r2 as shown in Figure 4.15, wherer, <r.

Therefore, the ROC of F(z) is the region inbetween two circles of radius r1 and r» as
shown in Figure 4.16. where ro<r <ry.

A JO
RO~ &
’7/»4/:25%/' .

/4

Figure 4.14 ROC for Figure 4.15 ROC for Figure 4.16 ROC for F(2)
$ 16k T 16(k) /1]
k=1 k=0
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Table 4.1 Characteristic families of signals with their corresponding ROC

SIGNAL

ROC

Causal
(or right sided)

“lh

Finite-Duration Signals

0
Anticausal
(or left sided)

i

Tivo-sided

T

0

k

777 Entire z-plans
. exceptz= 0

Entire z-plane
exeept 7z m

Entire z-plane
except z = 0
and z=co

Causal
‘or right sided)

Infinite-Duration Signals

fifey

0

Anticausa!
‘or left sided)

"'l”c

Two-sided

11l “r_“

0

Table 4.2 Properties of one-sided Z-transform

Notations F(z) = Z{[{k)} : Fi@) =Z{r(K)} : F(z)=Z{f.(K)}

z-transform

Property Discrete sequence
Linearity aifi(K) + axfa(k) aiF1(z) + a2F2(2)
m=| .
2" F(z)- %, f(i)z™"
Shifting, m > 0 ‘;((frr:)) =
Z"F(z0
Multiplication by k™ (or m (_ i)“‘ =
differentiation in z-domain) K"1(k) 5 8
Scaling in z-domain (or K 1
multiplication by a¥) afi(k) F(a2)
Time reversal f(-k) F(zh
Conjugation *(k) F*(2)
k
Convolution 2 bk <m) () H(2)R(z)
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Initial value f(0)= Lt F(z)

w00

f(c0) = _l_.tl(l—z"’} F(z)
Final value = Ltl(z— 1) F(z)

if F(z) is analytic for |z|> |

Table 4.3 Some Common one side Z-transform

fit): t>0 f(k) or fikT) ; k>0 F(2)
3 (K) 1
u(k) or 1 z/(z-1)
a z/(z-a)
K az (z+a)
k a (z—a)3
2
- k z
(k+i)a =
(k+1) (k+2) 2
< a
2! (z-a)*
(k+1) (k+2) (k+3) ok z*
3 (z—a)*
k
a "
O e
Tz
t KT @1y
T z(z+1)
2 2 i
t (kT) - 1)
-at -atT 2T e
e kTe o)
. . z sin 0T
sin ot sin okT Z 27005 0T+
z (z~cos ©T)
cos ot cos wkT 7 27 oos @T+1

Note: Two sided sequence can be converted to one sided sequence by multiplying by

GEOMETRIC SERIES

A geometric series is a series in which consecutive elements differ by a constant ratio.
Such a series can be written in the form,

M,
f(k)= ¥ C
k=M, 417
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where C is a constant and My and M are any two numbers.

If C is a complex number, where |C| < 1, then by Taylor’s series expansion we can
write,

-1 5 =
l—_-—C~=l+C+C'+ ....... =3 ok
Sl ...4.18

Applying the result in the reverse direction yields the infinite geometric series sum
formula

B e

S ... 419
The equ (4.19) is the infinite geometric series sum formula.

We can also compute the sum of a finite number of elements in a geometric series. Let
us consider the following sum,

140+ +CM-1 =y ok

k=0 ..4.20

The sum of the finite duration sequence in equ (4.20) can be expressed as the difference
between the sum of two infinite duration sequence as shown in equ (4.21).

Mz—lck % E gk °z°: ck
k=0 k=0 k=M ...4.21

Now, E ck=cM M M4
k=M
—CM 4 CM C4+CMCP... = CMI+C+C?+CL)

-c() 422

From equations (4.21) and (4.22) we can write,

M-1 @ @ My v ck
k_y ck-cMy ck=(-C") £ C
yck=%cC CEOC ( )z

k=0 k=0
-a-c (—'—-)= 1-C" €Tl xceptc=i
i-¢/ 1-€ K-l ...4.23
when C=1, '\j\_'-.l c =M
Lo ...4.23

The equation (4.23) and (4.24) are finite geometric series sum formula.

Note: The infinite geometric series sum formula requires that the magnitude of C be
strictly less than unity, but the finite geometric series sum formula is valid for any value of C.
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EXAMPLE 4.1

Determine the z-transform and their ROC of the following discrete sequence

(@ fk) ={3,2,5, 7} (b)f(k)={2,4,5,7,3}
T

SOLUTION

@ Given that, f(k) = {3, 2, 5, 7}
ie, f(0)=3;f(1)=2;f2)=5;f3)=7
and f(k) = 0 for k <0 and for k > 3
By the definition of z-transform

Z{f(k)} = r{::.} = i f(k) 27

ke =

The given sequence is a finite duration sequence, hence the limits of summation can be
changedask =0to k = 3.

: K
LF(EY= X f(K) 2z
k=0
On expanding the summation we get,

F(z) = £(0) 2° + f(1) 27" +£(2) 27 +£(3) 2

=342z +5272 + 727
Here F(z) is bounded (i.e., finite) except when z = 0, therefore the ROC is entire z-plane

except z=0.

(b) Given that, f(k) = {2, 4, 5, 7, 3}
T
ie, f(-2)=2;f(-1)=4;f0)=5;f1)=7;f(2) =3
and f(k) =0 fork <-2and fork > 2
By the definition of z-transform

2K} =F@)= 5 (k)™

The given sequence is a finite duration sequence, hence the limits of summation can be
changedask =2to k = 2.

o F(z)= % fik)z¥
k==2
On expanding the summation we get,

F(z) = f(=2) 2 + f(=1) ' + £(0) 2° + (1) 27! + £(2) 22

"

=272 +4z+5+ 777 43572
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Here F(z) is bounded (i.e., finite) except when z = 0 and z = oo, therefore the ROC is
entire z-plane except z=0 and z = o.

EXAMPLE 4.2
(@) f(k) = u (k) (b) f(k) = (1/2)* u(k) (c) f(k) = a“ u(-k-1)
SOLUTION
(@  Given that, f(k) = u(k)
u(k) is a discrete unit step sequence, which is defined as

uk)=1forkz0
= 0fork=0

By the definition of z-transform,

Z{f(k)}=F(z)= 5 f(k)z*
k==

= >”’: u(k) 27 = i 7k i "
k=0

k=0 k=0

Here, F(z) is an infinite geometric series and it converges if |z| > 1 (i.e., |z}| < 1). Using
infinite geometric series sum formula we get,

I Iz
-2z} 1=1fz z=1]

(b)  Given that, f(k) = (1/2) u(k)

F(z)=

u(k) is a discrete unit step sequence, which is defined as

uk)=1fork=0
=0fork<0

LK) = (U fork 20
= ) fork <0

By the definition of z-transform,
2{((K)} =F(z)= 3 f(k)z*
‘--’ &

o e k
=3 (ke § [;if 'J

fesad) k=t

Here, F(z) is an infinite geometric series and it converges if |z| > (i.e., [z < 1). Using
infinite geometric series sum formula we get,

F(x) = I SRR . OORPOURE .. 0
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(c) Give that f{K) = of u(-k-1)
u(-k-1) is a discrete unit step sequence, which is defined as
u(-k-1)=0fork>0
=1fork<-1
k)= 0fork>0
= ok fork<-1
By the definition of z-transform,

2N} = F(z) = 3. 1(k) 27"
[Py
-1
= 3 (a*)z7* = ¥ ok
] bl

<5 (' = ¥ ()t -
bl bl

Using infinite geometric series sum formula we get,

| ] i

H?.J“""“"--'--|='-" | W ——— |
| I- F [T ]

Rl %

a-z -z
EXAMPLE 4.3
Find the one sided z-transform of the following discrete sequences.
(a) f(k) =k a & (b) f(k) = K
SOLUTION
(@)  Given that f(k) = k ak?
The one sided z-transform of a¥ is given by

m o
Z{a¥}= T a'z ¥ = ¥ (az")"
k k=0

=0 4301
Using infinite geometric series sum formula,
Z:_ﬂk}E 1 = 1 = Z
l-az™! 1-a/z z-a ..432
From equation (4.3.1) and (4.3.2) we get
‘;: a¥z ¥ = ~
k=0 z—a
On expanding the summation in the above equation, we get,
o R -3 i
l+az™ +a"z  +az2 +..=——
Z—a ...433
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On differentiating the equation (4.3.3) we get,

(z—a)xl-zxl

= - -4
ezl -2a%z =T L N 7
(z—a)

! 2~ 34 _
caz? —2g2 e =

E=d) 434
On multiplying the equation (4.3.4) by —(z/a) we get,

KA
(z—a)*

= ] 2.-3 =
2V 420272 4 30727 Frssise=

...4.3.5

The infinite series on the left hand side on the equ (4.3.5) can be expressed as a
simulation and the equ (4.3.5) is written as shown below.

Z

0 W L
E k ﬂ“’ n‘:;_ = 3
kel (z-a) 436

By definition of z-transform, the one sided z-transform of k a?% is given by,

Z(ka* ") = ;f: Kk alk-Dyk = I:;Z,I katk-g
k=0

...4.3.7
(Because, k a*? =0 when k = 0)
On comparing equations (4.3.6) and (4.3.7) we get,

z

Fhat Y. &
{ka¥} e

(b)  Given that, f(k) = k?
Let us multiply the given discrete sequence by a discrete unit step sequence,
- (k) = k2 u(k)
Note: Multiplying a one sided sequence by u(k) will not alter its value.
By the property of z-transform, we get,

Z(k™u(k)} =[—zi]m )
dz

where, U(z) = Zuk)} = Z—Z]-

sos S [i(i)]bz z=l-z}l %
dz dz\z-1 (z-1)? (z-1)°

139



=—Z£—( Z ’J=.—-z M
dz \ (z-1)* (z-1)*
[(z 1) (z-1- 22)) -z("(z”) 2(z+1)
(z-1* (z-1° ) (@z-1)?

.:Z{f(k)}=z{k2u(k)} (—z—) U(2) = z(z+1)
dz (Z—l)3

EXAMPLE 4.4

Find the one sided z-transform of the discrete sequence generated by mathematically
sampling the following continuous time functions

(a) t (b) sin ot (c) cos ot
SOLUTION
(@  Given that, f(t) = t?

The discrete sequence is generated by replacing t by kT, where T is the sampling time
period.

LK) = (KT =K T = k2 g(k)
where, g(k) = T?

By the definition of one sided z-transform we get,

& O 5 it 5 | - T2
G(2)=Z2{gk)}=2{T*}=T T°*=T" XL () =T 27
k=0 =0 1-z %

By the property of z-transform we get,

(k = = - -d_ : = - i i
Z{f(k)} = F(2) [ Zd ) G(z)= zdz( z - G(z))

[ d Tz] d[ (2= )T TZ]
—Z— — ] I X ———
dz z-1 dz (z-1)

(z-l)2 T? - 2T? x2(z-1)
(z 1) (z-1}

- 1) T2 =T? -22T%) x—zT?—TZ_zTI(zH)

==z

Rle

(z-1)° o=y @)

(b) Given that, f(t) = sinwt

The discrete sequence is generated by replacing t by KT, where T is the sampling time
period.

- f(K) = sin (okT)
By the definition of one sided z-transform.

sin wkTxz "

8

20} = )= £ 10 27 =
k=

k=0
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We know that, sin 8 = (e - e79)/2j

JokT _ - JokT ) n S S 1 « _ o
c o -k Z CJUHZ k% Y (e le\TZ k

|
2j 2j k=0 2j k=0

.F(z) = i

¥ B e abkT <k ra
We know that. ze***T1= % gHekTptk -
k=0 ) Z=—8"

~

z |

T IY
.

2(z-¢ "™z c""')” 2° -

: ) o - i 2 7 p
2j(z-e"N)y (z-e ")  2j(’ ~2c 7

“F(2)

-‘I 2 Ll

4~

'I.(C'm.ll _c—|ml)/2j

5 IR M o
72 - z(clml +e ]UI ).'_ l

We know that, sin 6 = (e’ - e¥9)/2j and cos 6 = (e + e79)/2

ZsinwT

S FR) =

2* 2z coswT + |
(c) Given that, f(t) = cos ot

The discrete sequence is generated by replacing by t by KT, where T is the sampling
time period.

. f(k) = cos (kT)

By the definition of one sided z- transform,
Z(K)} = F@) = ¥ (k) 2% = 3 cos kTx z7™*
k=0 k=0

We know that, cos 6 = (¢! + e19)/2

A JukT —jokT ] - . :
= B L +c -:_ JHLI' 2 E- c—j:..krz—l.
R kz.:u 2 ‘ 2 kzn 2 k=0

N o) e ; 7
kT, -k
We know that z{e***"}= ¥ e**F 'z = ———x
] Z—-t
zZ I z
s FKZ)=— e JoT 3 2 g_e” joT
(/ e J"")+z (Z cjmT) -7 c-_|m'l' +22 -z cy-:l’
2 (Z an)l ) (z—¢ Jml) 2 (Z ](-)T i c-""T 73 e’“—r, c,.Juﬂ
2 -z (cuol' -—J(oT) Z' i Z(c]“T _’_c-lt.ﬂ') /2

2 [ 2z (cj(l)r +L—)m'l') + I] & ZZ -z (cjm'l' +c“lm’l ) + I
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We know that, cos 6 = (e - ¢19)/2

z (z—cos @T)
z* — 2z coswT +1

~oF(z)=

EXAMPLE 4.5

Find the one sided z-transform of the discrete sequence generated by mathematically
sampling the following continuous time function,

(a) e® cos wt (b) e sin ot
SOLUTION
(@)  Given that, f(t) = e® cos wt

The discrete sequence is generated by replacing t by kT, where T is the sampling time
period.

- f(k) = e ™ cos okT

By the definition of one sided z-transform we get,

= - JokT - JokT
F(z)=2{fk)} = ¥ e *TcoswkTz ¥ = 3 e"“”(——e £ ] z ¥
k=0 k=0 2

n ;f (c-achmTz-l)k +l i (e—aTe—joTz-l)k

1
2 =0 2 k=0

k 1

e . . 5 C
From infinite geometric sum series formula we know that, v~ =~ 1-

1 | 1 1
~F(z)=— - +—
( ) ¥ e c—lT e)uTZ-I 2 ‘_e—aTc—;uTz-l

1 1- | |
2 1-eT jze*T +E 1-e79T [ 7%

chT . anT
z ch » c;cﬂ' zc:ﬂ' 2 c—)uT
[z e (z & e-jm’l’) +zeT (z et _ ejuT):l

(z eaT _e)uT) (Z T _e—;uT)

N | -

N |-

ze:’r ZC‘T _e—)mT +Ze'T __ey_-.T
—-—ZC €

2 L(z e;r)’ AT -JoT _ , @aTgioT | o 6T o=joT

) i
oT 2z¢"T - (e"’ +e ® ) }

2 |2 eXT _zeT (e’”T - e"""T)+l

zea‘l‘(zelT_cos G)T) 5 eje.&e'je\
“r cosf = —
22 3T ~2z¢*" cos @T +1 25
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(b)  Given that, f(t) = e?® sin ot

The discrete sequence f(Kk) is generated by replacing t by kT, where T is the sampling
time period.

(k) = e ?'sin kT
By the definition of one sided z-transform we get,

F(z)=Z{f(k)} = }: ¢ T sinokT z*
k=0

. - JeokT
~ _=akT Ik g ® -k
#2) e —_— | Z
2j

k=0

s, k o y k

;:__l__ Z (c-a'rcjm'l'z-lj __L z (c—aTe-juTZ l)
2j k-0 2j k=0

NP . . $oro L

From infinite geometric sum series formula we know that, =~ 1-¢

; ]
- Hz)= Z—J I_c—.ﬂ c)rﬂz—l 2j ]_c-aTc-JmTz-l
| | | 1
=i L . - B
2j 1—e® /ze™ 2 1-¢™/zc”
o T
I ze" I ze
T g ST m: - 8T _ =T
2j 72¢ - 2j ze -e¢
; ) —
| Zcﬂ (anl - ;M)_lcaT (z elT_c]U )
=— - = T
2J (zcnl_c)rn'l)(zc:l_c Jo )
| (Z c‘ﬂ)[l ca‘l'_c-JmT__anT_l__ch]
Ty ‘l 2 ’ T . s
2] (ZL."”) _zculc—y,)l _ch1cymT+cjuTe joT

7 eV [CJM i3 c"”T]/?,j }

z? c?a'l In 7.(.':'1 (cjul +c—)uT)+l

ze sinoT

2 e _22¢" cos T +1

INVERSE z-TRANSFORM

The following methods are employed to recover the original discrete sequence from
its z-transform.

1. Direct evaluation by contour integration (or) complex inversion integral.
2. Partial fraction expansion.
3. Power series expansion.

The inverse z-transform by partial fraction expansion method and power series
expansion method are presented in this section. The inverse z-transform by contour integration

is beyond the scope of the book.
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PARTIAL FRACTION EXPANSION METHOD

Let f(k) = Discrete sequence
and F(z) = Z{j(k)} = z-Transform of f(k).

The function F(z) can be expressed as a ratio of two polynomials in z as shown below.

M ., M=l
o Dozt byz

F(z) =

+Dy7
: — ; where m<n
F U2 ek, Z 42

2" a2

The function F(z) can be expressed as a series of sum terms by partial fraction
expansion technique.

I"(‘:‘,}: A‘D - i ‘_..."ll_

=1 (z+py) ...4.25
where Ao is a constant, A1, Az,...An are residues and p1, p,....pnare poles of F(z).

Note: Sometimes it will be convenient to express F(z)/z as a series of sum terms instead
of F(2).

Once the function F(z) is expressed as a series of sum terms , the inverse z-transform
of F(z) is given by sum of inverse z-transform of each term in equ (4.25);[The inverse z-
transform of each term of equ (4.25)can be obtained from standard z-transform pairs.

The coefficients of the polynomials of F(z) are assumed real and so the roots of the
polynomial are real and/or complex conjugate pairs ) i.e., complex roots will occur only in
conjugate pairs). Hence on factorizing the denominator polynomial we get the following cases.
(The roots of the denominator polynomial are poles of F(z)).

Case (i) : When roots (or poles) are real and distinct
Case (ii) : When roots (or poles) have multiplicity
Case (iii) : When roots (or poles) are complex conjugate.

Case (i) : When roots (or poles) are real and distinct

In this case F(z) can be expressed as,
F(z) = Doz bz + byz™ 2 ... by Z+ by
(z+py) 2+ P2)eeen(Z+ Pn)

o+ o st An
(z+p) (z+p2) (z+pn)

=A

where Ao is a constant ; A1, Az .... An are residues and P, P, .... Py are poles.

The constant Ao is present when m = n (i.e., when the order of numerator and
denominator polynomial are equal). The value of Ao is obtained by dividing the numerator
polynomial by denominator polynomial.
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The residue A is evaluated by multiplying both sides of H(z) by (z+pi) and letting
Z = -Pi.

Ai=(z+p) F@),_,

Case (ii) When roots (or poles) have multiplicity

Let one of pole has a multiplicity of g. (i.e., repeats g times). In this case F(z) can be
expressed as,

boz™ +byz™" 4 b,z™24.... +byZ+b,,
(z+py)) 2+ Pp2)n(z+py)..c(z+py)

Sy Do g Be A, ...,
z+p)  (Z+P2)  (24p,)?  (z+p,)T

F(z) =

=A0

Ax(q~l) i An
(2+px) " (z+pa)

where Axo, Axi, ..... Axg-1) are residues of repeated root (or pole), z = -px.
The constant Ao and residues of distinct real roots are evaluated as explained in case(i).
The residue Axr of repeated root is obtained as shown below.

o,

Axr 1" d :

[(z+px ¥ F{z)]i ; wherer=0, 1, 2,...(q-1)

Case (iii) When roots (or poles) are complex conjugate

Let F(z) has one pair of complex conjugate pole. In this case F(z) can be expressed as,

) m-1 ,M-2
F(2) - byz™ 4 hl/ +by2" 0y, bz 4 by

(/'I‘l)(/'l‘w) ------ (22 +0z4 b)...... (z+p,)

" A" .‘,_;Al As AK " I\: A“

e B e

ZhPpy 24p, ZrO+jOo Z2+0-jo Z+ P,

The constant Ao and residues of real and non-repeated roots are evaluated as explained
in case (i).

