
   �   

1. Static friction. It is the friction, experienced by a body, when at rest.
2. Dynamic friction. It is the friction, experienced by a body, when in motion. The dynamic

friction is also called kinetic friction and is less than the static friction.
 It is of the following three types :

(a) Sliding friction. It is the friction, experienced by a body , when it slides over another
body.

(b) Rolling friction. It is the friction, experienced between the surfaces which has balls or
rollers interposed between them.

(c) Pivot friction. It is the friction, experienced by a body, due to the motion of rotation as
in case of foot step bearings.

The friction may further be classified as :

10.3. Friction Between Unlubricated Surfaces

The friction experienced between two dry and unlubricated surfaces in contact is known as
dry or solid friction. 

10.4. Friction Between Lubricated Surfaces

When lubricant (i.e. oil or grease) is applied between two surfaces in contact, then the friction
may be classified into the following two types depending upon the thickness of layer of a lubricant.

1. Boundary friction (or greasy friction or non-viscous friction ). It is the friction,
experienced between the rubbing surfaces, when the surfaces have a very thin layer of lubri-
cant. 

2. Fluid friction (or film friction or viscous friction). It is the friction, experienced between
the rubbing surfaces, when the surfaces have a thick layer of the lubrhicant. 

10.5. Limiting Friction

The maximum value of frictional force, which comes into play, when a body just begins to 
slide over the surface of the other body, is known as limiting force of friction or simply limiting friction.

10.6. Laws of Static Friction

Following are the laws of static friction :
1. The force of friction always acts in a direction, opposite to that in which the body tends to

move.
2. The magnitude of the force of friction is exactly equal to the force, which tends the body

to move.
3. The magnitude of the limiting friction ( F ) bears a constant ratio to the normal reaction

(RN) between the two surfaces. Mathematically
        F/RN = constant
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FRICTION:
	when ever one block moves or tends to move tangentially with respect to the surface, on which it rests, the interlocking property of the projecting particles opposes the motion. This opposing force, which acts in the opposite direction of the movement of the upper block, is called the force of friction or simply friction.
Types of Friction: In general, the friction is of the following two types :
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4. The force of friction is independent of the area of contact, between the two surfaces.
5.The force of friction depends upon the roughness of the surfaces.
COEFFICIENT OF FRICTION: It is defined as the ratio of the limiting friction (F) to 
the normal reaction (RN) between the two bodies. 
                                          µ = F/RN
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Example 10.1. A body, resting on a rough horizontal plane required a pull of 180 N inclined
at 30º to the plane just to move it. It was found that a push of 220 N inclined at 30º to the plane just
moved the body. Determine the weight of the body and the coefficient of friction.

Solution. Given : θ = 30º

Let W = Weight of the body in newtons,

RN = Normal reaction,

µ = Coefficient of friction, and

F = Force of friction.

First of all, let us consider a pull of 180 N. The force of friction (F) acts towards left as shown
in Fig. 10.5 (a).

Resolving the forces horizontally,

F = 180 cos 30º = 180 × 0.866 = 156 N

Fig. 10.5

Now resolving the forces vertically,

RN = W – 180 sin 30º = W – 180 × 0.5 = (W  – 90) N

We know that F = µ.RN     or    156 = µ (W – 90)   ...(i)

Now let us consider a push of  220 N. The force of friction (F) acts towards right as shown in Fig.
10.5 (b).

Resolving the forces horizontally,

F = 220 cos 30º = 220 × 0.866 = 190.5 N

  �    

Now resolving the forces vertically,

RN = W  + 220 sin 30º = W + 220 × 0.5 = (W + 110) N

We know that F = µ.RN     or    190.5 = µ (W  + 110) ...(ii)

From equations (i) and (ii),

W = 1000 N,   and   µ = 0.1714   Ans.

10.14. Friction of a Body Lying on a Rough Inclined Plane

∴           



  �    

10.14. Friction of a Body Lying on a Rough Inclined Plane

1.  Considering the motion of the body up the plane 
Let W = Weight of the body,

α = Angle of inclination of the plane to the horizontal,
φ = Limiting angle of friction for the contact surfaces,
P = Effort applied in a given direction in order to cause the body to slide with

uniform velocity parallel to the plane, considering friction,
P0 = Effort required to move the body up the plane neglecting friction,
θ = Angle which the line of action of P makes with the weight of the body W ,
µ = Coefficient of friction between the surfaces of the plane and the body,

RN = Normal reaction, and
R = Resultant reaction.