The residue Ay is evaluated as that of case(i) and the residue A" is conjugate of Axx
POWER SERIES EXPANSION METHOD

Let f(k) = Discrete sequence
and F(z) = Z{f(k)} = z-transform of (k).
By the definition of z-transform we get,

Fz)= ¥ (k) 2%
¢ ke
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On expanding the summation we get,

F(2) v £(=3) 270V 4 £(=2) 7P +£(=1) 27V +£(0) 2°

) 27+ 12) 272 +£(3) 27+
+f(1) z7 +1(2) 27 +£(3) 2™+ ..4.26

In the given function, F(z) can be expressed as a power series of z by long division then
on comparing the coefficients of z with that of equ (4.26), the samples of f(k) are determined.
[i.e. the coefficient of z* is the i sample f(i) of the sequence f(k)].

Note: The different method of evaluation of inverse z-transform of a function F(z) will
result in different type of mathematical expressions. But on evaluating the expressions for each
value of k, we may get a same sequence.

EXAMPLE 4.6

Determine the inverse z-transform of the following function,

2

1 = z
@ FO= 5 0ss ® O 0s
=1 » = ._———-—.——
(c) F(z) = l—z-l_—].%og— ' (d) F(Z) (] 3 z-l) (l ) Z-l)z
SOLUTION

(@) Giventhat, F(2)= 177567

1

K@= +0522 g 0
Z Z2
z° 2
S 2152405 (2-1) (z-0.5)
F(z) z

By partial fraction expansion, F(z) / z can be expressed as

Fz)_ A, A2
z ~z—] z-05

F(z) @-1)

A
I SSwee
T (z-1)(z-05) =

z=1

2=l

oz | oLl
(—O.S)L,v 1-05
yA

Z
A, =T z_o05)
z

(z-05)

ol e
o5 (@-1)(2-05) 2205
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H(nt) = - " and Bu(k)} = e
We know that e %=1

On taking inverse z-transform of F(z) we get,
f(k) = 2 u(k) + (0.5)%; k>0
(Here we consider only one sided z-transform)

®)  Given that, 1(z) et
2 w2408

't oy |
x pa 7
l-(-,')-‘ g e 6 -
25 =2405 (z-05-j05) (z—0.5 j0.5)

I(2) z

——-

7 (2-05-]05) (- 05+ J05)

By partial fraction expansion, we can write,

.

F(z) A b &
7 72-05-j05 z-05+j05

A =X 05-j0.5)
V4 2a05+)05

.. (z-05- j05|

" 2= 05— J05) (2- 0.5+ 0.5) _—

LA =(05-j05)" =05+ j05
Fz)  05-j05  _05+j05
[Pt s S + -
7 2-05-j05 z-05+j05
(05-j08)z , (05+]05)z
F(z) = 05+ j05)  z-(05-j05)

&
2(at)=—
We know that &

On taking inverse z-transform of F(z) we get,
TR = (05 = 05 (0.5 4§08 4 (054 j0.5) (0.5 jo.5)"

NN )5
= L‘“ + 05] [(UNE: jO.S)k b (‘ Sy ().5] (0.5 ju.S)k
=l A ‘

= =J (0.3 + J0.5) (0.5 4+ 0.5 4 (05 j0.5) (0.5 jo.s
= =i (0.5 + 0. 4 0.5 - jo.sHhn
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22 —24+05=0are

Ly LE1-4%05
2

= 0.5 j0.S




(©)  Given that. F@) = l ‘* s ‘ The roots of the quadratic

1-z7' + 0352 28 =705 0 e
: vl VI<4 %05

i - oo A b

F2) = 12 : s '...";- .2

l—-z7's0s5:— - 1 0.s =0.5: j0.5
Z z“
z+1
" 2 __z(ztl) z(z+1)
T=z05 (@ -z405)  (2-05-j0S) (2~ 0.5+ j0.5)

By partial fraction expansion, we can write.
A

F(z) _ (z+1) N A
(2-05-j05) 2-05+J05) z-05-05  7-05+ 03

l

=52 (. _05- jos)

A=——m
=080 8

e (z=1)
(z-03-j03) (z-0.5+j0.5) N

0.5+ j0.5+1

T05-j05-05-j05

AT =(05-j15)" =05+ 15

CF@)__05-jI5 05+ jls

Tz z-035-j05 z-05+j05

F(2) = (05~ jl5) ——2—— + (05 + j15)—— 2%
Z2- 3+ 03 - I s T

We know that 2{a*}=_2
: z~-a

On taking inverse z-transform of F(z) we get,

f(k) = (0.5 — j1.5) (0.5 + jO.5) + (0.5 + j1.5) ( 0.5 — jO.5)* ; for k=0

1
(d) Given that, F(Z)=m
1 : 1
F — —
W (#zy -z ( 1)( 1)2
It= | |[1==
z z

ZJ

J’ T2+ z-1)

T

z

(z_-'
z

F@__ 2
z  (z+1)(z-1)?

By partial fraction expansion, we can write,
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_4A , A _ A
z  z+l (z-1)% z-1
} 2 | _ )

2
e (¥ (2- 1)2( )|, @0, 1-1) =0

A,-f@(zn)

z-l)2

> 2 (
Ay B i ena-n

z=+|

| SR
T dz [(u-l)(z—l)2 &=h ]

4 el z=1
df[ 22 _(z+D2z-2 [ _(+1)x2-) 3"_
T[—T] IR S s
Kz _025 05 075
S Tl Gt 5l
F(z) = 025 0,5 — 4 0.75——
241 (z—l) z2-1
zZ
= (.25 +0.5 0.7S—T

z—(-l) <7—1)* 2~

az K ey T
2}=ka and Z{u(k)} =%

We know that #{a*} . "z{ "
z—-a (z—a)

On taking inverse z-transform of F(z) we get,

£(k) = 0.25(=1)% +0.5k(1)* +0.75 u(k)
f(k)=0.25(=)* +05k +075 u(k) ; fork20

EXAMPLE 4.7

Determine the inverse z-transform of the following z-domain functions.

322 +2z+1 _37.2+22+1
i =
z-0: z—-4
= F = —
(© F2) 22 +2+2 ® K2 (z-1) (z-2)?
SOLUTION
322 +2z+1
'I:i'l.} Given that, FI:Z.) =m p il

F(z) =

22 -3z+2  22-3z+2
11z-5

" C 23242 |321+Zz+1
3z +22+l_3+ 11z-5 332-92+6

11z-5

B

e —
(z=1) (z-2)
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By partial fraction expansion we get, F(z) = 3+A—+

__ 11z-5
| =

11z-5

(z=1) (z-2) (z—l')Ll )
11z-5| _11x2-5

A,
z—-1 z-2

1]5
A=

z=1

= . (G = —]7
2T (z-1) (z-2) )Lz (z- 1)|,F2 2-1
F(z)=3—i.+i
z-1 z-2
=3—6l L.{.l']‘_i
zZ z— z z-2
=3-6z" 24172 2
z-1 z—-2
We know that, 2{8(k)}=1 ; Z{u(k)}——— and Z{a" }—-—-
z—a

By time shifting property we get,

E{ulk - 1} =z ﬁ and z{a_[l:-lj} o z—l

Z
Z—a

On taking inverse z-transform of F(z) we get,

£(K) =3 8(k) -6 utk 1) +17%2% D, utk—1) ; fork>0

Note: The term 2 is multiplied by u(k-1), because this term have samples only after

k>1.
32% +2z+1
(b) Given that, F(z):._zz—Z
z°+3z+2
3z +2z+1 7z+5
F(z)= o
@ 22 +3z+2 72 43242
Tz+5

") 2+2)

y |

22 +3z42 .321 +2z+1
3z +9z+6

-7z=5

By partial fraction expansion we get, F(z) =3- % 5 z_tz_i
1= (z+71;I:+ Thak W (7:: 25) = 7.x_(l- P;S =2
A= (Z+71§ :ZS'* 2) )‘ z+ 1 % h_f;“i)rs =9
~F(z)=3+ ?i'f_'sz'
_3+2; Y A z 1 -912 z-z_z)

=3+22" i

z —
z—(-1) z-(-2)
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We know that, Z{5(k)} =1 and z{a“}=~—zg
=

By time shifting property,

#akD) = !

Z—a

On taking inverse z-transform of F(z) we get,

f(k) =3 8(k) +2(-1)* " utk -1)+9(-2)*" utk 1) ; fork=0

Note: The term d®% is multiplied by u(k-1), because these terms have samples only after

k>1.
2—04 The roots of the quadratic
(¢) Given that, F(2)=— 2
zZ°+z+2 2" +z+2=0are,
H)m 2z-o.4 g=1EVI-4x2
z2°+2z+2 ‘
_ z-04 ; =-05%jy7/2
(z+0.5- V7/2) (z+05+ j\7/2)
A A’

By partial fraction expansion we .ct, F(z) = +
- . z+05-W7/2 z+05+ j7/2

z—-04

A= z+0.5-j :
S5-I @05+ 1712 ¢ "ﬁlz)z_mﬂﬁlz

_ z-04 __ —05+jV7/2-04
(z+05+ 7 /z)L_Mj G 05+ 7 12405+ 712

-09+jf7/2 -09 jW7/2 .09
=— = - = 05+ j—=05+ i
T AT ™ it

~A"=(05+j034)" =05~ j0.34
05+ j0.34 05-j0.34
~ F(z)= +
@ z+05-j\7/2 z+05+7/2

; 1 z ; ! z
=(0.5+j034) — 2 4+(05- jo34)L
P0: Treso it 090, 2+0.5+ V7 /2

Z

=(0.5+ j0.34)z”"
z—(~0.5-j7/2)

Z
—————+(05-j034) 2™
e+ 712y 010342

We know that, Z{a*} =%
z-a

By time shifting property we get, "My %
z-a

On taking inverse z-transform of F(z) we get,
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£(k) = (05+ j0.34) (<0.5+ |7 / %D y(k 1)
+(0.5- 034) (~05- VT /2)* Vu(k-1) ; fork20

Note: Since the term a*V is valid only for k > 1, it is multiplied by u(k-1).

z—-4
(z-1) (z-2)°
By partial fraction expansion we get,
' z—4 A,

A A
F U L0 (T SES.. |SUNT RE L MY <
2) (z-1) (z-2)* z—1+(z—2)2+(z—2)

(d) . Given that, F(z)=

_ z-4 | _ 1-4
z=] (z- 2)2 |7,=I (- 2)2
i SR

- I —z_-4‘ -_2_4_ 2
(z-1) (z-2)° 2 21z -1

d z—4 ‘ 2
=l e
‘ w= [(z—l) (z-2)* (=l ] i

_(@z-D-(z-4)| __3 | S I
-1 |, @D, @-17

z—4
I .. Sy
EDear &

Ay

1
= et = —+3—
z-1 (z-2)% z-2 z z-1 2z (2=2)* "z z~2

=357 2o 2= = +3z" %
z—1 (z-2) z-2

az

We know that, z{u(k]}:ﬁ ; z{n'*;;z_z; andz{kak}=( -
= A z—-a

By time shifting property we get,

Zuk-1)} =z — ; E{a*V}=2""! z
z~-1 z-

and E((k-1)a®Vy=z1_82
. (z-a)?

On taking inverse z-transform of F(z) we get,
£(k) = =3 u(k —1) ~ (k= 1) 26D uk = 1) +3x 2% Du(k - 1)
Note: Since the term a&? is valid only for k > 1, it is multiplied by u(k-1).
EXAMPLE 4.8

Determine the inverse z-transform of F(Z):]_ 3 sy ]
2

When (a) ROC : [2\>1.0and (b) ROC: |z| <0.5.

SOLUTION

Since the ROC is the exterior of a circle, we expect f(k) to be causal signal. Hence we
can express F(z) as a power series expansion in negative powers of z. On dividing the
numerator of F(z) by its denominator we get,
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F(z) =— mlt= gl et g T2 g Y
5 7
3 it 2 4 8 16
L 2 ...4.8.1
43t e L2 18 0 3oy
4 8 16
1-=zv+=22 |1
1=3 el
2 2
iz'l_..l_z"z
2 2
3 z™! —22‘2 +Ez'3
2 4 4
1,2_3 3
4 3
. 2
i e
4 8 8
E -JHZZ_4
8 8 -

15 3 A5y 8
e ooy o (P
g° 16 18
~IFer 188
6" 16

If F(2) is z-transform of f(k) then, by the definition of z-transform we get,
F(z)=2{f)} = T f(k) 2~

k=—mx
For a causal signal,

F(z)= ¥ f(k)z™*

k=m0

On expanding the summation we get,

F(z) = f(0) 2+ (1) 24+ £(2) 272 + f(3) 27 +£(4) 7 +.meenn. 489

On comparing the two power series of F(z) [i.e., equ (4.8.1) & (4.8.2)], we get,

(O=1;=23 =1 =2 19-2; ..

13 7 15 3 }

f(k)={TyE's Z, '?, ﬁ .....

(b) Since the ROC is the interior of a circle, we expect f(k) to be anticausal signal.
Hence we can express F(z) as a power series expansion in positive powers of z. Therefore,
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rewrite the denominator polynomial of F(z) in the reverse order and then the numerator, is
divided by the denominator as shown below.

222 +62° +142° +302° +6225+.....

g B
3 -2-,22—52 411
1-3z+22°
© 3z-27
3z-92% +62°
72° - 62°
72% -212° +147°
152° -14z*
152° —452° +302° ..
/ 31z -302°
L E(7) = .-j‘_.l._l.__.;l_:—_l:;_—__
|—2Z"+~2-z'2 % 2—52 ey
=227 + 627 + 142" + 302 + 622°+....... 43

If F(2) is z-transform of f(k) then, by the definition of z-transform we get,

F(z)=£{K)} = ¥ 1K) z™

k=

0
Foran anticausal signal, F(z)= ¥, (k) z”*

ks
On expanding the summation we get,

F(2) =00 £(=6) 28 4+ (=5) 2° + £(—=4) z* +£(=3) 2* + £(-2) 2° + (-1) z+(0) 484
On comparing the two power series of F(z) [i.e., equ (4.8.3) & (4.8.4)], we get,

f(-6)=62 ; [(~5)=30; f(-4)=14 ; f(-3)=6;
(-2)=2 ; f-1)=0 andf(0)=0

4.7 LINEAR DISCRETE TIME SYSTEMS

A discrete-time system is a device or algorithm that operates on a discrete-time signal
called the input or excitation, according to some well-defined rule, to produce another discrete-
time signal called the output or the response of the system. We can say that the input signal
r(k) is transformed by the system into a signal c(k) and expressed as
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c(k)=H [r(k)] r(k) | Discrete-time |c(k)
lI-lp_ul—) system, H —(;)put
. or excitation or response
where H denotes the transformation (also called as operator)
] ) o o o Figure 4.17
A discrete time system is linear if it obeys the principle of
e . . . . ) . . ﬁﬂ(] h{k
superposition and it is time invariant if its input-output relationships do o H
not change with time.
When the input to a discrete time system is unit impulse, (k) Figure 4.18
then the output is called impulse response of the system and denoted by
h(k).
h(k) = H [5(k)] ...4.28

A linear-time invariant discrete time system is characterized by its impulse response
h(k) and so the impulse response h(k) is also called weighting sequence.

The input-output description of a discrete-time system consists of mathematical
expression or a rule, which explicitly defines the relation between the input and output signals
(input-output relationship). It is denoted by

H
r(k) = c(k) ...4.29

The input-output relationship of a linear-time invariant discrete time system, (LDS) can
be expressed by N™ order constant coefficient difference equation given below.

N M
(k) =~ Elam ek-m)+ ¥ b, rk-m)
me ...4.30
The integer N is called the order of the system and M < N.

Here c(k-m) are past outputs, r(k-m) are past inputs, r(k) is present input and ax and by
are constant coefficients.

ANALYSIS OF LINEAR DISCRETE TIME SYSTEM (LDS)
There are two methods of analysing the behaviour or response of a LDS systems.
Method 1

The input-output relation of the LDS system is governed by the constant coefficient
difference equation of the form shown in equ (4.30). Mathematically the direct solution of
equation (4.30) can be obtained to analyse the performance of the system.

Method 2

The given input signal is first decomposed or resolved into a sum of elementary signals.
Then using the linearity property of the system, the responses of the system to the elementary
signals are added to obtain the total response of the system to the given input signals.
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Resolution of discrete time signal (or sequence) into impulses

Let  r(k) = Discrete time signal
d(k) = Unit impulse signal

and  o(k-m) = Delayed unit impulse signal
Consider the product of (k) and d(k-m)

- k- ; atk=
r(k)ﬁ(k-—m)={r(m)( m); atk=m

v forkem ...441
fm) ; atk=m (vé(k-m)=I atk=m)
~or(k) 5(k—m)—{ﬂ st fomm o

The product r(k) 6(k-m) has zero everywhere except at k = m. The value of the signal
at k = m is the m™" sample of the signal r(k) and it is denoted by r(m). Therefore each
multiplication of the signal r(k) by an unit impulse at some delay m, in essence picks out the
signal value r(m) of the signal r(k) at k = m, where the unit impulse is non zero. Consequently
if we repeat this multiplication over all possible delays in the range of, 0 <m < oo and sum all
the product sequences, the result will be a sequence that is equal to the sequence r(k). Hence
r(k) can be expressed as

rig= 5 r(m)8(k-m)
m=0 ...(4.53)

Note: Each product r(k) 6(k-m) is an impulse and the summation of impulses give r(k). Here
r(k) is considered as one sided sequence. If r(k) is two sided sequence then the range of
m is -oo to +oo.

RESPONSE OF LDS SYSTEM TO ARBITRARY INPUT — THE CONVOLUITON
SUM

In a LDS system the response c(k) of the system for arbitrary input r(k) is given by
convolution of the input r(kO with the impulse response h(k) of the system. It is expressed as

c(k) =r(k) * h(k) ...4.34
where the symbol * represents convolution operation.

Proof
Let c(k) be the response of the H for an input r(k). [Let r(k) be a one sided sequence].

c(k)=H[r(k)] ...4.35

The signal r(k) can be expressed as a summation of impulses as,

ey = 5 r(m) 8(k—m)
e ...4.36
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where d(k-m) is the delayed unit impulses signal.

From equation (4.35) and (4.36) we get,

c(k) = H[ ED r(m) 6(k - m)]

...4.37

The system H is a function of k and not a function of m. Hence by linearity property
the equ (4.37) can be written as,

e(k)= ¥ r(m) H[B(k—m)]
z ..438

Let the response of the LDS system to the unit impulse input d(k) be denoted by h(k).

+ (k) =H[5(k)]

...4.39
Then by time invariance property the response of the system to the delayed unit
impulse input 6(k-m) is
h(k — m) = H[5(k — m)] ...4.40
Using equ (4.40), the equ (4.38) can be expressed as
s mi;n R ..4.41

The equation of c(k) [equ(4.41)] is called convolution sum. We can say that the input
r(k) is convoluted with the impulse response h(k) to yield the output c(k).

se(l)= 3 r(m)h(k—m)=r(k)*h(k)
. : YY)

PROPERTIES OF CONVOLUITON

Commutative property : 1(K) * h(k) = h(k) * r(k)
Associative property - [r(k) * hy(kK)] * ho(K) = r(k) * [h1(k) * h2(k)]
Distributive property : 1(K) * [ha(K) + ha(k)] = [r(kK) * h1(K)] + [r(K) * ha(k)]

48 TRANSFER FUNCTION OF LDS SYSTEM (PULSE TRANSFER
FUNCDTION)

The transfer function of LDS system is given by z-transform of its impulse response.
The transfer function of LDS system is also called z-transfer function or pulse transfer function.

Let h(k) = Impulse response of a LDS system
Now, z-transform of h(k) = Z{h(k)} = H(2)
.. Transfer function of LDS system = H(z) ...4.43
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The input-output relationship of a LDS system is governed by a convolution sum of
equ (4.42). By taking z-transform of this convolution sum it can be shown that, H(z) is given
by the ratio by C(z)/R(z), where C(z) is the z-transform of output c(k) of LDS system and R(z)
is the z-transform of input r(K) to the LDS system.

Proof

By the definition of one sided z-transform.

C@) =Z{c(k)} = T (k) z™*
k=0 ...4.44

k)= 5 r(m)h(k-
From equ (4.42), we get c(k)= % r(m) h(k —m)

On substituting this convolution sum in equ (4.44) we get,

C(z)= E { E r{m) h(k —m}:! 27k
k=0 Lm=0

...4.45

The order of summation in equ (4.45) can be interchanged. Therefore equ (4.45) can be
written as

Cz)= 5 r(m) ¥ htk-m)z™*
k=0

m=0 ...4.46
Let, p=(k—-m), .. when k=0,p=-m
and when k=00, p=o0
Also, k=p+m
On replacing (k —m) by p in equ (4.46) we get
C(z) = io r(m) > h(p) z”®*™
m= p=-m )
=5 m3 hp)zPz™  (~h(p)=0 ; forp<0)
m=0 p=0
=5 (mz™ % hip) 2"
. m=0 p=0 ...4.47
By the definition of one sided z-transform,
$ r(m)z ™ =R(z)and ¥ h(p) z® = H(z)
m=0 p=0
Hence equation (4.47) can be written as
. - e
C(z) = R(z) H(z) (or) H(z) R 448

From equ (4.48) we can conclude that the transfer function of the system is given by
the ratio C(z) / R(2).
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From the above analysis we can define the transfer function of the LDS system as the

ratio of the z-transform of the output of a system to the z-transform of the input to the system
with zero initial conditions.

Let r(k) = Input of LDS system
and c(k) = Output of a LDS system
Now, Z{r(k)} = R(z) and Z{c(k)} = C(2)

.. Transfer function of LDS system = % ...4.49

The input-output relation of LDS system is governed by the constant coefficient
difference equation.

N M
c(ky=- El aycek-m)+ ¥ b, r(k—m)
mi={)

m=

...4.50
where N is the order of the system and M < N.

On taking z-transform of equ (4.50) we get,
[By time shifting property, Z{c(k-m)} = z™. C(z) and Z{r(k-m)} = z™R(z)]

N .M
C(D=cX a,z"C@+ X bmz ™ R(2)

m=1 m=0

~C(2)+ E a,z " C(2)= E by 2™ R(2)
! = ..451
On expanding the equ (4.51) with M = N, we get,

= boR(2) + bz 'R(2) + by2 *R(2)+...+byz "R(2)

C(z) [l +4 ‘;iz" +a,27 +,...+aNz‘N] =R(z) [b0 +b;z”! +'bzz’2+..'..+sz'N]

- - =N
C(z) by+byz Uibyz +ntbyz
= - = N
R(z) 1+a,z" +0,2 4o tiyz

...4.52

From the above discussions it is evident that the transfer function of the LDS system
can be obtained by taking z-transform of the difference equation governing the system.

EXAMPLE 4.9

The input-output relation of a sampled data system is described by the equation
c(k+2)+3c(k+1)+4c(k) =r(k + 1) — r(k).

Determine the z-transfer function. Also obtain the weighting sequence of the system.
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SOLUTION

Let R(z) = Z{r(k)} and C(z) = Z{c(k)}
By time shifting property, when initial conditions are zero, we get,
Z{c(k+m)} = 2" C(z) and Z{r(k+m)} = z" R(2)

Given that, c(k+2) + 3 c(k+1) + 4c(K) = r(k+1) —r(k)
On taking z-transform of the above equation we get,

The roots of the quadrari:

22 +3z+4=0 ar:

s —~3+J9-dxd
2°C(z) +32 C(z) +4 C(2) = zR(2) - R(2) o 3/_7_
(2 +3z+4) C(2)=(z-1) R@) =S

.C(z)= z—1
R(@Z) 2P +3z+4

Clz) , z-I

i tem, H{z)= =
The transfer function of the system, H(z) R 2 et

The weighting sequence is the impulse response, h(k) of the system. It is given by
inverse z-transform of H(z).

z—1 z—1

7, A = a = =
+3z+4 [z+1+j£][z+—;-—j£]

H(z) =
Z

2 2 2

By partial fraction technique H(z) can be expressed as

. A’
H(Z)—- 3 ﬁ S_E
Z+‘i'+_|‘-')— Z'l'E jE
z=1 (z+—3-+1— s z-1
AT A z+§_,£ 3
s | ot i o TG DY |
- )
3 .7 5 A1
’5"'-"-7'“| "'2__-'7;' ) (S
= = = = = =—J——+;=:)——);7—;
3 V1.3 A1 -7 27 2 22
"3 g Y3

y D
) ) S
H(z) = 2= .2*%7__ w2 AT
7 ~|j’, z.,.;_i\/27
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We know that Zfa*) =—2

=1l

By time shifling property, 2@a® )= '*'--I_"? fa

On taking inverse z-transform of H(z) we get,

L. § T W - o
h(k)“(;“Jm)(*;‘J7) ll(k-l)'"(gﬂm] i utk-1)

EXAMPLE 4.10
Solve the difference equation c(k+1) + 3 c(k+1) + 2 c(k) = u(k)
Giventhatc(0)=1;c(1)=-3;c(k)=0fork<0

SOLUTION
Let Z{c(k)} = C(z) and Z {u(k)} = U(2)

Since u(k) is unit step signal, - U(?-JI=-,‘:°!T1

We know that, if F(z) = Z{f(k)} then
m=I ;
E{flk + m)) = 2"F(z) - T- f(iyz""
Given that, c(k+2) + 3 c(k+1) + 2 c(k) = u(k)
On taking z-transform of the above equation we get,
Z{c(k+2)} + Z{3 c(k+1)} + Z{2 c(K)} = Z {u(K)}

21 C(z) - 72e(0) - ze(1) +3 [z C(2) - 2 ¢(0)] +2 C(2) = .?%I

On substituting the initial conditions, ¢(0) = 1 and c(t) — 3 we get,
2
22C(z) - 22 +32432.C(2) = 3242 C(2) =
(7.2 + 370 2) Cz)~2" = o -?-._I

(22 432+ 2) €)= - i? bt

222 z-1)
@ +1)(z+2) C(2) = '_{(_; e
) __ z[i+Z* -2
e (z=1 @z+1)(z+2)
ety 2 -z+1

Tz (z-D(z+)(z+2)
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By partial fraction expansion technique we can write C(z)/z as,

CE_ A, A A

z z-1 z+l| z+2
Fogrt | L geet] | imiw o
M=) e N+ 2) & o @FD @) D12 6
o2+ I ) U
Ay =(z_|)(z+|)(z+2) Rkl - (=D (z+2)|, (=1=1)(=1+2) 2
7 —z+1 2 -z+l Y ) il 2 B L
AJ:(Z_l)(z4-|)(z+2) (r+2) ;__2—(2—1)(7,-04)?1_2 (2= (=2+1) 3
gy ¥ 41,7 |
Tz 6 z-1 2 z+1 3 z+2
| [ 3 z Z z
Cla=e o1 3 2-C1) 3 2-62)

z
We know that Z{u(k)} =—%_ and Z{a"} =—
I-I =10

On taking inverse z-transform of C(z) we get,
1 3 k7 k

(k) =— u(k)—=(-D* +=(-2)" ;: k=20

c(k) ﬁu{] 2{ ) 3{ )"

The above equation of c(k) is the solution of the given difference equation.
49  ANALYSIS OF SAMPLER AND ZERO - ORDER HOLD

Consider a pulse sampler with zero-order hold (ZOH) shown in Figure 4.19. Let the
output of sampler be a pulse train of pulse width A. For each input pulse, the ZOH produces a
pulse of duration T, where T is the sampling period.

P.(1) 8.(1)
flt f(t t — e T|E (1)
) % W D ¢ >1 e !
Pulse Impulse 5
sampler sampler

Figure 4.19 Pulse sampler with ZOH Figure 4.20 Equivalent representation
pulse sampler with ZOH

In can be proved that the output of pulse sampler with ZOH can be produced by impulse
sampled f(t) when passed through a transfer function.
-1

Gﬂ[s}z I-e

...4.53
Hence the pulse sampler with ZOH can be replaced by an equivalent system consisting

of an impulse sampler and a block with transfer function, (1 — e*")/s as shown in Figure 4.20.
This equivalent representation offers easier analysis of sampled data control systems.
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FREQUENCY RESPONSE CHARACTERISTICS ZERO ORDER HOLDING
DEVICE

The sinusoidal transfer function of ZOH can be obtained from Go(S) by replacing
s by jo.

: —g 0T
= Go(jo) = -

...4.54

We know that, % ﬂiﬂ ...4.55
€ c

=1

Hence from equation (4.54) and (4.55) we get,

-joT juT T joT  —jeT —juT
i c 2 g2 gl e? g2 g 2 'g 2
Gyljo) = : - ©
ja Jo

- juT -joT . .
2| ——— | @ 2 = ..2 sinw_T s 2 3 ﬂﬁ“cﬂjn
= c Nete : sinl = ———

S ) w 2 2j

2 ...4.56

We know that, sampling frequency, s = 2?"

b

1|
b
-

r‘.T=

E

On substituting T = 27/ws in equ (4.56) we get,
) 2 Sin (7o /O, &,
GUU“})'!E: (meo /) ’

s ot GGy =G G w22 izl od
Magmtudeﬂf DUW} 0 -ms (ﬁﬁ).‘r(ﬂs) ...4.57

: -7
Argument (or phase) of Go(jo) = £Go(Je) = W ...4.58

The frequency response characteristics consists of magnitude response and phase
response characteristics. The magnitude and phase response of ZOH device are given by
equations (4.57) and (4.58) respectively. The Figure (4.21) shows the frequency response curve
of ZOH device. From the frequency response curve we can conclude that ZOH device has low
pass filtering characteristics.
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e i

0 o, 2 3 £G [jo)

i

Fig.a. Magnitude response of ZOH device  Fig.b. Phase a response of ZOH device
Figure 4.21 Frequency response of ZOH device
4.10 ANALYSIS OF SYSTEM WITH IMPULSE SAMPLING

Consider a linear continuous time system fed from an impulse sampler as shown in
Figure 4.22a. Let H(s) be the transfer function of the system is s-domain. In such a system we
are intersected in reading the output at sampling instants. This can be achieved by means of a
mathematical sampler or read-out sampler.

la‘l'(t) T'(M) i C(S)
) e -H(s) s _"C(m D
Impulse R'(s) =L [r(1)]
sampler
Fig. 4.22a Fig. 4.22b

Figure 4.22 Linear continuous time system with impulse sampled input

For the system shown in Figure 4.22b, it can be shown that the z-domain transfer
function H(z) can be directly obtained from s-domain transfer function by taking z-transform
of H(s) .

i) I— ~1 112)

i.e., H(z) =Z{H(s)} ...4.59 ey H(2) |

The Figure 4.23 shows the z-transform  Figure 4.23: The z-transform equivalent of
equivalent of the s-domain system of Figure the system shown in Figure 3.22b
4.22b.

The output in z-domain is given by, C(z) = H(z) R(2) ...4.60

Procedure to find z-transfer function from s-domain transfer function

1. Determine h(i1) from H(s, where h(t) = L [H(s)}
2. Determine the discrete sequence h(kT) by replacing t by kT in h(t)
3. Take z-transform of h(kT), which is z-transform function of the system (i.e., H(z) =

Z{h(kT)}.
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Table 4.4 Laplace and Z-transformations

H(s) H(2)
| u
B 71
I el
7 (z=1)*
1 Tageth)
3 2(2-1)

7

s P

| TEel
F =t

n ki(_l»‘_c"j’_)_ .
5 (s4n) (2-1) (z=¢™")

st
Pra 28 =22 cosT 4|

8 H 7:(17"_0(‘)91 m'l_')_ }
mi 21 =22, cos T |

0. 2 wln T
Gan) o’ A =220" conwT4o ™
., A e ol
(s40) +oo’ 220" conT 4o

Alternatively, by partial fraction technique if H(s) can be expressed as a summation of
first order terms then using standard transform pairs listed in Table 4.4, the z-transform of H(s)
can be directly obtained.

5,(1) M)

t) o) m;i 51) o) %ﬁ?
sl ARG L ATD
Fig. 3.24a Fig. 3.24b Fig. 3.24c

Fig. 3.24

Consider a continuous time system with transfer function H(s) as shown in Figure
4.24a. Let the input r(t) be a continuous time input. To read the continuous output at sampling
instants, let us image a mathematical sampler at the output stage.

The system shown in Figure 4.24a can be equivalently represented by a block of H(s)
R(s) with impulse input 8(t) as shown in Figure 4.24b. Now the input and so the output does
not change by imaging a fictious impulse sampler through which d(t) is applied to H(s) R(s) as
shown in Figure 3.24c. For such a system we can prove that

C(z) = Z{H(s) R(s)} ..4.61

Hence, if C(s) = H(s) R(s) then C(z) = Z{H(s) R(s)} = HR(2) ...4.62
The function Z{H(s) R(s)} is also denote das HR(z).

When the impulse sampled input is applied to two or more s-domain transfer function
in cascade as shown in Figure 4.25a, then z-transfer function of the system is given by
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H(z) = Z{H,(s) H,(s)} ...4.63

.and C(z)=Z{H/(s) H,(s)} R(z)
where R(z) = £{R(s)} and R(s) = L[r(t)] ...4.64

The function Z{Hi(s) H2(s)} is also denoted as HiH2(z). The equivalent z-domain
system is shown in Figure 4.25b.

5,0 ™) :
’%xm, e e AP O Emene) s
mpu
sampler Figure 4.25a Figure 4.25b

Consider a system in which impulse sampler is introduced at the input of each block a
shown in Figure 4.26a.

5.(1) 8.(1) T(M)

1 % «kT)  R@ o)
1mp —> Hy (@) iy (2 —
sampler _

Fiqure 4.26a Figure 4.26a

Now the z-transfer function of the system is given by,
H(z) = H1(z) H2(2)
where Hai(z) = Z{H1((s)} and Hz(z) = Z{H(s)}

and  C(z) = H1(2) H2(2) R(2)
where R(z) = Z{R(s)} and R(s) = L[r(t)].

The equivalent z-domain system is shown in Figure 4.26b.
EXAMPLE 4.11

Determine the z-domain transfer function for the following s-domain transfer functions.

H(g) =y - : -
(n) H(s) PR (b) H(s) 5 (c) H(s) F R

0 i
(d) H(s)= By vt (¢) "(-“)~-'("l‘~;-',—)7m

SOLUTION

i

(n) Given that, H(s) = (H“)i

h(1) = L' (H(s)) = L' l’mﬂﬁ-J =nte™

The discrete sequence h(kT) in obtained by letting t = KT in h(t)
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- h(KT) = akTc3T
z-transfer function, H(z) = Z{h(kT)}
Let f(k) = e, ..F(z) = Z {f(k)}

By the definition of z-transform,

w 0 0 k l

0 " o =okT,, =k n it el
?',=rfk7-l= ¢ Z "'Z.(c Z)z‘—
F(2) Pl (k) g%'u k=0 | ~¢ 0T,

{ ki | if 1Cj< 1 lnl'fmlc geometric
. 1-C series sum formula

Z
S F(z) = : — T
1=tz z~-¢™"

; d .
By the property of z-teansform we get, Z{k (k)} = s F(z)

( ’ (z-e™)-z__ ze™
SR ke (1] = K K)) = ‘,',‘ B Rl o AT
{ ( l \k Il ” dy e atl (7."'.‘ -nr).. (z_c—nT).
- wl Wl 7o nl’

SHE = ol B ke ™) wnTx T e
( { Ins ’ (n ¢ ul), (#-¢ nl).

(b)  Given that, H(s) - - - 3

8w’

= cosol

h
- -
¥ -

. gkt o o) 3t

h(t) = L '[Hs) -

The discrete sequence h(kT) is obtained by letting t = KT in h(t)
- h(KT) = cos okT

r=teansfer finction, 1(z) = 2{h(k'T)} = # {cosokT} w
howT = 2ncosoT |

[Refer Table 4.3 and example 4.4(c)]

(¢)  Given that, H(s) .:.5..‘!__1_

5§ -0

! = wil = _1 ‘._,....“,..- r -'I—u—
Wfelr thl La"uu*} g .15+u){5~u]]

By partial fraction expansion,

N JSSE .\ MO
(srn)(s=n) s+n s-a
un ] il -a 1
F——— s+n = 52— 52 e B3 o
M (849) (5~1n) ¢ )L__n §- :\L-_n -a-n 2a 2
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il i a L . |
3 (s-—u) o —— B e £ e 22
(s+a) (s=n) g ST, adn 20 2
_‘_ cll
2 2

_I___..+._l. l :l::——l- c-nl+
2

v bl e 1!
Sh(t) =L [ )

|
i) (s+a)

The discrete sequence h(kT) is obtained by letting t = KT in h(t)

~okT

SH(KT) = = e -u-.z'u T

By the definition of one sided z-transform,

¢ ak'l | I ulkl

H(z) = 3 WKT) 2% 3

k=0 k=0 2

s k

From infinite geometric sum series formula we know that,

L |
x e ‘"'"1—":.“, v when |C]= |
kad -

|
T oo L GGl | I S Iy e
2RO Fr LU R A (0 2 (=il 2 1=0"z
. ] 4, I 7 2 | ~(z-e¢)ytz-c™
2 z-¢ nl 2 7 cu’l' 2 (/ ¢ ul') (7.~ cu'l')
s 7 - cl'.r P 2=-C Wl & 7 L“T - ol
2 Z;’. -7 cn‘r 7 ‘/,cyw .|.c".lC"| 2 '.,'2 - (cn‘l .|_c--n‘l ) +1
0, .~0 0 -0
2" e -
Since, cosh 0= - mnd  sinh 0=
7 2 sinh ol . z sinh aT
l 7)== — = = - .
Wizl 2 \ #z* -2z coshaT+| 7% =27 cosh aT + |

(s+Db)

(d) ‘Given that, H(s) =_‘(H_ b)? 402

(s+Db)

—— =¢"" cos at
(s+b)* +n

mo=UMnm=r{

The discrete sequence h(kT) is obtained by letting t = KT in h(t)

-.h(kT) = e®T cos akT
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(e)

411

z-transfer function, H(z) = Z{h(kT)} = Z{e®*T cos akT}

For example 4.5(a) we get

z o7 [z bl — cn:«‘n'l')

H(z) = T o7 _2 7 ¢" cosaT +1

Given that, H(s)= —2
(s+b)? +a?
h =L ) a = 5
() =L"[H(s)] =L [m]=e ¥ sinat

The discrete sequence h(kT) is obtained by letting t = KT in hh(t)

- h(KT) = e®T sin akT

z-transfer function, H(z) = Z{h(kT)} = Z{e™ sin akT}

BT .- T
Hie)~ 72 o207 f; 5::11'3 T+
From example 4.5(b) we get, = g
ANALYSIS OF SAMPLED DATA CONTROL SYSTEMS USING Z-

TRANSFORM

The analysis of sampled data control systems are performed using the concepts

developed in section 4.9 and 4.10. The following points serve as guidelines to determine the
output in z-domain and hence the z-transfer function of the sampled data control systems.

1. The pulse sampling is approximated as impulse sampling.
2. The ZOH is replaced by a block with transfer function, Go(s) = (1 —*7)/s.

3. When the input to a block is impulse sampled signal then the z-transform of the
output of the block can be obtained from the z-transform of the input and z-
transform of the s-domain transfer function of the block. In determining the
output of a block one may come across the following cases.