When friction is taken into account, a frictional force F = µ.RN acts in the direction opposite
to the motion of the body, as shown in Fig. 10.8 (a). The resultant reaction R between the plane and
the body is inclined at an angle φ with the normal reaction RN. The triangle of forces is shown in Fig.
10.8 (b). Now applying sine rule,

sin ( ) sin[ ( )]
P W=
α + φ θ − α + φ

(a) (b) (c)

Fig. 10.8. Motion of the body up the plane, considering friction.

∴           
sin( )

sin[ ( )]
WP α + φ=

θ− α + φ ...(ii)

Notes : 1. When the effort applied is horizontal, then  θ = 90º. In that case, the equations (i) and (ii) may be
written as
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ANGLE OF FRICTION: 
It may be defined as the angle which the resultant reaction R makes
with the normal reaction RN. 
tan φ = F/RN = µRN/RN = µ
ANGLE OF REPOSE:
	If the angle of inclination  α of the plane to the horizontal 
is such that the body begins to move down the plane, then the angle 
α is called the angle of repose. A little consideration will show that 
the body will begin to move down the plane when the angle of 
inclination of the plane is equal to the angle of friction (i.e. α = φ).
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sin ( ) sin ( ) tan ( )
sin[90º ( ) cos ( )

W WP Wα + φ α + φ= = = α + φ
− α + φ α + φ

2.  When the effort applied is parallel to the plane, then θ = 90º + α. In that case, the equations (i) and
(ii) may be written as

                                           

sin ( ) sin ( )
sin[(90º ) ( )] cos

W WP α + φ α + φ= =
+ α − α + φ φ

                                               
(sin cos cos sin ) (sin cos . tan )

cos
W Wα φ + α φ= = α + α φ

φ

                                                       = W (sin α + µ cos α) ...( ∵ µ = tan φ)

2.  Considering the motion of the body down the plane

(a) (b) (c)

Fig. 10.9. Motion of the body down the plane, considering friction.
When the friction is taken into account, the force of friction F = µ.RN will act up the plane and

the resultant reaction R will make an angle φ with RN towards its right as shown in Fig. 10.9 (a). The
triangle of forces is shown in Fig. 10.9 (b). Now from sine rule,

sin ( ) sin[ ( )]
P W=
α − φ θ − α − φ

or                
sin ( )

sin[ ( )]
WP α − φ=

θ − α − φ ...(iv)

                              
10.15. Efficiency of Inclined Plane

The ratio of the effort required neglecting friction (i.e. P0) to the effort required considering
friction (i.e. P) is known as efficiency of the inclined plane. Mathematically, efficiency of the inclined
plane,
1. For the motion of the body up the plane

                            
cot ( ) cot

cot cot
α + φ − θη =

α − θ
2.  For the motion of the body down the plane

              
cot cot

cot ( ) cot
α − θη =

α − φ − θ
Example 1. An effort of 1500 N is required to just move a certain body up an inclined

plane of angle 12º, force acting parallel to the plane. If the angle of inclination is increased to 15 º,
then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.

Solution. Given : P1 = 1500 N ; α1 = 12º ; α2 = 15º ; P2 = 1720 N

Let        W = Weight of the body in newtons, and µ = Coefficient of friction.
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First of all, let us consider a body lying on a plane inclined at an angle of 12º with the
horizontal and subjected to an effort of 1500 N parallel to the plane as shown in Fig. 10.10 (a).

Let        RN1
 = Normal reaction, and

         F1 = Force of friction.
We know that for the motion of the body up the inclined plane, the effort applied parallel to

the plane (P1),
                        1500 = W (sin α1 + µ cos α1) = W  (sin 12º + µ cos 12º) ...(i)
Now let us consider the body lying on a plane inclined at an angle of 15º with the horizontal

and subjected to an effort of 1720 N parallel to the plane as shown in Fig. 10.10 (b).
Let                      RN2 

= Normal reaction, and
         F2 = Force of friction.

We know that for the motion of the body up the inclined plane, the effort applied parallel to
the plane (P2),

                         1720 = W (sin α2 + µ cos α2) = W (sin 15º + µ cos 15º) ...(ii)
Coefficient of friction

Dividing equation (ii) by equation (i),

                        1720 (sin 15º cos 15º )
1500 (sin 12º cos 12º )

W
W

+ µ= + µ    �   

1720 sin 12º + 1720 µ cos 12º = 1500 sin 15º + 1500 µ cos 15º
µ (1720 cos 12º – 1500 cos 15º) = 1500 sin 15º – 1720 sin 12º

∴ 1500 sin 15º 1720 sin 12º 1500 0.2588 1720 0.2079
1720 cos 12º 1500 cos 15º 1720 0.9781 1500 0.9659

− × − ×µ = =
− × − ×

    388.2 357.6 30.6 0.131
1682.3 1448.5 233.8

−= = =
−

Ans.

Weight of the body
Substituting the value of µ in equation (i),

      1500 = W (sin 12º + 0.131 cos 12º) = W (0.2079 + 0.131 × 0.9781) = 0.336 W
∴       W = 1500/0.336 = 4464 N Ans.

10.16. Screw Friction
The screws, bolts, studs, nuts etc. are widely used in various machines and structures for

temporary fastenings. The screw threads are mainly of two types i.e. V-threads and squarethreads.
The V-threads are stronger and offer more frictional resistance to motion than square threads. 
 
The following terms are important for the study of screw :

1.  Helix. It is the curve traced by a particle while moving along a screw thread.

2.  Pitch. It is the distance from a point of a screw to a corresponding point on the next thread,
measured parallel to the axis of the screw.

3.  Lead. It is the distance, a screw thread advances axially in one turn.
4.  Depth of thread. It is the distance between the top and bottom surfaces of a thread (also

known as crest and root of a thread).
5.  Single-threaded screw. If the lead of a screw is equal to its pitch, it is known as single

threaded screw.
6.  Multi-threaded screw. If more than one thread is cut in one lead distance of a screw, it is

known as multi-threaded screw.
                          Lead = Pitch × Number of threads
7. Helix angle. It is the slope or inclination of the thread with the horizontal.
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Lead of screwtan
Circumference of screw

α =

                = p/πd           ...(In single-threaded screw)
                 = n.p/πd          ...(In multi-threaded screw)

where             α = Helix angle,
            p = Pitch of the screw,

                                d = Mean diameter of the screw, and
                               n  = Number of threads in one lead.

10.17. Screw Jack

The screw jack is a device, for lifting heavy loads, by applying a comparatively smaller 
effort at its handle. The principle, on which a screw jack works is similar to that of an inclined plane.

(a) Screw jack. (b) Thrust collar.

Fig. 10.11

10.18. Torque Required to Lift the Load by a Screw Jack

If one complete turn of a screw thread by imagined to be unwound, from the body of the
screw and developed, it will form an inclined plane as shown in Fig. 10.12 (a).

 (a) Development of a screw. (b) Forces acting on the screw.

Fig. 10.12

Let p = Pitch of the screw,
d = Mean diameter of the screw,
α = Helix angle,
P = Effort applied at the circumference of the screw to lift the

load,
W = Load to be lifted, and
µ = Coefficient of friction, between the screw and nut = tan φ,

where φ is the friction angle.
From the geometry of the Fig. 10.12 (a), we find that

tan α = p/π d



∴ Torque required to overcome friction between the screw and nut,

1 tan ( )
2 2
d dT P W= × = α + φ

When the axial load is taken up by a thrust collar or a flat surface, as shown in Fig. 10.11 (b),
so that the load does not rotate with the screw, then the torque required to overcome friction at the
collar,

1 2
2 1 1. . .

2
R RT W W R+ = µ = µ  

where R1 and R2 = Outside and inside radii of the collar,
R = Mean radius of the collar, and

µ1 = Coefficient of friction for the collar.
∴ Total torque required to overcome friction (i.e. to rotate the screw),

 1 2 1. .
2
dT T T P W R= + = × + µ

* The nominal diameter of a screw thread is also known as outside diameter or major diameter.
** The core diameter of a screw thread is also known as inner diameter or root diameter or minor diameter.

10.19. Torque Required to Lower the Load by a Screw Jack

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar
to that of an inclined plane. If one complete turn of a screw thread be imagined to be unwound from
the body of the screw and developed, it will form an inclined plane as shown in Fig. 10.13 (a).