Case (i) The impulse sampler is located at the input of a block as shown in Figure 4.27.

6.(t) ’
- t
fw % E’ o c(t) R(z) = Clz)
Figure 4.27
In this case, C(z) = G(z) R(2) ...4.67

Here, G(z) = Z2{G(s)} ; R(z) = Z{R’(s)} and R’(s) = L[r’(1)]
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Case (ii) The impulse sampler is located at the input of two s-domain cascaded blocks
as shown in Figure 4.28.

6,(1)

A =

Figure 4.28
In this case, C(z) = Z{Gu(s) G2(s)} ; R(z) = G1G2(z) R(2)

Case (iii) The impulse sampler is located at the input of each blocks as shown in Figure

4.29.
- oa c(t) C)
Figure 4.29
In this case, C(z) = G1(z) G2(z) R(z) ...4.69

Here, Gi(z) = Z{G1(s)} and G2(z) = Z{G(s)}

Case (iv) The impulse sampler is located at the input of ZOH in cascade with G(s) as
shown in Figure 4.30.

B,(1)

Figure 4.30
In this case, C(z) = Z{Go(s) G(s)} R(z) = (1-z') Z{G(s) / s} R(2) ...4.70

The Table 4.5 shows some configurations of the closed loop sampled data control
systems and their corresponding z-domain outputs.

Table 3.5
Closed loop sampled data control system Output z-domain
8,(1) 5,(1) Clay-—S@R@
) <> () Ay “ = T+ Z{G(s) H(s)}
R8) =398 _G(z)R(z)
H(s) 1+GH(z)
8,(t) 5,(9) a3
1) 7ett) 2 GLEL MEL
_ —[Gis) Cla=1 G H(z)
H(s)
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_ 2{G(s) R(s)}
) = T2 (Gs) HEN
__GR@)

1+GH(z)

2{G,(s) R(s)} Ga(z)
1+ E2{G,(s) Ga(s) H(s))
e G. R{z] Gz('z_:l
1+ G Ga Hiz)

C(z)=

G,(2) Gy(2) R(z)
1+ G (2} 2{G,(s) H(s))
_ G,(2) G;(z) R(z)
1+G(z) Gs H(z) ~

C(z)=

EXAMPLE 4.12

Find C(z) / R(z) for the following closed loop sampled data control systems. Assume
all the samplers to be of impulse type.

5, 8,(1) 5.(1)
nt e(t) Xc'(t) d(t) d'(t) o) r(t) e(t) e (() c(()
@—Z‘m (o[ ] »@f‘—»ﬂ—?‘ a; —@—%
H(SI‘ H( S b(t) W Kﬁ (l)

Figure 4.12a Figure 4.12b Figure 4.12c

SOLUTION

@ The ZOH in the system is replaced by Go(s) as shown in Figure 4.12.1, where Go(S) =
(1-e°T)/s

Let  e(t) = Error signals
e'(t) = Impulse sampled error signal
b(t) = Feedback signal

5,)

r(t) e(t) Ae(t) () ; t
—’@—7‘ e C[) E@) (G5 GE)
0 E—, |

Figure 4.12.1 Figure 4.12.2a Figure 4.12.2b

The input to the cascaded blocks of Go(s) and G(s) is an impulse sampled signal as
shown in Figure 4.12.2a. It’s z-domain equivalent is shown in Figure 4.12.2b.

From Figure 4.12.2b we get, C(z) = Z{Go(s) G(s)} E(2) 4121
Here, C(z) = Z{C(s)} ; E(z) = Z {E’(s)} ; C(s) = L[c(t)] and E’(s) = L[e’(1)]

The input to the cascaded blocks of Go(s), G(s) and H(s) is an impulse sampled signal
as shown in Figure 4.12.3a. It’s z-domain equivalent is shown in Figure 4.12.3b.
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= ) G T O
b(t) 4 H(s)

Figure 4.12.3a Figure 4.12.3b

From Figure 4.12.2b we get, B(z) = Z{Go(s) G(s) H(s)} E(2) ..4.12.2
Here, B(z) = Z {B(s)} and B(s) = L[b(t)]

With reference to Figure 4.12.1, at the summing point we get,

e(t) =r(t) — b(t) ..4.12.3

Since ¢’(t) =e(KkT) is an impulse sampled signal, by superposition principle the equation
(4.12.3) can be written as,

e(KT) = r(kT) — b(kT) 4124

where e(kT), r(kT) and b(kT) are impulse sampled signals of e(t), r(t) and b(t)
respectively.

On taking z-transform of equ (4.12.4) we get,

E()=R(2)-B(z)
~R(2)=E(2) +B(z) L4125

Where R(z) = Z{R(s)} and R(s) = L[r(t)]
On substituting for B(z) from equ (4.12.2) in equ (4.12.5) we Qet,
R(2)=E(z) + Z2{G (s) G(s) H(s)} E(z)

=[1+ Z{G(s) G(s) H(s)}] E(2) ..4.12.6

From equations (4.12.1) and (4.12.6) the z-transfer function or pulse transfer function,
C(2)/R(z) can be written as,

C@) ___ #{Go®GE) _ __ GG(z)
R( 1+2{Go(s) GO HE)  1+Go GHE) A2

Here, Z{Go(s) G(s)}is denoted as GoG(z) and Z{Go(s) G(s) H(s)} is denoted as
GoGH(2).

(b) The input to the block Gz(s) in an impulse sampled signal as shown in Figure 4.12.4a.
It’s z-domain equivalent is shown in Figure 4.12.4b.

g D(2) C
ol ey it —[G@18
Figure 4.12.4a Figure 4.12.4b
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From Figure 4.12.4b we get, C(z) = G2(z) D(2) ...4.12.8

where C(Z) = Z{C(s)} ; G2(2) = Z2{G2(s)} ; D(z) = Z{D’(s)}; C(s) = L[c(t) and D’(s)
=L[d’(1)]

The input to the block G1(s) is an impulse sampled signal as shown in Figure 4.12.5a.
It’s z-domain equivalent is shown in Figure 3.12.5b.

e'(0) d(t)

G,® E@) EWWW”
Figure 4.12.5a Figure 4.12.5b
From Figure 4.12.5b we get, D(z) = G1(z) E(2) ...4.12.9

From equations (4.12.8) and (4.12.9) we get,
C(2) = G2(2)G1(2) E(2) ...4.12.10
where G1(z) = Z2{G1(S)} ; E(z) = Z{E’(s)} and E’(s) = L[e’(t)’]

The input to the cascaded blocks G2(s) and H(s) is an impulse sampled signal as shown
in Figure 4.12.6a. It’s z-domain equivalent is shown in Figure 4.12.6.b.

=
D(2) B(2)
= > Z(G,EOHE))
Figure 4.12.6a Figure 4.12.6b
From Figure 4.12.6b we get,
B(z) = Z(G2(s) H(s)} D(2) 3012011

On substituting for D(z) from equ (4.12.9). in equ (4.12.11) we Qet,
B(z) = Z(G2(s) H(s)} G1(z) E(2) ...3.12.12

With reference to Figure 3.12b, at the summing point we get,
e(t) =r(1) — b(t) ... 4.12.13

Since €'(t) = e(Kt) is an impulse sampled signal, by superposition principle the equation
(4.12.13) can be written as,

e(kT) =r(kT) — b(kT) ...4.12.14
where e(kT), r(kT) and b(kT) are impulse sampled signals of e(t), r(t) and b(t) respectively.

On taking z-transform of equ (4.12.14) we get.
E(2) =R(2) - B(2)
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~R(z) =E(2) + B(2) ...4.12.15
On substituting, for B(z) from equ (4.12.2) in equ (4.12.15) we get,

RG) = B+ Z{G () H(8)) G (2) E(z)
=14 Z{G(s) H(s)) G (2)] E(z) 4.12.16

From equation (4.12.10) and (4.12.16) the z-transfer function or pulse transfer function
C(2)/R(z) can be written as,

L) G 2) Ga()  _ Gy(2) Gy(2)
R(z)  1+Z{G,(s) H{s)) Gy(z) 1+G, H(z)G,(z)

41217
Here Z {G2(s) H(s)} is denoted as G2H(z)

(© The ZOH in the system is replaced by Go(S) as shown in Figure 4.12.7, where Ga(s) =
(1-e%T)fs.

8y(l)

. W —= cft
b(t) ml KSI(‘) e'(t) G{h Ez) E{G (s) G(s)} o

Figure 4.12.7 Figure 4.12.8a Figure 4.12.8b

The input to the cascaded blocks of Go(s) and G(s) is an impulse sampled signal as
shown in Figure 4.12.8a. It’s z-domain equivalent is shown in Figure 4.12.8b.

From 4.12.8b, we get C(z) = Z{Go(s) G(s5)} E(2) ...4.12.18
where, C(z) = Z{C(s)}; E(z) =Z{E'(s)}; C(s) = L[c(t)] and E'(s) = L(e'(t)].

The input to the block H(s) is an impulse sampled signal as shown in Figure 4.12.9a.
It’s z-domain equivalent is shown in Figure 4.12.9B.

— c\t et TN
b 2l ey A e s
Figure 4.12.9a Figure 4.12.9b
From Figure 4.12.9b, we get, B(z) = H(z) C(2) ...4.12.19

with reference to Figure 4.12.7, at the summing point we get,
e(t) = r(t) — b(t) ...4.12.20

Since €'(t) = e(kT) is an impulse sampled signal, by principle of superposition the equ
(4.12.20) can be written as,

e(KT) = r(kT) — b(kT) 41221
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where e(kT), r(kT) and b(kT) are impulse sampled signals of e(t), r(t) and b(t) respectively.

On taking z-transform of equ (4.12.21) we get,
E(z) = R(z) - B(2) ...4.12.22

On substituting for B(z) from equ (4.12.19) in equ (4.12.22) we get,
E(z) =R(z) —H(z) C(2) ...4.12.23

On substituting for E(z) from equ (4.12.23) in equ (4.12.18) we get,

C(2) = 2{Gy(5) G(s)} [R(2) - H(z) C(2)]

C(2) = Z{Gy(s) G(5)} R(z) - Z{G,(5) G(s)} H(z) C(z)
C(@) + Z{G,(s) G(5)) H(z) C(2) = Z{G,(s) G(s)} R(2)
C@) [1+Z{G,(5) G(s)} H(2) ] = 2{Gy(s) G(5)} R(2)

€@ Z{GOGE) GG
"R(z) 1+Z {Gy(s) G(s)} H(z) 1+GyG(z) H(z) 4.12.04

The equation (4.12.24) is the z-transfer function of the system.
Here Z{Go(s) G(s)} is denoted as GoG(2).
EXAMPLE 4.13

Find the output C(z) in z-domain for the closed loop sampled data control system shown
in Figure 4.13.

8.(1) 5.(1)

r(t) c(t) d(l) d(t) ) o0 e GUR[ex) d(z) d(t) SE-[C0)
b(:) H(s) H(s)

B(s)

Figure 4.13 Figure 4.13.1
SOLUTION

The ZOH in Figure 4.13 is replaced by a block with transfer function Go(s) as shown in
Figure 4.13.1, where Go(s) = (1 —e®") / s.

Here, d'(t) = Impulse sampled signal of d(t).

The input to the cascaded blocks of Go(s) and Gz(s) is an impulse sampled signal as
shown in Figure 4.13.2a. It’s z-domain equivalent is shown in Figure 4.13.2b.

d'(t)

| G c(t) 4 Z
‘_*El"T}EI—) RN PRIy YeNEy] e
Figure 4.13.2a Figure 4.13.2b
From Figure 4.13.12b we get, C(z) = Z {Go(s) G2(s)} D(2) ...4.13.1

Where C(z) = Z {C(s)}; D(z) = Z{D'(s)} ; C(s) = L[c(t)] and D’(s) = L[d'(t)].
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With reference to Figure 4.13.1 the following s-domain equations can be obtained.

E(s) = R(s) — B(s) ... 4.13.2
D(s) = E(s) G1(S) ...4.13.3
B(s) = Go(s) Gz(s) H(s) D’s ...4.13.4

On substituting for E(s) from equ (4.13.2) in equ (4.13.3) we Qet,

D(s) = [R(s) — B(5)] G1(s) = Gu(s) R(s) — Gu(s) B(s) ...4.13.5
On substituting for B(s) from equ (4.13.4) in equ (4.13.5) we get,

D(s) = G1(s) R(s) — G1(s) Go(s) G2(s) H(s) D'(s) ...4.13.6
On taking z-transform of equ (4.13.6) we get,
D(2) =%{G,(5) R()} - 2{G,(5) G,(s) G,($) H(s)} D)

D(z) + Z{G(s) G,(s) G,(s) H(s)} D(z) = Z{G,(s) R(s)}
D(2) [1+Z{Gy(s) G,(s) G,(s) H(s)} =Z{G,(s) R(s)}

Z1G,(s) R(s)}

D(z)=
1+ Z{Gy(s) G,(s) Ga(s)H(s)} .4.13.7

Note: The term Go(s) Gi(s) Gz(s) H(s) D'(s) represents the output of a block with transfer
from Go(S) Gi(s) Gz(s) H(s) when the input is D'(s).

On substituting for D(z) from equ (4.13.7) in equ (4.13.1) we get,

= Z1Go(8) G2 (9} 2 {G(5) Rs)} _ Gy Ga(2) GR(2)
Output in z-domain, 1+Z{Go(s) Gi(s) G2 ()H(s)}  1+GyG,G,Hez)

Where Z{Go(s) G2(s)} is represented as GoG2(2),
Z{G1(s) R(s)} is represented as G1R(z) and
Z{Go(s) G1(s) Ga(s) H(s)} is represented as GoG1G2H(z)

EXAMPLE 4.14

For the sampled data control system shown in Figure 4.14, find the response to unit step
input, where G(s) = 1/(s+t),

T 1 sec

c(t) T=1secc
"9—-# @J
F

b(®) i s
Figure 4.14 Figure 4.14.1

SOLUTION

The ZOH in the system is repOlaced by Go(s) as shown in fig 4.14.1, where Go(S) =
(1-e*T)fs.
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The input to the cascaded blocks of Go(s) and G(s) is an impluse sampled signla as

shown in fig 4.14.2a. It’s z-domain equivalent is shown in fig 4.14.2b.

From fig 4.14.2b we get, C(z)= Z{Go(s)G(S) }E(2) ...(4.14.1)
cﬁ{ GO0 1< B | G GO 3
Figure 4.14.2a Figure 4.14.2b
From Figure 4.14.2b we get, C(z) = Z{Go(s) G(s)} E(2) ...4.14.1
With reference to Figure 4.14.1, at the summing pont we get,
e(t) = r(t) —c(t) ...4.14.2

Since e'(t) = e(kT) is an impulse sampled signal, the equation (4.14.2) can be written

as,

E(KT) = r(kT) — c(kT)

...4.14.3

where e(kT), r(kT) and c(kT) are impulse sampled signals of e(t), r(t) and c(t) respectively.

On taking z-transform of equ (4.14.3) we get,
E(z) =R(z) - C(2)

...4.14.4

On substituting for E(z) from equ (4.14.4) in equ (4.14.10 we get,

C(2)=Z{G,(s) G(5)} [R(z) - C(2)]
C(2)=Z{G,(s) G(s)} R(2) - 2{G(s) G(s)} C(2)
C(2)+ E{G,(5) G(5)} C(2) = Z{G/(s) G(s)} R(z)
C(2) [1 + Z{G,(s) G(5)}] = Z{G,(s) G(s)} R(2)
Z{Gy(s) GE):R()

1+ Z{G(s) G(s)}

~C(2)=

—

We know that, Z{Gy(s) G(s)} = (1- "' 1{9-(5—}}

5

Here, G(s) = v—]— and G(s) = I
s+1 5 s(s+1)

By partial fraction expansion,

Gs)__ I A B

=—
S s(s+1) s s+l

= l s L =1
s(s+1) |0 S+1 |
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B=
s(s+1) )

S8 s

From standard laplace and z-transform pairs we get,

=

(s+ l)i B
s==] §

G ’
Now, Z{G(s) G(s)}=(l-z")1{—‘s—)}=(l-z " (;f—l - Z_l)

S Z—¢C

1_1) z(z—c")—z(z-l)]

( z (z-1) (z=¢7")

~ z—l) z(z-¢"' =z+1) =I-c"= 0.632

'( z J{ (z-)(@-¢") ) z-¢ 2-0368" ...4.14.6

Given that input is unit step

-~ R(z)=U(z) =—i—l
2 ...4.14.7

From equation (4.14.5), (4.14.6) and (4.14.7) we get,

( 0.632 J g3
C(2) = Z{Gy(s) G(s)} R(@) _ z-0.368ﬂ z—1
T 1+E{Go(5) GO}, ( 0632 )
z—-0368
0.632 2 ;
_ (z=1)(z-0368) _ 0632z __ 06322
~2-0368)+0.632  (z—1) (z—0368+0632) (z—1) (z+0.264)
(z-0368)
 C@) _ 0632

Tz (z-1)(z+0.264)

By partial fraction expansion,

Cx)__A , _B

z z—1 z+0264
0.632 0632 | _ 0632 _
=_————(Z—[) = = =
(z-1) (z+0.264) z+0264),., 1+0.264

z=1
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» 0.632 (z+0.264) " 0.632

(Z"l) (Z+O.264) 2=-0.264 z-1 z=-0264
__0632 _ .

-0.264 -1

C@_ 05 _ 05

z z-1 z+ 0264

" 2 _qs z
=03 S T 2oz L4148

We know that
o adEaby LT
2} =— and Z{a"} = —
On taking inverse z-transform of equ (4.14.8) we get,
C{k] =O.5 e 0.5 (_0-264)k=0+5 [l"{"0-264}k] . .4. 14.9
The equation (4.14.9) is the response of given system for unit step input.

412 THE z AND s-DOMAIN RELATONSHIP

Let r(kT) be a discrete sequence which has been obtained by sampling r(t) at a sampling
rate of 1/T. On taking z-transform of r(kT) we get,

Z{(kT)=R(z) = 3 r(kT) z°*
3 AT

Let, r(t) = Impulse sampled signal of r(t) at the sampling rate of 1/T and R'(s) =L[r'(t)]
= Laplace transform of r'(t).

Now, I'(T) = k% r(KT) 8(r—KT)
=0

472
On taking laplace transform of equ (4.72) we get,
R'(s)= ¥ r(kT) ¢ T
k=0 ...4.73
Let us choose a transformation such that,
z=¢ ..A4.74
1
S.nz=sT [s] =—nz
nz=sl (o) T 475

On substituting for s from equ (4.75) in equ (4.73) we get,

W (-kT.=Ih2)
R'(s)= X r(kT)e T
k=0 .
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o -k o
= 5 rkT) M2 = ¥ r(kT) 2% = R(z)
e K0 476

From equ (4.76) it is obvious that z-transform of a discrete sequence can be obtained
from the laplace transform of its impulse sampled version, by choosing a transformation,
s=(1/T)In z(or z=¢°T).

The transformation, s=(1/T)In z, maps the s-plane into the z-plane. It can be shown that
every section of jo-axis of length, N®, maps into the unit circle in the anticlockwise direction
where N is an integer and s is the sampling frequency and it can be shown that every strip in
he left half s-plane of width ws, maps into the interior of the unit circle as shown in fig 4.31.

Imz

ip of s-plane o - :
-\?;In‘{)lztsz : ;planc Uniteircle  |jl z-plane
withwidth, 0, =377 14/2
T02) ", %
0 © -1 W 1
7//// Y/ —j(n Iy . —
s

Figure Mapping of s-plane into z-plane

The above mapping helps in extending the s-plane stability criterion to z-plane. For
stability of a system in s-plane the poles of s-domain transfer function should lie on the left
half of s-plane. In this transformation the left half of s-plane maps into interior of unit circle.
Hence for the stabilith of the system in z-domain, the poles of the z-transfer function should
the inside the unit circle.

413 STABILITY ANALYSIS OF SAMPLED DATA CONTROL SYSTEMS

The sampled data control system is stable if all the poles of the z-transfer function of
the system lies inside the unit circlr in z-plane. The poles of the transfer funtion are given by
the roots of the characteristic equation. Hence the sysem stability can be determined from the
roots of the characteritic equation.

The z-transfer function of the sampled data control system can be expressed as a ratio
of two polynomials in z as shown below.

W _, )
R(z) Q(z) .47

z— transfer function, H(z) =

Where, Ao = constant
P(z) = Numerator polynomial
Q(z) = Denominator polynomial

The characteristic equation is the denominator polynomial of H(z). [i.e., characteristic
equation is given by Q(z) = 0].

Consider the system shown in Figure 4.32. For this system, the z-transfer function is
given by,
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8,()

(: )
H(z) =8 _ __ #{Gy(s) G(s)) ‘_,%@%cm sl

R(z) 1+ Z{Gy(s) G(s) H(s)} 473 b() —[rek
Figure 4.32
and the characteristic equation is,
|+ Z{Gﬁ{s] G(s) H(s)} =0 (4.79)

The following methods are available for the stability analysis of sampled data control
system using the characteristic equation

1. Jury’s stability test
2. Bilinear transformation
3. Root locus technique

The Jury’s stability test and bilinear transformation are presented in this book.
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NON LINEAR SYSTEMS
5.1 INTRODUCTION TO NON LINEAR SYSTEMS

The non-linear systems are which does not obey the principle of superposition. The
linear systems are systems which satisfy that principle of superposition.

The principle of superposition implies that if a system has responses y1(t) and y.(t) any
two inputs xu(t) and xo(t) respectively then the system response to the linear combination of
these inputs aXi(t) + axxo(t) is givwn by the linear combination of the individual outpus, i.e.
a1y1(t) = a2Xo(t), where oz and a2 are constants.

x|————) G __> )‘|

\—3 G —Y

X, + X, Y;
ZE g 6 ==

To satisfy the principle of superposition, yz = a1y1 + azy>
Example of linear system : y = ax + b%

Example of nonlinear system : y = ax? + ™

EXAMPLE 5.1

The response of a system is, y = ax + b%. Test whether the system is linear or non
linear.

SOLUTION

Let x; and x2 be the two inputs to the system and yi and y. be their resopnses,
respectively.

Giventhaty = ax + b%

When X = X1,y = V1, .. y1:axl+b%
When X = X2,y = Yo, .. yzzaXﬁb%

Consider a linear combination nof inputs a1x1 + az2x2 and let the response of the system
for this linear combination of inputs be ys.

When x = a1X1 + 02X2 . Y = Y3

1
Sovy = (N HaaXy )+ b% (otyx; +0tax;)
; ¢

dx:

dx,
= ()N + AN, + o b—-+a,b
3 dt dt
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Consider the same linear combination of output, a1y1 + 02Y2.

l dx, . - 51 hdx_.
Ly QLY =0y [ ax, + b= +ta,[ax, +b—=
MR ; M de I dt |

ax,

dx;,
o aNy 4 LN, 4y b= oty b
1N 20N, | 2
dt dt

It is observed that y3 = a1y1 + apy2 . Hence the system is linear.
EXAMPLE 5.2
The response of a system is y = ax? + e°%. Test whether the system is linear or nonlinear.
SOLUTION
Let x1 and x2 be two inputs to the system and y: and y. be their resonses respectively.
Given that y = ax? + e™
When X = X1, y=y1, ..y1 = axi® + e
When X =Xz, y = Y2, .Yz = axo? + ™

Consider a linear combination of inputs a1X; + a2X2 and let the response of the system
for this linear combination of inputs be ys.

When x=o,X;+a,X,, y=y,
SY3=a (O.l_\'l +a2x2)2 +cb(u1x,~u,x,)
= a(afxf +a3x3 +2a|x,a3x2)+c“xb-‘» e%:P%
=20 X] +a03X3 +2a0,0L,X, X, + e et

Consider the same liear combination of output, a1y: + a2y>

oYy + Y, =€ [:L\']Z el ]+a3 [a.\'% +c‘“-‘]

by

= 2 bx, e
=aoNy +0e ! FacyX) +0e
It is observed that ys # a1y1 + a2y2. Hence the system is nonlinear.

In all practical engineering systems, there will be always some nonlinearity due to
friction, inertia, stiffness, backflash, hysteresis, saturation and dead-zone. The effect of the non
linear components can be avoided by restricting the operation of the component over a narrow
limited range. Moreover most of the automatic control systems operate within a narrow range,
e.g. the speed controller of an electric drive for constant speed operation of 1500 rpm will be
required to operate between 1450 to 1550 rpm. Similarly, automatic voltage controller will be
operating within + 5% of the specified voltage. Thus the characteristics of components may be
considered as linear over this limited range.

Further, some components behave linearly over its working range, e.g., a spring when

loaded, gets extended. As the load is being increased the load-displacement curve is linar within
the working range. However, when the load is increased beyond the maximum of the working
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range, the spring material starts to yield and it becomes permanently deformed. It can be
concluded that the sprin g behaves linearly over its working range and beyond this range it is
nonlinear.

Although nonlinearities in systems may generally be due to imperfections of a physical
device, some times we deliberately introduce non linear device or operate the linear devices in
nonlinear regions with a view to improve system performance.

The characterustucs of non linear system are given below.

1. The response of nonliinear system to a particular test signal is no guide to their
behaviour to other inputs, since the principle of superposition does not holds
good for nonlinear systems.

2. The nonlinear system response may be highly sensitive to input amplitude. The
stability study of nonlinear systems requires the information about the type and
amplitude of the anticipated inputs, initial conditions, etc., in addition to the
usual requirement of the mathematical modal.

3. The non linear systems may exhibit cycles which are self sustained oscillations
of fixed frequency and amplitude.

4. The non linear systems may have jump resonance in the frequency response.

The output of a nonlinear system will have harmonics and sub-harmonics when
excited by sinusoidal signals.

6. The nonlinear systems will exhibit phenomena like frequency entrainment and
asynchronous quenching.

BEHAVIOUR OF NONLINEAR SYSTEMS

In nonlinear systems, the response (output) depends on the magnitude and type of input
signal. The principle of superposition will not hold good for nonlinear systems. The nonlinear
systems may exhibit various phenomena like jump resonance, sub harmonic oscillation, limit
cycles, frequency entrainment and asynchronous quenching. The various phenomena that occur
in nonlinear system are explained in this section.

Frequency-amplitude dependence

The frequency-amplitude dependence is one of the most fundamental characteristics of
the oscillations of nonlinear systems. The frequency-amplitude dependence can be best studied
by considering the mechanical system shown in Figure 5.1 in which the spring is nonlinear.
The differential equation governing the dynamic of the system may be written as

Mx+Bx+Kx+Kxt=0 .50
é{l-:.l{'

where Kx + K'x! — Opposing force due to nonlinear spring. |

LM
The parameters M, B and K are positive constants. The LJ. I
parameters K' may be positive or negative. If K’ is positive, ,-ﬂ;l;l?r
the spring in called hard spring and if K’ is negative the spring
is called soft spring. The equation (5.1) is nonlinear differential Figure 2.1 Mechanical
equation and it also called Duffing’s equation. system with nonlinear spring
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When the system of Figure 5.1 has non zero initial conditions, the free response (i.e.,
solution of equ 5.1) is damped oscillatory. The frequency of free oscillations depends on the
amplitude of oscillations. When K’ < 0 (soft spring) the frequency decreases with decreasing
amplitude . When K’ > 0 (hard spring) the frequency increases with decreasing amplitude.
When K" = 0 (corresponding to linear system) the frequency remains unchanged as the
amplitude of free oscillation decreases. The frequency-amplitude dependence characteristic of
nonlinear mechanical system of Fig. 5.1 is shown in Fig. 5.2

Jump resonance Frequency < iy
In the frequency response of nonlinear systems, the K' <0

amplitude of the response (output) may jump from one point to " Aapltade

another for increasing or decreasing values of ) .

frequency, ®. This phenomenon is called jump  F19ure 5.2 Amplitude vs frequency
resonance and it can be observed in the frequency curves for free oscillations in the

response of the system shown in Fig. 51., when it is system described by equation 5.1

subjected to sinusoidal input.

Let the mechanical system of Fig. 5.1, be subjected to an input of type A cos wt. Now
the differential equation governing the mechanical system is

Mi+Bx+Kx+K x3=Acos ot .52

Let X be the amplitude of the response or output of the system. In frequency response
studies, the amplitude, A of the input is held constant, while its  is varied and the amplitude,
X of the output is observed. The frequency response curve is plotted between X and ®. The
frequency response curves of the mechanical system of fig 5.1 are shown in fig 5.3a and 5.3b
for hard and soft springs respectively.

>0

. , . (v
a : Mechanical system with hard spring b : Mechanical system with soft spring

Figure 5.3 Frequency response curves showing jump resonance

In the frequency response curve shown in fig 5.3a and b, as the frequency m is increased,
the amplitude X increas4es, until point-2 is reached, A further increase in frequency will cause
a jump from point-2 to point-3. This phenomenon is called jump resonance. As the frequency
is increased further, the amplitude X follows the curve from point-3 towards point-4.

When the frequency is reduced starting from a high value corresponding to point-4, the
amplitude X slowly increases through point-3, until point-5 is reached. A further decrease in ®
will cause another jump from point-5 to point-6. This phenomenon is called jump resonance.
After this jump, the amplitude X decreases with « and follows the curve from point-6 towards
point-1.

186



For jump resonance to take place, it is necessary that the damping term be small and
the amplitude of the forcing function be large enough to drive the system into a region of
appreciably nonlinear operation.

Subharmonic oscillations

When an nonlinear system is excited by a sinusoidal signal, the response or output will
have steady-state oscillation whose frequency is an integral submultiple of the forcing
frequency. These oscillations are called sub harmonic oscillations. The generation of sub
harmonic oscillations depends on the system parameters and initial conditions. It also depends
on amplitude and frequency of the forcing functions.

Limit cycles

The response (or output) of nonlinear systems may exhibit oscillations with fixed
amplitude and frequency. These oscillations are called limit cycles. Consider a mechanical
system with nonlinear damping and described by the equation,

M i + B(1-x?) x + Kx =0 .53

where M, B and K are positive constants. The equation (5.3) is called the van der pol equation.
For small values of x the damping will be negative which implies the stored energy in the
damper is fed to the system. For large values of x the damping is positive which implies that it
absorbs energy from the system. Thus, it can be expected that such a system may exhibit a
sustained oscillation. Since the system explained above is not a forced system, this oscillation
is called a self-excited oscillation or zero input limit cycle.

Frequency entrainment

The phenomena of frequency entrainment is observed
in the frequency response of nonlinear systems that exhibit
limit cycles. Consider a system capable of exhibiting a limit
cycle of frequency w. If a periodic input of frequency o is

entrainment
applied to this system then the phenomenon of beats is | I l/
e >

Zone of frequency

o -}

observed. [The beat is the oscillation whose frequency is the
difference between w1 and . This frequency is also called
beat frequency]. In linear systems, the beat frequency )
decreases indefinitely as ® approaches ;. But in nonlinear Figure 5.4 |o-1| vs @ curve
systems, the frequency s of the limit cycle falls in ~ Showing the zone of frequency
synchronistically with or is entrained by the forcing entrainment
frequency, o within a certain band of frequencies. This phenomenon is called frequency
entrainment. The band of frequency in which entrainment occurs is called the zone of frequency
entrainment. In this zone, the frequencies » and o coalsee and only one frequency, w exists.
The relationship between |®-m:| and o is shown in Figure 5.4.

Asynchronous quenching

In a nonlinear system that exhibits a limit cycle of frequency, w: it is possible to quench
(stop or eliminate) the limit cycle oscillation by forcing the system of a frequency wq, Where
oq and @ are not related to each other. The phenomenon is called signal stabilization or
asynchronous quenching.
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INVESTIGATION OF NONLIEAR SYSTEMS

For analysis, the nonlinear system can be approximated by a linear model in the entire
operating region. The nonlinear systems can be piecewise approximated. Each piece can be
analysed by a differential equation governing the systems.

The two popular methods of analysing nonlinear systems are phase-plane method and
describing function method.

The phase plane method is basically a graphical method from which information about
transient behaviour and stability is easily obtained by constructing phase trajectories. This
method is restricted to second order systems. Higher order systems may first be approximated
by their second-order equivalent for investigation by the phase plane method.

The Describing function method is based on harmonic linearization. Here the input to
nonlinear component is sinusoidal and depending upon the filtering properties of the linear part
of the overall system, the output is adequately represented by the fundamental frequency term
in fourier series.

The phase-plane and describing function methods use complimentary approximations.
The phase-plane method retains, the nonlinearity as such and uses the second-order
approximation of a higher-order linear part, while on the other hand, the describing function
method retains the linear part and harmonically linearizes the nonlinearity.

COMMON PHYSICAL NONLINEARITIES
The nonlinearites can be classified as incidental and intentional.

The incidental nonlinearities are those which are inherently present in the system.
Common examples of incidental nonlinearities are saturation, dead-zone, coulomb friction,
striction, backlash, etc.

The intentional nonlinarities are those which are deliberately inserted in the system to
modify system characteristics. The most common example of this type of nonlinearity is a
relay.

SATURATION: In this type nonlinearity the output is proportional to input for a
limited range of input signals. When the input exceeds this range, the output tends to become

nearly constant as shown in Figure 5.5.
4 Output

Saturation

All devices when driven by sufficiently large : _ s
signals, exhibit the phenomenon of saturation due to Approximaed__L /0"
limitations of their physical capabilities. Saturation in the 4 X
output of electronic, rotating and flow (hydraulic and Input
pneumatic) amplifiers, speed and torque saturation in aﬁﬁu:ﬁc—'/
electric and hydraulic motors, saturation in the output of s
sensors for measuring position, velocity, temperature etc., ~ Setrtion
are the well known examples. Figure 5.5 Saturation

DEADZONE: The deadzone is the region in which the output is zero for a given input.
Many physical devices do not respond to small signals, i.e., if the input amplitude is less than
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some small value, there will be no output. The region in which the output is zero is called
deadzone. When the input is increased beyond this deadzone value, the output will be linear.

Output

A Output
DcadzoncT F I Saturation

' (;L_ _M Dcndzm:t ﬂ/—-—-
> Input I(__._

—

/ —_/ Input

Saturation

Figure 5.6: Dead zone nonlinearity Figure 5.7: Dead zone and saturation nonlinearity

The Figure 5.6 shows the deadzone nonlinearity and the Figure 5.7 shows the
combination of dead zone and saturation nonlinearity.

FRICTION: Friction exists in any system when there is relative motion between
contacting surfaces. The different types of friction are viscous friction, coulomb friction and
stiction.

The viscous friction is linear in nature and the frictional force is directly proportional
to relative velocity of the sliding surfaces.

The coulomb friction and stiction are nonlinear frictions. The coulomb friction offers a
constant retarding force only when the motion is initiated. Due to interlocking of surface
irregularities, more force is required to move an object from rest than to maintain it in motion.
Hence the force of stiction is always greater than that of coulomb friction.

In actual practice, the stiction force gradually decreases with velocity and changes over
to coulomb friction at reasonably low velocities as shown in Figure 5.10. The composite
characteristics of various frictions are shown in Figure 5.8 to 5.11.

Output . Output (force)
(force) ‘Qutput(force)

stictid force . Elnmh friction force

1 N

Input(velocity)

Output (force)

coulomb

Input stiction ulo
friction

(velocity)

Input (velocity)

Figure 2.11:
Stiction, coulomb
friction and viscous
friction

Figure 5.9: Ideal Figure 5.10: Actual
stiction and stiction and
coulomb friction coulomb friction

5.2 DESCRIBING FUNCTION

Figure 5.8: Viscous
friction

Consider the block diagram of the nonlinear system shown in Figure 5.12

—

r ¢ X y c
>% G,(s) |- N G, (s) >
/

Figure 5.12: A nonlinear system

v
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In the above system the block G1(s) and Gz(s) represents linear elements and the block
N represent nonlinear element.

Let x = X sin wt be the input to nonlinear element. Now the output y of the nonlinear
element will be in general a nonsinusoidal periodic function. The fourier series representation
of the output y can be expressed as (by assuming that the nonlinearity does not generate sub
harmonics).

y = Ao+ A1sin ot + By cos ot + Az sin 2wt + B2 cos 2wt +.... .54

If the nonlinearity is symmetrical the average value of y is zero and hence the output y
is given by

y = Az sin ot + B1 cos ot + Az sin 2wt + B2 oS 20t +..... ...5.5

In the absence of an external input (i.e., when r = 0) the output y of the nonlinearity N
is feedback to its input through the linear element G2(s) and Ga(s) in tandem. If Gi(s) Gz(s) has
low-pass characteristics, then all the harmonics of y are filtered, so that the input x to the
nonlinear element N is mainly contributed by the fundamental component of y and hence x
remains sinusoidal. Under such conditions the harmonics of the output are neglected and the
fundamental components of y alone considered for the purpose of analysis.

S y=y1=A: sin ot +B1cos ot = Y1 <1 =Yz sin (ot + ¢1) ...5.6
where, Y, = ,fA[Z +B?
.57
and ¢, = tan"—B—'
P A, .58
Y1 = Amplitude of the fundamental harmonic component of the output.
o1 = Phase shift of the fundamental harmonic component of the output with

respect to the input.

The coefficient A: and B: of the fourier series are given by

"
2 Sy

”
A= _’—'ﬂ- y sinot d(m1)

...5.9

e B
B'= i_- l » cozmy q(0r)
9 =2

...5.10

When the input, x to the nonlinearity is sinusoidal (i.e., x = X sin wt) the describing
function of the nonlinearity is defined as,

Y,
KyXw) ==Lz
Ciilie i 511

The nonlinear element N in the system can be replaced by the describing function as
shown in Figure 5.13.
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e ) A L) e XD e

Figure 5.13: Nonlinear system with non linearity replaced by describing function

If the nonlinearity is replaced by a describing function then all linear theory frequency
domain technique can be used for the analysis of the system. The describing functions are used
only for stability analysis and it is not directly applied to the optimization of system design.
The describing function is a frequency domain approach and no general correlation is possible
between time and frequency responses.

5.3 DESCRIBING FUNCTION OF DEAD-ZONE AND SATURATION
NONLINEARITY

The input and the output relationship of nonlinearity with dead-zone and saturation is
shown in Figure 5.14.

The dead-zone region is from x = -D/2 to +D/2 and in this region the output is zero.
The input-output relation is linear for x = £ D/2 to £ S and when the input, x > S, the output
reaches a saturated value of +K (S-D/2).

The output equation for the linear region can be obtained from the general equation of
straight line as shown below.

The equation of straight lines is, y = mx + ¢ ..5.12

In the linear region, when x = D/2, y = 0. On substituting this values of x and y in equ
(5.12) we get,

0=mD/2+c ...5.13
r'\ A Input
In the linear region, when x = S, — i
y = K(S-D/2). On substituting thi s &
values of x and y in equ (5.12) we get, s -D2 .>°Q°

— X

= >
K(S-D/2)=mS+c ...5.14 _/ Figure 5.14 Input-
-K(§-D72)

Equ (5.14) — equ (5.15) yields,

dead-zone and

. D D
l\.(S-—T)zmS+c—mT—c

. D D
k(S-T)ﬂ m(S _-1_)

=g 515

. .D D
Putm=Kinegn(213), ..0=K—+c (or) c=-K—
o 4 2 ...5.16

From equations (5.12), (5.15) and (5.16) the output equation for the linear region can
be written as,
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s - = K.-K—=K(""_J
ysmxwe =™y 2 217

The response or output of the non linearity when the input is sinusoidal signal
(x = X sin wt) is shown in Figure 5.15.