Let p = Pitch of the screw,
d = Mean diameter of the screw,
α = Helix angle,
P = Effort applied at the circumference of the screw to lower the

load,
W = Weight to be lowered, and
µ = Coefficient of friction between the screw and nut = tan φ,

where φ is the friction angle.

sin ( ) sin[ ( )]
P W=
α + φ θ − α + φ

(a) (b) (c)

Fig. 10.8. Motion of the body up the plane, considering friction.

∴           
sin( )

sin[ ( )]
WP α + φ=

θ− α + φ ...(ii)

Notes : 1. When the effort applied is horizontal, then  θ = 90º. In that case, the equations (i) and (ii) may be
written as

 

sin ( ) sin ( ) tan ( )
sin[90º ( ) cos ( )

W WP Wα + φ α + φ= = = α + φ
− α + φ α + φ
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NOTE: Lift the load by screw jack is same as raise a load by inclined plane under applied load is horizontal.
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(a) (b)
Fig. 10.13

From the geometry of the figure, we find that
tan α = p/πd

∴ Torque required to overcome friction between the screw and nut,

tan ( )
2 2
d dT P W= × = φ − α

Note : When α > φ, then P = tan (α – φ).

Example 2. The  mean diameter of a square threaded screw jack is 50 mm. The pitch of
the thread is 10 mm. The coefficient of friction is 0.15. What force must be applied at the end of a
0.7 m long lever, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 kN
and to lower it?

Solution. Given : d = 50 mm = 0.05 m ; p = 10 mm ; µ = tan φ = 0.15 ; l = 0.7 m ; W = 20 kN
= 20 × 103 N

We know that        
10tan 0.0637

50
p
d

α = = =
π π ×

Let P1 = Force required at the end of the lever.
Force required to raise the load

We know that force required at the circumference of the screw,

                                           
tan tan

tan ( )
1 tan .tan

P W W
α + φ = α + φ =  − α φ 

                                               

(a) (b) (c)

Fig. 10.9. Motion of the body down the plane, considering friction.
When the friction is taken into account, the force of friction F = µ.RN will act up the plane and

the resultant reaction R will make an angle φ with RN towards its right as shown in Fig. 10.9 (a). The
triangle of forces is shown in Fig. 10.9 (b). Now from sine rule,

sin ( ) sin[ ( )]
P W=
α − φ θ − α − φ

               

sin( )
sin[ ( )
WP α _ φ=

θ− α _φ ...(ii)

Notes : 1. When the effort applied is horizontal, then  θ = 90º. In that case, the equations (i) and (ii) may be
written as

 

sin ( ) sin ( ) tan ( )
sin[90º ( ) cos ( )

W WP Wα + φ α + φ= = = α + φ
− α + φ α + φ
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3 0.0637 0.15
20 10 4314 N

1 0.0637 0.15
+ = × = − × 

Now the force required at the end of the lever may be found out by the relation,
P1 × l = P × d/2

∴ 1
4314 0.05 154 N

2 2 0.7
P dP

l
× ×= = =

×
Ans.

Force required to lower the load
We know that the force required at the circumference of the screw,

tan tan
tan ( )

1 tan .tan
P W W

φ − α = φ − α =  + φ α 

3 0.15 0.0637
20 10 1710 N

1 0.15 0.0637
− = × = + × 

Now the force required at the end of the lever may be found out by the relation,

                                     1 1
1710 0.05or 61 N

2 2 2 0.7
d P dP l P P

l
× ×× = × = = =

×
Ans.

10.20. Efficiency of a Screw Jack

The efficiency of a screw jack may be defined as the ratio between the ideal effort (i.e. the
effort required to move the load, neglecting friction) to  the actual effort (i.e. the effort required to
move the load taking friction into account).

We 

                       

0Ideal effort tan tanEfficiency,
Actual effort tan ( ) tan ( )

P W
P W

α α∴ η = = = =
α + φ α + φ

which shows that the efficiency of a screw jack, is independent of the load raised.
Example 3. The pitch of 50 mm mean diameter threaded screw of a screw jack is 12.5

mm.  The coefficient of friction between the screw and the nut is 0.13. Determine the torque required
on the screw to raise a load of 25 kN, assuming the load to rotate with the screw. Determine the ratio
of the torque required to raise the load to the torque required to lower the load and also the efficiency
of the machine.