The input x is sinusoidal .. x = X sin ot ...2.18
Where X = Maximum value of input. R
Infig2.15. when, ot=a, x=D/2| Infig215when wt=p, x= —— 7
Hence from equ (2.18) we get Hence from equ (2.18) we get
D/2=Xsina S=Xsinp : ‘;{
sina=D/2X sinp=S/X : N Figure 5.15: Sinusoidal
D 2% (3-a) X response of nonlinearity
ra=sia’los @19 ~pmis (220 i with dead zone and

ot J,l"

The output y of the nonlinearity can be divided five regions in a period of m and the
output equation for the five regions are given below.

0 0ot fa

K(x-2) jasaot <p
y=1K(S-2) ;psors(z-p)

K(x=2) ; (z-p)sots(z-a)

0 . i(r-a)solsx
Let Y = Amplitude of the fundamental harmonic component of the output.
o1 = Phase shift of the fundamental harmonic component of the output with

respect to the input

The describing function is given by

K, (X,0) =l;L 4,

where, Y,=,/Af4~[l,7 and ¢,=lan"-'%'-

‘e
-

| w

] ysinwt d(wt) and B, = y coswt d(mt)
0

N
= IOJ
S —

A":

(]

I

Page No. 154
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On substituting for D/2 and S from equations (5.26) and (5.27) in equ (5.25) we get,

-

4K X o o _
Ay =‘Tk [l ((l_—u —M»o j'—'lz‘—“)— X sinacosa Xamlh’u»lil

AKX B _a sin2p sin2a  sin2a  sin2fd
29 4 4 T 74

4KX |1 sin2f  sin2a

= ;‘(ﬁfﬂ)*’Tp——."]

sin 23 sin’.’a]
. 7

KX i
=== [2(B-a)+sin2f —sin2a)
= I ...5.28

Y, =JA?+B? =JAl+0=A,

LY =A S 53 [2(B - ) +sin2p - sin2a |
" ...5.29
¢, = lan"E'- =tan~'0=0
A ..5.30
The describing function Ky (X, @) = - Z¢x ..531

On substituting for Y1 and ¢1 from equations (5.29) and (5.30) in equ (5.31) we get

Yy K = = 0
X ) = 2L 26 = — [2(p - @)+ sin2f - sin2a] £0
MR = ...5.32

Depending on the maximum value of input, X the describing function of equ (5.32) can
be written as,

n . r s
If X<-122. then a=[3=5 and Kx(X,w)=0

..5.33
2
If -[—)-< X <8S, then B=§' and Ky(X, 0)= K[l" 3 (ot +sino L‘osu)l
i ) ‘ .5.34
If X>S, Ky(X m):—ls-[Z(ll-aHsan(\—sInZ(x]
. l\ iy ﬂ l.5.35

5.4  DESCRIBING FUNCTION OF SATURATION NONLINARITY
The input-output relationship of saturation nonlinearity is shown in Figure 5.16.

The input-output relation is linear for x = 0 to S. When the input x > S, the output
reaches a saturated value of KS.

The response of the nonlinearity when the input is sinusoidal signal (x = X sin ot) is
shown in Figure 5.17.
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The input x is sinusoidal,
X=X sin ot ... (5.36)

Where X is the maximum value of input.

In Figure (5.17), when ot = 3, x = S.

Hence equ (5.36) can be written as, S = X sin

++5.37 Figure 5.16 Input-output
characteristics of saturation

. S . S ) )

sinf = X (or) PB=sin X nonlinearity

...5.38

The output y of the nonlinearity can be divided into three regions in a period of w. The
output equation for the three regions are given by equ (5.39).

Kx ;0sot <
y=4KS ;B <ot < (x-PB)
Kx ;(rm-B)sot<n

...5.39
AY
KS r * //*' % g
A
-S 15 :
Figure 5.17 Sinusoidal response of
saturation nonlinearity
Jru)l
Let Y = Amplitude of the fundamental harmonic component of the output.
) = Phase shift of the fundamental harmonic component of the output with

respect to the input.

The describing function is given by, Kn(X,0) = (Y1/X) £ ¢1

where Y1 =/A? + B? and ¢1=tan™ (B1/ A1)

The output y has half wave and quarter wave symmetries
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2 2
SByp=0 and A == sin ot d(wt
% j y (wt) ...2.40

The output, y is given by two different expressions in the period 0 to /2. Hence equ
(5.40) can be written as shown in equ (5.41).

4"

_ 4

_'n' j sinmt d(w()+; y sinwt d(wt)
0

T N

...2.41
On substituting the values of y from equ (5.39) in equ (5.41) we get,
b 3

4 : 4
- J x sinmt d(wt) +?J KS sinot d(wt)
p

o

On substituting x = X sin wt, we get

- B
4K . . 4KS
A= m_— J X sinot x sinmt d(ml)+T sinot d(wt)

0

T

p
; 4 ;
=-‘$ J sinZot d(mt)+—l:§j sinwt d(ot)
0 p

sinot d(wt)

n =
_4KX f 1-cos2at 4KS j
m I d(ot) +— !

[—coswl]

‘ 2 X[ s|n20)l]" 4KS
ot —

- 2K X[ﬁ snnZB] 4KS[ cos—’_:~+cosﬂ]

-

cosf}

2KX sin2f| 4KS
B [”' 2 ]+ v
.5.42
On substituting for S, (i.e., S = X sin ) from equ (5.37) in equ (5.42) we get,

A= 2KX [p S'n229] — Xsinficosp

1L

_ 2];)( [B— 25in[32c05[5]+ 4];X sinp cosp
= 2-? [B —sinf cosp + 2sinf 0053]

-1
= [p+sinpeosf] 543

Y, = A2 +B? = JAZ+0=A, =£§—x-[p+sin[3cosp] »
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¢, =tan™' % =tan"' 0 =0

' .5.45
Yl
The describing function Ky (X,0)=— £¢,
...5.46
Using equations (5.44) and (5.45), the describing function of equ (5.46) can be written
as,
KnX,0)= —'4», ———[B+sm[3cos[i] <0°
...5.47
Depending on the maximum value of input X, the describing function can be written
as,

If X <S, then (3=—’2‘-, Ky (X,0)=K

...5.48
2K .
If X>S, KnGX,0)==——[B+sinp cosp]

N " .5.49

The equation (5.49) can be expressed in aother form as shown below.

. . S
From equ(2.37) we get, S =X sinf,  ..sinf = 5.50
On constructing right angle triangle with unity hypotenuse is

shown in Figure 5.18, cos I3 can be evaluated. From Figure 5.28 we get. . ;
X

S 2
di=./1- cos[}=—— —(—,—) T
= \/ X ..5.51 *

Fig 2.18

In the describing function of equ (5.49), substitute for 3, sin Bnd cos B from equations
(5.38), (5.50), and (5.51)

2
S S S .
LKyX0)=— = [sm '(;J'&(T) ]-(_)Z) } for X>S

5.5 DESCRIBING FUNCTION OF DEAD-ZONE NONLINEARITY

..9.52

The input-output relationship of dead-zone nonlinearity is shown in Figure 5.19. The
output is zero, when the input is less than D/2. The input-output relationship is linear when the
input is less than D/2. The input-output relationship is linear when the input is greater than D/2.
The response of the nonlinearity when input is sinusoidal signal (x = X sin t) is shown in
Figure 5.20.
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4’!‘
i %\V Figure 5.19 Input-output
/ | = >x characteristic of dead-zone
k=X
(x=ct) = o ? Figure 5.20 Sinusoidal response of
- dead-zone nonlinearity
ol \LZK
The input X is sinusoidal, ..x = X sin wt ...5.53

Where X is the maximum value of input
In Figure 5.20, when ot = a, x = D/2

Hence when ot = a, the equ (5.53) can be written as, D/2 = X sin o

" singt = b4
2X ...5.55

. D
and o =sin”' —

2X .5.56

The output y can be divided into three regions in a period of w. The output equation for
the three regions are given by equ (5.27).

0 s Dsatsa -
y=1{K(x-2); asot <(r-u)
0 ; (1(-(1)50)‘57! ‘”5.57
Let Yi = Amplitude of the fundamental harmonic component of the output.
b1 = Phase shift of the fundamental harmonic component of the output with

respect to the input.
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The describing function is given by, Kn(X,®) = (Y1/X) £ ¢1

where Y1 =/A? + B2 and ¢1=tan™ (B1/ A1)

The output y has half wave and quarter wave symmetries

—py 'm

2
SB =0 and A= |y sinot d(ot)
/2

1

...5.58
Since the output, y is zero in the range, 0 < ot < a, the limits on integration in equ (5.58)

can be changed to, a to /2 instead of, 0 to n/2.

s —;' ] K(x=2) sinot d(ot)

«

...5.59
Put x = X sin wt in equ (5.59)
LA ‘: [ j ( X sinowt -—) sinwt d(mt)]
4K e
e [ ] X sin‘ot d((ol)--- _[ sinmt d((ol)]
» . x/2 n/2
-‘-ﬁl\— [% | (1-cos2mt) (I((ol)--[,,2 I sinwt d(ml)]
r ~ :
~4K| X sin2ot [2 D ']E
e ? t - > ), ——?:-[~Lo.\\(o N
i,:—\. L: (!,‘ - Si,'-,‘-l‘- —a Si[‘;'") :)( cos T+ cosa)]
: 4K }. (-“- - g'-‘-q-(-l-)— - ((.om)]
"l2\2 2
' ...5.60
From equ (5.55) we get, sina== -D=2sina ...5.61

2X

On substituting for D from equ (5.61) in equ (5.60) we get,

4K [X(= sin 2 .
AFT[E‘(E‘“‘F ’u) )\smucosa]—#[ii_% 2_#294_@& smacosa]
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_4KX [z a sina cosa 4 4
__R_[I_?_‘z_] = KX [._XE__ I((l+$in0( cosa)]

W o—_—
x4 X B
= KX 2ttt
=KD 1-;(u¢smucosu)]

Y, =+4/A{+B] =Al+0 = A= lel —% (o +sinacusu)]

4B
'L —tan'0=0

¢, =tan

The describing function, Ky (X,m) = X‘-Ab,
X ...5.65

Using equations (5.63) and (5.64) the describing function of equ (5.65) can be written

as,
KxX,0)=K [l ——12? (o +sina cosa)] 20°
...5.66
Depending on the maximum value of input X, the describing function can be written
as,
D
If X<—, KX, 0)=0
2 x(X,m) 567
If }::-%, !{N(X,@}ﬂ{ [l-%{a +sina Cusu]]
...5.68
The equation (5.68) can be expressed in another form as shown 1
below. D
X
Z)
From equ (5.55), we get, sina =D/2 X adj

Fig 2.21

On constructing right able triangle with unity hypotenuse as shown in Fig. 5.21 cos a
can be evaluated.

From Figure 5.21, we get,

. DY adj By
d=1’— = = =———=J— —
a'l (ZX] o hyp I [DX]

In the describing function of equ (5.68), substitute fro a, sin o and cos o from equations
(5.26) (5.55) and (5.69) respectively.

. 2| . 4D D D\
stk 1o () (R (T | w2

...569

...5.70

199



5.6 DESCRIBING FUNCTION OF RELAY

HYSTERESIS

The input and the output relationship of a relay
with dead-zone and hysteresis shown in Figure 5.22.

Due to dead-zone the relay will respond only
after a definite value of input. Due to hysteresis the
output follows a different paths for increasing and
decreasing values of input. When the input x is
increased from zero, the output follows the path ABCD
and when the input is decreased from a maximum
value, the output follows the path DCEA.

For increasing values of input, the output is zero

WITH DEAD-ZONE AND

L

Figure 5.22 Input output

et

characteristics of relay with

dead-zone and hysteresis

when x<(D/2) and the output is M when x>(D/2). For decreasing values of input the output is

M when x>(D/2-H) and output is zero when x < (D/2-H).

The response or output of the relay when the input is sinusoidal signal (x=X sinwt) is

shown in fig 5.23.

TV H 17
A !
Ml - > A

A

4
— — 0
D2 % ” n/ n
A . e

: : () 2002 4

X sipon

(5 & 2t

The input X is sinusoidal, ..x = X sin ort
Where X = maximum value of input.

In fig. 5.23, when ot = a, x = D/2

Hence equ (5.71) can be writte as D /2 = sin a
sosina=D/2X

and a = sib* D / 2X
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Figure 5.23: Sinusoidal response of relay
with dead-zone and hysteresis

.51

.. 5.72
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In Figure 5.23, when ot =n -8, x=D/2) - H
Hence eqn (5.71) an be written as
D/2-H=Xsin (n—R)

D/2-H=XsinR
¢ 1(D
sinfi=—| ——H
X(z ) 574

p=sint 3 (2- n)] 575

The output can be divided into five regions in a period of 2z and the output equation
for thr five regions are given by equ(5.76).

'Q 0ot sa

M ;asgot<(x-B)
y=4{0 ; (n-—B)Smts(r.rﬂ‘x)
-M ; (n+a)<ot<(2n-p)

0 (2n—[3)s.lmts27i‘

\

...5.76

Let Y1
01

Amplitude of the fundamental harmonic component of the output.

Phase shift of the fundamental harmonic component of the output with
respect to the input.

The describing function is given by, Kn(X,0) = (Y1/X) £ ¢1

where Y1 = /A% + B? and ¢ =tan™ (B1/ A1)

n

5 * 9 -f
Ay=s= j y sinot d(ot) = J M sinot d(ot)
0 [

: Eﬁ: : cos(m—P) =-cos

= Z-::i [-cos wl]z—ﬂ = -27{- [~cos(m-p)+cosa]
|
= %d-{cusu +cosp) >
adj
From equ(5.72) we get, sin a = D/2X Figure 5.24

On constructing right angle triangle with unity hypotenuse as shown in fig 5.24, cos a
can be evaluated

; _adj _ "z
adsz]__{mzx)z ;. cosoL = hyp_dl—(mzx)

...5.78
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Fromequ (5.74) we get sin 3 = (% - %)

On constructing right angle triangle with unity hypotenuse as shown in fig 5.25, cos 3
can be evaluated

P £ |
- {(53) n

adj D H)z
=—te [1-] ———
ooep hyp ['.’X X

adj

...5.79  Figure 5.25

On substituting for cos a and cos 3 from equations (5.78) and (5.79) in equ(5.77) we

get,

.5.80
2 Y w=p i
B, == i y coswt d(ot) =— i M coswt d(wt) INnrc + SIn=p) L
=2M [sinmt]:;_B = %M- [sin(z = B) - sina] = %—[M (sin - sinc)
On substituting for sin o and sin B from equ (2.72) and equ (2.74) we get,
B, =M [R_ﬂ_ D]=z._4 (”)_‘(ﬂ)
"~ "\ R ' ‘)‘ i\ D, 7
R o TR ...5.81
A 2 2 3 !'
LY =JA7 +B; =[.A.1' e B,‘J
2 2 $ 2 \
. _|4M? D D H am*(H
‘{ N“(K) +\/"(K‘i) } _('x_)}
: ...5.82
6y =tan~t BL_ tap™! }“ﬂ (—;) ;
1 ' A 3 3
W R
The describing function of the relay with dead-zone and hysteresis is given by
Ky(X,m) ik 2
X¢ ...5.84

Where Y1 is given by equ (5.82) and ¢z is given by equ(5.83).

From the equ(5.84), the describing functions of the following three cases of relay can
be obtained.
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1. Ideal relay
2. Relay with dead-zone
3. Relay with hysteresis

IDEAL RELAY
Inthiscase D=H =0,

On substituting D =H =0, in equ (5.82) and
equ (5.83) we get,

2M

1=—
T

Y and ¢1 =0

Hence the describing function of the ideal relay is

_2M

X

Kn(X,0) = :% L=
RELAY WITH DEAD-ZONE

Inthiscase H =0

On substituting H = 0, in equ (5.82) and (5.83) we get,

Figure 5.26 : Input — Output
characteristics of ideal relay

given by,

...5.85

Figure 5.27 Input-Output
characteristics of relay
with dead-zone

Hence the describing function of relay with dead-zone is given by

0 ;X<R
2

N

RELAY WITH HYSTERESIS

Y
Kn(X0)=—- 24 = -

X

2
2X

X>2
2

...5.86

In thiscase D = H

On substituting D = H in equ (5.82) we get,

[T -G
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Figure 5.28 Input — output
characteristics of relay with
hysteresis



I
l_'. I_l-]. »
...5.87

1-—
ax?
...5.88

lan(—d’]) - l_l“l__

Using the numerator and denominator of equ (5.88) as two sides, we can construct a

H

right angle triangle as shown in Figure 5.29.
2X

From Figure 5.29 we get, sin(—¢]) -
1 H

...5.89

=y =sin”

Figure 5.29

—
(or) ¢] sin %
Using equations (5.87) and (5.89), the describing function of relay with hysteresis can
be written as,
H X*%
...5.90

Y, ;
Ky(X,0)=—1 2§ =
X 4M L.
-
% (~sin
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o.7 DESCRIBING FUNCTION OF BACKLASH NONLINEARITY

The input-output relationship of Backlash nonlinearity is shown in fig 5.30.

. . . . T y

The response of the nonlinearity when the input is VP_"

sinusoidal signal (x=X sinwt) is shown in fig 5.31. ﬁ
-b/2 2
In Fig 5.31, when ot = (1-B), X=X —b N/ _3 X
N

On substituting this value of x and wt in the input y bf2

signal, x = X sin ot we get k!

X—=b=Xsin(n—R)
Figure 5.30: Input-

X-b=Xsinf Output characteristic of
X—b b backlash nonlinearity
sin{3=-—-‘x ’l"'f
...5.91
' —I[l bj
df=sIn R
s A ...5.92

The output can be divided into five regions in a period of 27t and the output equation
for the five regions are given by equ(5.93).

AY : y
F,(E,‘ x-bl2  x+b/2
Slope.= 1 ')7'1)'('_;&' ' =
Nt P A .5 s
x'ri /2 T" wt
{ ¢ 2™ b2 (=-P)

x = Input = X sinowt x-b/2

Figure 5.31 Sinusoidal response of
backlash nonlinearity

x-b/2 ;OSmtsg

X-b/2 ;gsms(n-ﬂ)
y=14 x+b/2 ;(n—ﬁ)Smts}g—

-X+b/2 ;3§sws(2n-ﬁ)

-b/2 ; (2n-B)s ot <2;

=BiZ, lie=Peetsiy ..5.93
Let Yi = Amplitude of the fundamental harmonic component of the output.

Phase shift of the fundamental harmonic component of the output with
respect to the input.

d1

205



The describing function is given by, Kn(X,®) = (Y1/X) £ ¢1

where Y1 =/A? + B2 and ¢1=tan™ (B1/ A1)

A= %I y sinot d(ot)
0

...5.94

The output, y is given by three different equations in range 0 to &, hence equ (5.94) can
be written as

X
5 x-p x
. 2 . 2 2
A, =%I(x—g) sinot d(ot) + I (X—%) sinot d(ot) + = I(x+8—) sinwt d(mt)-
. : 2 ...5.95
Put x = X sin wt in equ (5.95)
J
2 : | "o
A n!:()(umml ;Juinml nl(ml). 2 J( = Jmnm( d(mt)
:x a
2 i
X J‘ng sinet 1 !j) sinmt d(mt)
" Iy
2R T o2 b 7 )-("" Jn-n
m— ;': sin” ot d(mt) - = !‘ sinot d(mt) 4~ = 2 ;7[ sinmt d(mt)
X : n
"‘ﬂ-"j .'unzmldfmlj I:_: J' sinat dimt)
o
) i ...5.96
Put sinot = 175 200 1n equ (5.96)
X4 ] X-B) np
HAp =S = I(I uanl (l(mt - b~ Ismml d(mt) - - ( 2.). ISinml (o)
] 0 n
2
w X X !
"'7{ J" (I ] Zml) cl(mt)"-‘T:- I sinat d(mt)
-}

n-f)

b
X sin 2ml b 3 Z(X -3 P
M [ml - .--.2_. ]" - [ c(mmt]; o '11','"’)'["0030)!]; f

+ :_f [ l—j!'-'—;iai' ]" . o [ wsm!]
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(’2!)_% (])-(—-— --( cos(n - [3) +cos’f)

X | sin2n N .sm2(n )
-r-i{[n-— 5 ~(m~ )4 ]

= [~cosn + cos(x - -M)

2 X 5in2
-.:22(--—:11-0--7-[- (X ~4) cospp 4 7‘..[“_."1'12..“] 2 7 (1-cosfs)

) b b
,—.L:__L;+% (x_.g) cosB+X—nQ—%f sin2B+ -+ cosf3
X XB 25 X .
=g harts (x-3-%) cosB—EE sin23
X . Xp. 2x P
S (1-2) cosB—E; sin2f 597
On substituting of r(1-b/X) from equ (5.91) in equ (5.97) we get,
A,—§+X—n+——-smﬁcosﬁ—2ﬁ-sm2ﬁ §+§1tg+%(5i"23*%5i“2”
=E+%@-+~}—{~sin2ﬂ=%—(£+B+-§-sin2ﬁ)
2 2% 4 ..5.98
2 T
B, == J y cosot d(wt)
0 ..5.99

The output, y is given by three different equations in the range 0 to m, hence equ (5.99)
can be expressed as,

(x-%’-) cosmtd(mt)+% “ID (X—%) cosat d(wt)

gL
2

2
B|=E

O o M

+% ]5 (x +—;l) cosot d(ot)
n=p

..5.100
Put = X sin wt in equ (5.100)

b.S
2 — 3 X
SBy s T [Xsmml —-2—) coswmt d(wt) t% J (X—g) cosot d(wt)

0 n
2
n

2 ;
+F J (Xsmmt l-lzl) cosot d(wt)

=
I
—X}Z't d(ot bj d 2(x-1) ] I(wt)
=7 | 2sinot cosot d(ot) ~= | cosot d(ot) +%(X -4) [ cosot d(«
0 0 D

X % b }

il H "YQ it d (l)l)

i J 2sint cosot d(ot) -+ I" cosmt d(
n-} % n-
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T sin2ot d(ot) -
0

=-p
cosmt d(wt) + ;2_: (X - -g) j cosomt d(wt)

5
-

b
E3

© I}

X 7 b
pr— .f sin2omt d(o)t)-'rg I coswt d(ot)
=-p x-p

=¥—[_%im]o % [smcot]l % (X—%) [sinwl];n

X[ cos20t]* be. =
= [— ] . + [sinet]_;
=

|

et ] S 2c-4) ie-)-s0]

X[ cos2m  cos 2(m=-p) |, br. .o
+?[._ = + > ]+R[smn sin(m B)]

= -);r(_(l+l)—_b-(] - 0)+3(X __tzl) (sinp-1) +§[—-;-+ COSZB) —(0-sinp)

T T 2

3X | 2X LA R P
=_——+———smﬁ[1 X]+2nc p

m m ...5.101
Since (1-b/X) = sin B and cos 2B = (1-2 sin?R), the equ (5.98) can be written as
X K ocostp)e gy eorP
=—-;{—cos!ﬁ ...5.102

Page No. 172

The Nyquist stability criterion can also be extended to the stability analysis of nonlinear
systems. According to the Nyquist stability criterion the system will exhibit sustained
oscillations or limit cycles when,

Kn G(jo) =-1 ...5.108

The equation (5.108) implies that the sustained oscillations or limit cycles will occur if
Kn G(jo) locus pass through the critical point, -1+j0, in the complex plane.
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The equation (5.108) can be modified as shown below
G(jw) =- 1/ Kn ...5.109

The equation (5.109) implies that the critical point, -1 + jO becomes the critical locus
which is the locus of -1/Kn. Hence the intersection point of G(jw) locus and -1/Kn locus will
give the amplitude and frequency of limit cycles.

In the stability analysis, let us assume that the linear part of the system is stable. To
determine the stability of the system due to nonlinearity sketch the -1/Kn locus and G(jw) locus
(polar plot of G(jw)) in complex plane. (Use either a polar graph sheet or ordinary graph sheet)
and from the sketches the folowing conclusions can be obtained.

1. If the -1/Ky locus is not enclosed by the G(jw) locus then the system is stable or there
is no limit cycle at steady state.

2. If the -1/Kn locus is enclosed by the G(jw) locus then the system is unstable.

3. If the -1/Kn locus and the G(jw) locus intersect, then the system output may exibit a
sustained oscillation or a limit cycle. The amplitude of the limit cycle is given by the
value of -1/Ky locus at the intersection point. The frequency of the limit cycle is given
by the frequency of G(jm) corresponding to the intersection point.

CONCEPT OF ENCLOSURE

In a complex plane the -1/Kn locus is said to be enclosed by G(jw) locus if it lies in the
region to the right of an observer travelling through G(jw) locus in the direction of increasing
®, as shown in fig 5.33.

In a complex plane the -1/Kn locus is not enclosed by G(jm) locus if it lies in the region
to the left of an observer travelling through G(jw) locus in the direction of increasing o, as
shown in fig 5.34.

If the -1/Kn locus and G(jw) locus intersect as shown in fig 5.35, then for an observer
travelling through G(jw) locus in the direction of increasing , the region on the right is
unstable region and the region on the left is stable region.

~1/K,, locus

£
o
L
; ¥,
G(jo) lccus 7

Limit
["cycle
+Unstable
IS region

Figure 5.33 Figure Figure 5.34 Figure Figure 5.35 Figure
showing enclosure of — showing non enclosure of —  showing intersection of —

1/Knlocus by G(jw) locus  1/Knlocus by G(jw) locus  1/Kn locus by G(jw) locus
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STABLE AND UNSTABLE LIMIT CYCLES

The -1/Kn locus may intersect G(jo) locus at one or more points. There exists a limit
cycle at every intersecting point. These limit cycles can be either stable or unstable limit cycles,
as shown in fig 5.36.

If -1/Kn locus travels in unstable region and it intersect G(jo) locus to enter stable
region then the limit cycle corresponding to that intersection point is stable limit cycle.

If -1/Kn locus travels in stable region and it intersect G(jw) locus to enter unstable
region then the limit cycle corresponding to that intersection point is unstable limit cycle.

~ ; (L1 11
QI
_1!:;(Lf|'} i Sl;!{; 2 K[ Jogis o—-stable 5= = SL?,:::

cycle

=

Y ! ” | Unstable 1 Limit =
" Limit ~_| }] —| cycle —
HEEE = =

vili= k=

|1 stable region

Figure 5.36 Stable and unstable limit cycles

——— Unstable region

Note: The concept of enclosure can be extended to db-phase angle plane (i.e. to Nichols plot)
and it is same as that of complex plane.

+90°
59 REVIEW OF POLAR PLOT AND NICHOLS PLOT =0 \m
angle
POLAR PLOT
+180° 0°
The polar plot of a sinusoidal transfer function, G(jw) isaplot - Rfi'c
of the magnitude of G(jo) versus the phase angle of G(jm) on polar angle
coordinates as w is varied from zero to infinity. Thus the polar potis . e .4
the locus of vector |G(jo)| £ G(jw) as w is varied from zero to infinity. Fi 537
The polar plot is also called Nyquist plot. Igure ©.
Polar graph

The polar plot is usually plotted on a polar graph sheet. The polar graph sheet has
concentric circles and radial lines. The circles represent the magnitude and the radial lines
represent the phases angles. Each point on the polar graph has a magnitude and phase angle.
The magnitude of a point is given by the value of the circle passing through that point and the
phase angle is given by the radial line passing through that point. In polar graph sheet a positive
phase angle is measured in anticlockwise from the reference axis (0°) and a negative angle is
measured clockwise from the reference axis (0°).

Alternatively, if G(jo) can be expressed in rectangular coordinates as,
G(jo) = Gr(jo) *+ JGi(jo)

Where, Gr(jo) = Real part of G(jo)

and  Gi(jo) = Imaginary part of G(jm)
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Then the polar plot can be plotted in ordinary graph sheet between Gr(jo) and Gi1(jw)
as o is varied from 0 to oo.

To plot the polar plot, first compute the magnitude and phase of G(jw) for various
values of o and tabulate them. Usually the chicce of frquencies are corner frequencies and
frequencies around corner frequencies. Choose proper scale the magnitude circles. Fix all the
points on polar graph sheet and join the points by smooth curve. Write the frequency
corresponding to each point of the plot.

To plot the polar plot on ordinary graph sheet, compute the magnitude and phase for
various values of ®. Then convert the polar coordinates to rectangular coordinates using
P — R convertion (polar to rectangular convertion) in the calculator. Sketch the polar plot using
rectangular coordinates.

For minimum phase transfer function with onlt polea, the type number of the system
determines at what quadrant the polat plot starts and the order of the system determines at
what quadragnt the polat plot ends.

Note: The minimum phase systems are systems with all poles and zeros on the left half of s-

plane
311 type3
WPE-ZA Pl Figure 5.38 34 order 4™ order .
” Start of polar 2 order 7| 1" order Figure 5.39 End
plot of polar plot
N

NICHOLS PLOT

The Nichols plot is a frequency response plot of the open loop transfer function of a
system. The Nichols plot is a graph between magnitude of G(jw) in db and the phase of G(jw)
in degree, plotted on a ordinary graph sheet.

To plot the Nichols plot, first compute the magnitude of G(jw) in db and phase of G(jw)
in deg for various values of ® and tabulate them. Usually the choice of frequencies are corner
frequencies. Choose appropriate scales for magnitude on y-axis and phase on x-axis. Fix all the
points on ordinary graph sheet and join the points by smooth curve. Write the frequency
corresponding to each point of the plot.

In another method, first the Bode plot of G(jo) is sketched. From the Bode plot the
magnitude and phase for various values of frequency, o are noted and tabulated. Using these
values the Nichols plot is sketched as explained earlier.

In a system if the zero frequency gain K is varied then the magnitude of the transfer
function alone will vary and there will not be any change in phase. This results in vertical shift
of Nichols plot up or down. The constant K adds 20log K to every point of the plot. If 20log K
is positive then the plot shifts upwards and if it is negative the plot shifts downwards.
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EXAMPLE 5.2

A servo system used for positioning a load has backlash characteristics as shown in Fig
5.2.1. The block diagram of the system is shown in Fig 5.2.2. The magnitude and phase of the
describing function of backlash nonlinearity for various values of b/X are listed in Table 5.2.1,
where X = Maximum value of input sinusoidal signal to the nonlinearity.

—— Backlash
K X
% Temosm ] &
Figure 5.2.1 Figure 5.2.2
Table 5.2.1
b/X 0 0.2 0.4 1.0 1.4 1.6 1. 1.9 2.0
|Kn| 1 0.954 | 0.882 | 0.592 | 0.367 | 0.248 | 0.125 | 0.064 0
ZKN 0 -6.7° | -13.4° | -32.5° | -46.6° | -55.2° | -66° | -69.8° | -90°

Show that the system is table if K = 1. Also show that limit cycle exists when K = 2.
Investigate the stability of these limit cycles and determine their frequency and b/X.

SOLUTION

The describing function analysis of the system can be carried using either polar plot or
using Nichols plot.

METHOD 1: USING PLOR PLOT

Polar plot of G(jw) when K = 1

Given that, G(s) = ——————

iven that, G(s) s (1+s) (1+0.5s)
LetK=1ands=jo

\ 1
5 G(jo) = jo(+jo) (1 +j0.50)

1
3 ©290° Ji+e2ztan™ 0 V1402502 Ztan™ 050

|
GG a? J1+02507
£G(jo)=-90°- tan~' @ - tan™' 0.50

The magnitude and phase of G(jw) are calculated for various values of » and tabulated
in Table 5.2.2. Using poloar to rectangular conversion the polar coordinates are converted
rectangular coordinates and listed in Table 5.2.2. The polar plot of G(jow) when K = 1 drawn in
an ordinary graph sheet, as shown in Figure 5.2.3.
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Figure 5.2.3 Polar plot of G(jw) and — 1/Kn

Table 5.2.2
o rad/sec 0.1 | 0.15 0.2 | 025 0.5 0.75 1.0 1.25
|G(jo)| 994| 657 | 488 | 385 | 1.74 1.0 0.63 0.42
/G(jo) deg. | -99 | -103 | -107 | -111 | -131 -147 -162 -173
Gr(jo) -16 | -15 -14 | -14 -1.1 -0.8 -0.6 -0.4
Gi(jw) -98| -6.4 -47 | -3.6 -1.3 -0.5 -0.2 -0.05
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Polar plot of G(jo) when K =2

The magnitude of G(jo) when K = 2 is given by

G(jo)l= e
| (J . w AJ'I+(n: JI%‘O.ZS{:}"

(The phase of G(jw) will not change due to a change in the value of K)

The magnitude and phase of G(jw) and the real part and imaginary part of G(jo) K = 2
are calculated for various values of ® and listed in Table 5.2.3. The polar plot of 0 when
K =2, is drawn on the same graph sheet using the same scales as shown in Figure.

Table 5.2.3
 rad/sec 0.2 0.25 0.3 0.5 0.75 1.0 1.25
IG(jo)| 9.76 7.7 6.31 3.48 2.0 1.26 0.84
ZG(jw) deg. | -107 | -111 | -115 | -1321 | -147 -162 -173
Gr(jm) -29 | -2.8 2.7 -2.3 -1.7 -1.2 -0.8
G1(jo) 93 | -72 | -57 -2.6 -1.1 -0.4 -0.1

Polar plot of — 1/Ky

The function — 1/Ky can be written as,

) T B
Ky IKnIZKy

& U Kyle——  and Z(-1/Ky)=-180°-ZLKy
[Knl

The values of |[Kn| and £Kn are given in the problem, in Table 5.2.1., for various values
of b/X. Using the values if Table 5.2.1, the |-1/Kn| and Z(-1/Kn) are calculated for various
values of b/X and listed in Table 5.2.4. Then the real part and imaginary part of -1/Kn are
calculated using polar to rectangular convertion and listed in Table 5.2.4. The locus of -1/Kn
is sketched using rectangular coordinates in the same graph sheet as shown in Figure 5.2.3.

Table 5.2.4

b/X 0 [02] 04 [ 10 | 14 [ 16 [ 18 | 19 [ 20
Kl 1 |0.954] 0882 | 0592 | 0.367 | 0.248 | 0.125 | 0.064 | 0
ZKn 0 |-6.7°|-134°| -325° | -46.6° | -55.2° | -66° | -69.8° | -90°
LK 1 [ 105 113 | 169 | 272 | 403 | 80 | 1563 |
Z(-1Ky) | -180° [ -173° | -166° | -148° | -133° | -125° | -114° | -110° | -90°
Rea_'l'[;f(”"f 10 [-104| -1.1 | -14 | -19 | -23 | 33 | -53 | 0
ma. Partof | o | o1 | 03 | -09 | 20 | 33| 7.3 | 147 | w
1/Kn
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STABILITY ANALYSIS
Case () when K =1

When K =1, G(jo) locus does not enclose -1/Ky locus, hence the system is stable.
Case (i) K =2

When K =2, the G(jw) locus, intersects -1/Kn locus at two points. From the polar plots,
it is observed that at one intersection point, unstable limit cycle exits and at another intersection
point stable limit cycle exist.

From Figure 5.2.3, Coordinates corresponding to unstable limit cycle =-2.6 —j4.4 =
5.11 £-120°.

Let o1 = Frequency corresponding to unstable limit cycle.
And b/X1 = The value of b/X corresponding to unstable limit cycle
Now at ® = w11 G(jo) =5.11 £-120°

~At o= on £LG6(jo) = -120°

By equating the expression for ZG(jm) to -120° the frequency w11 can be determined.
We know that, ZG(jm) = -90° —tan™ o - tan? 0.50

At o = o1 -90° — tan? @1 —tan™ 0.5em1 = -120°

-.-90° —tan o1 + tan™ 0.5011 = 120°

tan? w11+ tan? 0.5w11 = 120°- 90° = 30°

On taking tan on either side we get,

tan (—tan? 11 + tan? 0.5c011) = tan 30°

tan (lnn"m,,)-i- tan (tan™' 0.50,)
1 -tan (lan"'m,,) % lan (lan"OSm,,)

=0577

o +0.50,) = 0577
I=w x 050, ° Note : tan(A + B) = 20A * tanB

2150, = 0577 - 028850, 1=1anA tanB
-, 028850, +150, 0577 =0

On dividing by 0.2885 we get,

2 1.5 0577
O+ ——0y =0
0.2885 0.2885
wlzl +520,-2=0

52+ ,/5.2’ —4%(-2) -52+592

S0y = 3 = >

On taking only positive root we get,

=5.2+592 _ (36 rad/sec

Oy =

215



Also. at o =, -1/Ky =511£-120°

1 0
But -1/Ky =1Z-180°%——, . 1Z-180°%——=511£-120
' Kn Ky
Ky =18 _ 1 600=01962-60°
¥ TShz-120° 50

Hence at o = . [K|=0.196 and ZK = -60°.
From the describing function of backlash nonlinearity we get,

2
s R —cos” B
ARgisin ((n/2)+ﬂ+(l/2) sinZBJ

Ato=wy, LKy=-60°,b/X—>b/X, andB— B,

2
. -1 —cos Bl =-60°
e [(11'/2)+B,+(1/2) sinzﬁl]

- cos’B,

- = tan (-60°
(m/2)+B, +(1/2) sin2f,

—cos’ B,

= 0577 cos’B,
tan (~60°)

= (m/2)+B, +(1/2) sin2B, =
From the describing function of backlash nonlinearity we get,

| '
IK~l=;tl- [(xr2+p+072) sin2B)? +cos* BJ?

At, © =0y, |[Kn|=0196, b/X->b/X, andB—> B,
1

o [((1:/2)+B, +zlsin2BI)2 +cos“[3,]2 =0196
= ;

On substituting ((n/2) + B1 + (1/2) sin 2B1) = 0.577 cos? Ry and then squaring we get

(05’}7cos2 B, ) + cos B = (0.1961()2
0333 cos*B, +cos’ B, =0379
1.333 cos’B, = 0379

I
0379+ _ [ — cos~1(0.73) = 43.1°
. cosp, =(E) =073 ; B, =cos (0.73)

We know that, B = sin? (1 — b/X)

s Bi=sin? (1-b/Xi) (or) b/ X1 =1-sin Ry =1-sin 43.1°=0.316.

From Figure 5.2.3,

Coordinates corresponding to stable limit cycle =- 1.1 -j0.3 =1.14 £-165°.

Let w12 = Frequency corresponding to stable limit cycle.
and b/X; = The value of b/X corresponding to stable limit cycle
Now at ® = w12 G(jo) = 1.14 £-165°

~At o = o2 £LG(jo) = -165°

By equating the expression for ZG(jm) to -165°, the frequency w12 can be determined.
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We know that, ZG(jo) = -90° —tan? » - tan? 0.5m
At ® = m12 -90° —tan™ w12 —tan™ 0.5m11 = -165°
-.-90° —tan w12 + tan 0.5wm12 = 165° — 90, = 75°
On taking tan on either side we get,

tan (tan™ w12+ tan™ 0.5012) = tan 75°

tan (tan ’m,,) +lan (tan '1_).52,?)

: = 3.732
| —tan (lun"m,:) #tan (tan  050,,)

0y, +050, _ 3732

] - (l)l-_s 2’0'5(0!2
o' IS (1),2 = 3.732 - 1886(');:

2 2
o 2. W~ L 0 : ©,+08w,-2=0
U866 1866
_08+08% —4x(-2) _-08+294
o (0[2 = > - — 2—“

On taking only positive root we get,

-0.8+2.94 _ ) .
Wp=——p 1.07 rad/sec

= -165°
Also, at w = ®p, -1/Ky 1.14Z£

I :
' . ~180°% —— = 1.14£ - 165°
But —I/KNzlé—ISOJEE.‘. Sl K::

°

n

o 12180 L 50087741
~Ry=Taz-1es 114

Hence at o = w12, [Kn| =0.877 and £Kn = -15°.