Solution. Given : d = 50 mm ; p = 12.5 mm ; µ = tan φ = 0.13 ; W = 25 kN = 25 × 103 N

We know that,         
12.5tan 0.08

50
p
d

α = = =
π π ×

and force required on the screw to raise the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = α + φ =  + φ α 

                                          
3 0.08 0.13

25 10 5305 N
1 0.08 0.13

+ = × = − × 
Torque required on the screw

We know that the torque required on the screw to raise the load,
                                   T1 = P × d/2 = 5305 × 50/2 = 132 625 N-mm Ans.

Ratio of the torques required to raise and lower the load
We know that the force required on the screw to lower the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = φ − α =  + φ α 

                                          
3 0.13 0.08

25 10 1237 N
1 0.13 0.08

+ = × = + × 
and torque required to lower the load
                                                T2 = P × d/2 = 1237 × 50/2 = 30 905 N-mm

∴  Ratio of the torques required,

                                        1 2/ 132625 / 30925 4.3T T= = = Ans.

                                          



tan tan (1 tan .tan ) 0.08(1 0.08 0.13)
tan ( ) tan tan 0.08 0.13

α α − α φ − ×η = = =
α + φ α + φ +

                                          = 0.377 = 37.7%  Ans�

10.22. Over Hauling and Self Locking Screws
10.24. Friction of a V-thread

Let                             2β = Angle of the V-thread, and
                                   β  = Semi-angle of the V-thread.

∴                             N cos
WR =

β

and                frictional force, N 1. .
cos

WF R W= µ = µ × = µ
β

where                                      1,
cos

µ = µ
β  known as virtual coefficient of friction.

Fig. 10.14. V-thread.

                                          

             10.25. Friction in Journal Bearing-Friction Circle

A journal bearing forms a turning pair as shown in Fig. 10.15 (a). The fixed outer element of
a turning pair is called a bearing and that portion of the inner element ( i.e. shaft) which fits in the
bearing is called a journal.

                    (a)         (b)
Fig. 10.15. Friction in journal bearing.

When the bearing is not lubricated (or the journal is stationary), then there is a line contact
between the two elements as shown in Fig. 10.15 (a).

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15
(b). The lubricant between the journal and bearing forms a thin layer which gives rise to a greasy
friction.Therefore, the reaction R does not act vertically upward, but acts at another point of pressureB.

In order that the rotation may be maintained, there must be a couple rotating the shaft.
Let φ = Angle between R (resultant of F and RN) and RN,

µ = Coefficient of friction between the journal and bearing,
T = Frictional torque in N-m, and
r = Radius of the shaft in metres.

For uniform motion, the resultant force acting on the shaft must be zero and the resultant
turning moment on the shaft must be zero. In other words,

R = W , and T = W × OC = W × OB sin φ = W.r sin φ
Since φ is very small, therefore substituting sin φ = tan φ
∴ T = W.r tan φ = µ.W.r ...(∵ µ = tan φ)

If the shaft rotates with angular velocity ω rad/s, then power wasted in friction,
P = T.ω = T × 2πN/60 watts

where N = Speed of the shaft in r.p.m.
Notes : 1. If a circle is drawn with centre O and radius OC = r sin φ, then this circle is called the friction circle
of a bearing.

10.26. Friction of Pivot and Collar Bearing
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(a) Flat pivot. (b) Conical pivot. (c) Truncated pivot. (d) Single flat (e) Multiple flat
collar. collar.

Fig. 10.16. Pivot and collar bearings.
Hence, in the study of friction of bearings, it is assumed that
1.  The pressure is uniformly distributed throughout the bearing surface, and
2.  The wear is uniform throughout the bearing surface. 
 
10.27. Flat Pivot Bearing

When a vertical shaft rotates in a flat pivot bearing (known as 
foot step bearing ), as shown in Fig. 10.17, the sliding friction will be 
along the surface of contact between the shaft and the bearing.
Let W = Load transmitted over the bearing surface,

R = Radius of bearing surface,
p = Intensity of pressure per unit area of bear-

ing surface between rubbing surfaces, and
µ = Coefficient of friction.

                              

10.26. Friction of Pivot and Collar Bearing

The rotating shafts are frequently subjected to axial thrust. The bearing surfaces such as pivot
and collar bearings are used to take this axial thrust of the rotating shaft.

The bearing surfaces placed at the end of a shaft to take the axial thrust are known as
pivots.

Fig. 10.17. Flat pivot or footstep
bearing.