From the describing function of backlash nonlinearity we get,

2
el —cos“ B

<Ky = tan [(1!/2)+[3+(1/2) sin2[3]
Ato=wp,, £Ky=-15°,b/X—>b/X, andB-p,

" tan™! -COSZBZ =-]5°

B (m/2)+B, +(1/2) sin2p,

— cos’p, = tan (~15°)
(7/2)+PB, +(1/2) sin2p,

2
5 (m/2)+ B,y +(1/2) sin2B, = ﬁ:‘% =3.732 cos’B,
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From the describing function of backlash nonlinearity we get,

: 1
IKnl= = [((n /2) +B+(1/2) sin2B)? +cos* p]2
. ‘
At, © = ©y, |[Ky|=0877, b/X—>b/X, andB—> B,

1
o [((n /2)+By +35in2p;)* +cos' ;32]’ =0877
T

On substituting ((x/2) +B, +(1/2)sin2p,) = 3.732 cos> B, and then squaring we get,

(3732 cos®B,)? +cos* B, = (0.877n)’
13928 cos*B, +cos’ B, = 759
14.928 cos’B, = 7.59

I
9 4 G o
<. cosP, = (%)4 =0844 ;  ..PB,=cos'(0844) =324

We know that, B = sin™' (1 — b/X)
=By =sin"'(1-b/X;) (o) b/X;=1-sinp,=1-sin32.4°=0.464

RESULT

1. The unstable limit cycle exist when b/X = 0.316 and the frequency of oscillation is
0.36 rad / sec.

2. The stable limit cycle exist when b/X = 0.464 and the frequency of oscillation is 1.07
rad /sec.

METHOD 2 : USING NICHOLS PLOT
Nichols plot of G(jo) when K =1
Given that, G(s) = K/s (1+s) (1+-0.5)
Let K=1and puts = jo

~G(jo) = e ! — - S
j J0) (14j0.50) (o0 J1+0? Zan 0 1402507 2™ 050

- 1GGo) = -
0 V1+0? 140.2502

IG(j0)lin g = 2010g |: ‘ —
oV14+0? 1+0.250?

£G(jw) =-90°-tan™' & — tan™' 050

The magnitude of G(jw) in db and phase of G(jw) are calculated for various values of
o and tabulated in Table 5.2.5. The Nichols plot of G(jw) is sketched in an ordinary graph
sheet as shown in Figure 5.2.4.
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Figure 5.2.4 Nichols plot of G(jw) and — 1/Kn
Table 5.2.5

o rad/sec 0.1 | 015 0.2 0.25 0.5 0.75 1.0 1.25

IG(jo) db | 19.9 | 164 | 138 | 117 | 48 0 4 | 2715

ZG(jw) deg | -99 | -103 -107 -111 | -131 | -147 -162 | -173
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Nichols plot of G(jJo) when K =2

When K = 2, the magnitude of G(jw) increases by an amount, 20 log K = 20 log2=6
db. The phase of G(jw) is not altered.

The increase in magnitude independent of frequency. Hence G(jo) locus when K = 2
is obtained by shifting the locus of G(jo) when K =1, by 6 db upwards as shown in Figure
5.2.4.,

Nichols plot of — 1/Kn
The function -1/Ky can be written as,

The magnitude and phase of the describing function of backlash, Ky is listed in the
probelem in table 5.2.1 for various values of b/X. Using the values of |[Kn| and ZKn given in
table 5.2.1, the values of |-1/Kn| in db and Z(-1/Kn) are calculated for various values of b/X
and listed in table 5.2.6. Using these values the locus of -1/Kn is sketched as shown in fig 5.2.4.

Table 5.2.6
b/X 0 0.2 0.4 1.0 1.4 1.6 1.8 1.9 2.0
|Kn| 1 0.954 | 0.882 | 0.592 | 0.367 | 0.248 | 0.125 | 0.064 0
ZKn 0 -6.7° | -13.4° | -32.5° | -46.6° | -55.2° | -66° | -69.8° | -90°

|-1/Kn| in db 0 0.4 1.0 4.6 8.7 121 | 181 | 23.9 ©
Z(-1/Kyyin deg | -180° | -173° | -166° | -148° | -133° | -125° | -114° | -110° | -90°

STABILITY ANALYSIS
Case (i) whenK =1

From the Nichols plots it is observed that when K = 1, G(jw) locus does not enclose -
1/Kn locus. Hence the system is stable.

Case (ii) when K =2

From the Nichols plots it is observed that when K = 2, G(jw) locus, intersects -1/Kn
locus at two points. At one intersection point unstable limit cycle exits and at another
intersection point stable limit cycle exist.

The coordinates corresonding to

unstable limit cycle - =(14.2db, -120°) = 1020 £ -120°=5.1 £ - 120°

The coordinates corresonding to
stable limit cycle

- =(11.2db, -165°) = 101¥%0 £ -165° = 1.14 £ - 165°

Note: It is observed that the coordinates corresponding to limit cycles are same as that
obtained from polar plot, hence by an analysis similar to that of method-1. We can
determine the frequency and b/X corresponding to limit cycles.
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RESULT

1. The unstable limit cycle exist when b/X = 0.316 and the frequency of oscillation is
0.36 rad / sec.

2. The stable limit cycle exist when b/X = 0.464 and the frequency of oscillation is 1.07
rad /sec.
EXAMPLE 5.3

Consider a unity feedback system shown in Figure 5.3.1 having a saturating amplifier
with gain K. Determine the maximum value of K for the system to stay stable. What would be
the frequency and nature of limit cycle for a gain of K = 2.509.

ulnlwl“ 3

% I
no g o 12 Gt = .
") P ’,“”"' Jon (14 J0nsen) (11 Mw' I g

) Figure 5.3.1

SOLUTION

The stability of the system can analysed using polar plot. The gain K of the saturating
amplifier can be attached to G(jo) and amplifier is considered to be an unity gain amplifier.

Polar plot of G(jow) when K =1

K
Jo (14 J05m) (14 Jdm)
I
Jo (14 j05m) (14 Jdw)
l - -
w 2907 V1102507 Z1on ' 0,50 V14 160? Ztan™ 40
I

n \/l 1 0,25m7 \/I I 1 Gm?
ZC(jm) = =90"1an L0.50 ~ tan ' 4w

Here, Ci(jm) =

Let, K=1, = G(jm) =

v |G )]

The magnitude and phase of G(jw) are calculated for various values of ® and listed in
Table 5.3.1. Using polar to rectangular conversion the real part and imaginary part of G(jw) are
determined and listded in Table 5.3.1. The polar plot of G(jw) is sketched in an orindary graph
sheet as shown in Figure 5.3.2.

Table 5.3.1

® rad/sec 0.4 0.5 0.6 0.8 1.0 1.2
| G(jo)| 1.299 | 0.868 | 0.614 0.346 0.216 | 0.145
Z G(jo) -159° | -167° | -174° -184° -192° | -199°
Gr(jm) -1.21 | -0.85 -0.61 -0.35 -0.21 | -0.14
Gi(jo) -0.47 -0.2 -0.06 0.02 0.04 0.05
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Polar plot of G(Jo) when K = 2.5

When K =25, |G(jo)= 25
: m\/l+0.25c.)2 J|+|6m3

The phase of G(jw) is not altered by the term, K. The magnitude and phase of G(jw)
when K = 2.5 are calculated for various values of ® and listed in Table 5.3.2. Using plot to
rectangular conversion the real part and imaginary part of G(jo) when K = 2.5 are determined
and listed in Table 5.3.2. The polar plot of G(jw) when K = 2.5 is sketched in the same graph
sheet using the same scale,s as shown in Figure 5.3.2.

Table 5.3.2
o rad/sec 0.6 0.65 0.75 0.8 1.0 1.2
| G(jo)| 1.535 | 1.313 0.987 0.865 0.54 0.363
ZG(o) | -174 | -177 | -182 -184 -192 | -199

Gr(j») | -153 | -1.31 | -099 | -0.87 | -0.53 | -0.34
Gijo) | 016 | -0.07 | 003 | 006 | 011 | 012

Polar plot of -1/Kn
The function -1/Ky can be expressed as,
-1 1 1

—=—lx—=12-180°x—
Ky N Ky

We know that the describing functio (Kn) of saturation nonlinearity is given by
1 ; whenX<S$§ (-K=1)

i {EE (B+sinp cosp) £0° ; whenX>§
T

where, & =sin (S/X)

and X = Maximum value of input sinusoidal signal

Here, K=1andS=1

1£ - 180° ; when X <1
L=/ Ky= N /-180° ; whenX>1
2 (B +sinp cosf)

where, & =sin? (1/X)
From the equation of -1/Kn we can say that, the locus of -1/Ky starts at 1 £-180° (i.e.,

=1+j0) and travels along the negative real axis for increasing values of X as shown in Figure
5.3.2. The locus of -1/Ky is shown as a bold line on the negative real axis.
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Figure 5.3.2 Polar plot of G(jw) and — 1/Kn
STABILITY ANALYSIS
Case (i) when K =1

When K =1, the G(jo) locus does not encloses the -1/Kn locus, hence the system is
stable.

Case (ii) when K =2

When K is increased the G(jw) locus sifts upards. For a paritulcar vlaue of K, the G(jw)
locus crosses the starting point (k.e., -1 +j0) of -1/Ky locus and this value of K is the limiting
value of K for stability.

If G(jo) cross negative real axis at -1+j0, then G(jo) =-1=1 £ -180,
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2 |G(w)| =1 and £ G(jw) = - 180°

Let, w11 = Frequency when G(jo) = -1

- At o= o1, Z G(jo) =-90° - tan? 0.5 w11 — tant 4wy = -180°
~tan? 0.5 o1 + tan? 411 = 90°

On taking tan on either side we get,

tan (tan? 0.5m11 + tan™ 4ma1) = tan 90°

tan (tan™ 0.5w,,) +tan (tan"_&llm,l) ka6
| —tan (tan"'0.5w,,) x tan (tan™ 4@ )
]“ 0.5 0)“ X4 0)“

=0

For the above equation to be infinity, the denominator should be zero.

1
.'.I—2m/2,=0 4 o),2|=l/2 (or) w“=—‘/5-_—rad/scc

Alo =0y, G(jo)l=1

K =1 .(or) K:mnmm

oy J1+02502 i+1602

! + 5) =225
K= J(15025%05) (1+16x05) =22
7 Wi

Therefore the system remains stable if, K < 2.25
Case (iii) when K =2.5

When K = 2.5 the G(jo) locus intersects, -1/Kn locus at -1.11 +j0. At the intersection
point stable limit cycle exists.

Coorindate correspoinding to stable limit cycle = -1.11 +j0 = £ -180°

Let, w12 = Frequency of stable limit cycle

At ® = o2, G(jo) =1.11 £ -180°

- At o= 012, Z G(jw) =-90° - tan? 0.5 w12 — tan 412 = -180°
~tan? 0.5 w12 + tan™ 4wy, = 90°

On taking tan on either side we get,

tan (tan™ 0.5m12 + tan 4wy2) = tan 90°

tan (tan™' 05 ®;,)+tan (tan™'4w,,)
1—tan (tan™' 0.50,,) x tan (tan~' 4w, )

0.5 Wy +4 0
1-0.50,; x4 ©p

= tan90°

=0
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For the above equation to be infinity, the denominator should be zero.

.'.I-2(o,22=0 (or) mf._,=l/2rad/sec (or) m,2=1/«/5rad/scc

<. Frequency of limit cycle = 12 = 0.707 rad / sec
RESULT

1. When K =1, the system is stable

2. The system remains stable if K < 2.25

3. When K = 2.5, a stable limit cycle occurs, whose frequency of oscillation is 0.707
rad/sec.

5.10 PHASE PLANE AND PHASE TRAJECTORIES

The phase plane method of analysis is a graphical method for the analysis of linear and
nonlinear systems. The analysis is carried by constructing phase trajectories. It gives an idea
about the transient behaviour and stability of the system.

The phase plan analysis is usually restricted to second order systems excited by step or
ramp inputs. This analysis technique can be extended to a higher order system if it is
approximated as a second order system.

The dynamics of control systems can be represented by differential equations. A second
order linear system can be represented by the differential equation.

dix d
Ez—+2§wn ft—+m,z, x=0
where, X = One of the system variable (e.g. displacement in mechanical system,
current in electrical system, etc.,)
c = Damping ratio
On = Natural frequency of oscillation.

The state of the second order system represented by equ (5.11.0) can be described by
choosing two state variables.

Note: Refer chapter 4 for state, state variables and state space modelling using phase
variables.

In state space modelling using phase variables we choose one of the system variable
and its derivatives as state variables. Let x; and x. be the state variables of the second order
system.

Here x1 = x and xo = dx/dt R

On substituting the state variables in equ (5.110) we get,

X, +2 LW, Xy +olx, =0 ..5.112
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The state equations of the system are obtained from equations (5.111) and (5.112). The
state equations are,

&y =3 5113
ko =0 X =200, X, 5114
For linear systems the state equations are a set of first order linear differential equations
and solutions of state equations can be easily obtained by integration. But for nonlinear
systems, the state equations are a set of first-order nonlinear differential equations and solving

the nonlinear differential equations will not be an easy task. Hence for nonlinear systems the
phase plane method of analysis will be an useful tool.
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43.

QUESTON BANK

PART A

Formulate the choice of state variables?

Choose the basic elements used to construct the state diagram?

Create the general form of state model of n'" order system?

The drawback of transfer function model compare with state space model.
Compose the Phase variables of a linear time invariant system?

Estimate how the modal matrix can be determined

Construct the bush or companion form of state model

2
A system is characterized by the differential equation, 274102 4 7y—u=0

Yy
dat? dat
Formulate its transfer function.
Estimate the path to diagonalise a matrix
Estimate the Eigen values and Eigen vector?
Examine the solution of homogenous state solutions.
List the solution of non-homogenous state equations.
What is resolvant matrix?
List the different methods available for computing e4t?
Enumerate the properties of state transition matrix.
What is state transition matrix?
Define the characteristic equation of a matrix.
State cayley-Hamilton theorem.
List the disadvantage of state transition matrix using matrix exponential?
Illustrate the canonical form of state model?
Predict the condition for observability by Gilbert’s method.
Predict the condition for controllability by Kalman’s method.
Define observability
Define Controllability
What is pole placement by state feedback?
Write the Ackermann’s formula to find the state feedback gain matrix, k.
Write the observable phase variable form of state model.
Write the controllable phase variable form of state model.
Correlate the duality between controllability and observability.
What is state observer?
Define periodic sampling?
Explain Shanon’s sampling theorem.
Define pulse transfer function?
Define Zero order hold?
Compare analog and digital controller.
Discuss sampled data control systems?
Express one sided Z-transform.
Compute the infinite and finite geometric series sum formula.
Classify the different methods available for inverse Z-transform?

List the methods available for the stability analysis of sampled data control systems?

Compare the different kind of nonlinearities .Give examples.
List the properties of nonlinear systems.
Explain jump resonance?
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44,
45.
46.
471.
48.
49,
50.

o~

Explain how limit cycles are formed?

Define a describing function?

List the different types of friction?

Explain hysteresis and backlash?

Classify the methods available for the analysis of nonlinear system?

Explain the non linearites that are introduced in the systems?

Trace the input-output characteristic of a relay with dead zone and hysteresis.

PART-B

Develop the state model of electro mechanical system whose speed can be controlled
below the rated value.

Construct the canonical state model of the system, whose transfer function is

_ 2(s+5)
T(s) = [(s+2)(s+3) (s+4)]
A feedback system has a closed-loop transfer function Ys) - 196 construct

Uu(s) - s(s+1)(s+3)
state model for this system and give block diagram for the state model.

Develop the state model for Ward Leonard system
A linear time invariant system is described by the following state model.

Xilro 1 o07[X] [0 X
X2= 0 0 1 Xz + 10 [U] y=[1 0 0] Xz
X, -6 —11 —ellxz] L2 X;

Formulate this state model into a canonical state model.

A linear time invariant system is described by the following state model.

Ylpo 0o 1) [0 X
X;1=|-2 =3 o0 ||Xz|+]0][U] y:[1 0 0]|X;
X3 0 2 —=311X; 2 X3

Modify this state model into a canonical state model.

Giventhat A, = [g g] (A, = _Ow ((‘))] TA = [_Jw (:] Inspect e4t,

A linear time invariant system is described by the following state model.

Xilro 1 o07[X] [0 X,
X2: 0 0 1 Xz + 10 [U] y=[1 0 0] X2
x| -6 —11 —ellxs] 12 X3

Compute the state transition matrix, e“¢.

Discover the solution of Non Homogeneous state equations.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

For a system represented by state equation X (t) = AX(t) The response is

_ e—2t _ 1 _ e—t _ 1 .
X(t)—[_ze_Zt] when X(O)—[_Z] and X(t)—[_e_t] when X(O)—[_ 1] Examine the
system matrix A and the state transition matrix.

0

For A = [_2

theorem.

_13] Determine the state transition matrix e4¢ using cayley- Hamilton

A linear time invariant system is characterised by homogeneous state equation.

Xi|_1oo1x : . .
; —[ ] Compute the solution of the homogenous equation, assuming the
X1 1llXx,

initial state vector XO:[(l)]

Consider a linear system described by the transfer function
LG L — Design a feedback controller with a state feedback so that the
U(s) s(s+1)(s+2)

closed loop poles are placed at —2,—1 +j1,—1 —j1

The state model of a system is given by

Xl 0 0 1 7[X1 0 X
Xz =-2 -3 0 Xz + 10 [U] y=[1 0 0] Xz
X, lo 2 =3llx] L2 X

Formulate the state model to observable phase variable form.
Consider the system described by the state model

; _ -1 1 B .
X = AX, Y=CX where 4 = [ 1 _2] ; C =[1 0] Designa full-order state
observer. The desired eigen values for the observer matrix are p,=-5, p,=-5

The state model of a system is given by

Xilro o 17X [0 Xy
Xz =-2 -3 0 Xz + 10 [U] y=[1 0 0] X2
Xl lo 2 =3llx] L2 Xs

Formulate the state model to Controllable phase variable form.

The state model of a system is given by

Xilro o 17X [0 Xy
Xz =-2 -3 0 Xz +10 [U] y=[1 0 0] X2
X, lo 2 =3llxl L2 Xs

Test whether the system is completely controllable and observable by Kalman’s Test.

A single-input system is described by the following state equation.

){1 -1 0 11[% 10
Xz =l 1 -2 0 Xz +11 [U]
X3 2 1 =31LX; 0

Design a state feedback controller which will give closed-loop poles at -1+j2, -1-j2, -6
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20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

Estimate the analysis of sampling process in frequency domain.

Determine the Z-transform for the following discrete sequences (a) f(k)={3,2,5,7} (b)
(1/2)% u(k) (c) f(k)= K2

Determine C(Z)/R(Z) for the given closed loop sampled data control systems. Assume
the sampler to be of impulse type.

or(t)

4 [ e c(t)

Evaluate the difference equation c(k + 2) + 3c(k + 1) + 2c(k) = u(k) Given that
¢(0)=1; c(1)=-3; c(k)=0 for k<0

Estimate the stability of sampled data control systems represented by the following
characteristic equation z* — 1.7z3 + 1.04z%2 + 0.024 = 0

Determine the one sided z-transform of the discrete sequence generated by
mathematically sampling the following continuous time functionsf (t) = cos wt

Assess the describing function. Derive the describing function of a relay with
hysteresis and dead zone.

(a). Explain Liapunov stability and instability theorems.
(b). Determine the stability range for the gain ‘k’ of the system shown in the figure.

u -+ K(s+1) X3 [ 152 WA RE }ﬁ

(a).Determine Krasovski’s theorem of stability.
(b). Consider the nonlinear system

x1=—x1-2x22 x2=—x2 Justify the stability of the equilibrium points using
Krasovski’s method.

Estimate the describing function of Dead-zone and saturation nonlinearity.

Consider a unity feedback system as shown in figure below having saturating amplifier
with gain k. Determine the maximum value of k for which the system to stay stable.

. — X Glie)=1/je(1+j0 Sa)1+j4e)
—7—551?

Slope=k

Estimate the describing function of saturation nonlinearity.
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