2
Wp
R

=
π

Consider a ring of radius r and thickness dr of the bearing area.
∴  Area of bearing surface,   A = 2πr.dr
Load transmitted to the ring,

                                                       δW   = p × A =  p × 2 π r.dr ...(i)
Frictional resistance to sliding on the ring acting tangentially at radius r,

Fr  = µ.δW  = µ p × 2π r.dr = 2π µ.p.r.dr
∴ Frictional torque on the ring,

     Tr = Fr × r = 2π µ p r.dr × r = 2 π µ p r2 dr ...(ii)
Integrating this equation within the limits from 0 to R for the total frictional torque on the

pivot bearing.

∴  Total frictional torque,  2 2

0 0

2 2
R R

T p r dr p r dr= πµ = πµ∫ ∫

                                        
33

3

0

2
2 2 . .

3 33

R Rrp p p R = πµ = πµ × = × πµ  
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3
2

2 2 . .
3 3

W R W R
R

= × πµ × × = × µ
π

2
... Wp

R
 = π 
�

When the shaft rotates at ω rad/s, then power lost in friction,

P = T.ω = T × 2π N/60 ...( 2 / 60)Nω = π�

2.  Considering uniform wear
We have already discussed that the rate of wear depends upon the intensity of pressure (p) and

the velocity of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product
of intensity of pressure and the velocity of rubbing surfaces (i.e.  p.v..). Since the velocity of rubbing
surfaces increases with the distance (i.e. radius r) from the axis of the bearing, therefore for uniform
wear

p.r = C (a constant)     or     p = C / r
and the load transmitted to the ring,

δW = p × 2πr.dr ...[From equation (i)]

    2 . 2 .C r dr C dr
r

= × π = π

∴ Total load transmitted to the bearing

[ ]0
0

2 . 2 2 . or
2

R
R WW C dr C C R Cr R

= π = π = π =
π∫

We know that frictional torque acting on the ring,

 2 22 2r
CT p r dr r dr
r

= πµ = πµ × × ... Cp
r

 =  
�

= 2π µ.C.r  dr ...(iii)
∴  Total frictional torque on the bearing,

2

0 0

2 . . . 2 .
2

RR
rT C r dr C  = π µ = πµ   ∫

2
22 . . .

2
RC C R= πµ × = πµ

2 1 . .
2 2
W R W R

R
= πµ × × = × µ

π

10.30. Flat Collar Bearing

We have already discussed that collar bearings are used to take the axial thrust of the rotating
shafts. There may be a single collar or multiple collar bearings as shown in Fig. 10.20 ( a) and (b)
respectively. The collar bearings are also known as thrust bearings.

(a) Single collar bearing (b) Multiple collar bearing.

Fig. 10.20. Flat collar bearings.
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1.  Considering uniform pressure
When the pressure is uniformly distributed over the bearing surface, then the intensity of

pressure,

         2 2
1 2[ ) ( ) ]

W Wp
A r r

= =
π − ...(i)

We have seen in Art. 10.25, that the frictional torque on the ring of radius r and thickness dr,

         22 . . .rT p r dr= πµ

Integrating this equation within the limits from r2 to r1 for the total frictional torque on the
collar.

∴  Total frictional torque,

          
1

1

2
2

3 3
2 3 1 2( ) ( )2 . . . 2 . 2 .

3 3

r
r

r
r

r r rT p r dr p p
   −= πµ = πµ = πµ   

  
∫

Substituting the value of p from equation (i),

         
3 3

1 2
2 2

1 2

( ) ( )2
[( ) ( ) ] 3

W r rT
r r

 −= πµ ×  π −  

          
3 3

1 2
2 2

1 2

( ) ( )2 .
3 ( ) ( )

r r
W

r r

 −
= × µ  

−  
2.  Considering unifrom wear

We have seen in Art. 10.25 that the load transmitted on the ring, considering uniform wear is,

        .2 . 2 . 2 .r
CW p r dr r dr C dr
r

δ = π = × π = π

∴  Total load transmitted to the collar,

       
1

2

1

2 1 22 . 2 [ ] 2 ( )
r r

rr
W C dr C r C r r= π = π = π −∫ 

We also know that frictional torque on the ring,

. . 2 . . 2 . . .rT W r C dr r C r dr= µ δ = µ × π = πµ
∴  Total frictional torque on the bearing,

11

2
2

2 22
1 2( ) ( )2 . . 2 . 2 .

2 2

rr

r r

r rrT C r dr C C
   −= πµ = πµ = πµ      

∫

2 2
1 2. [( ) ( ) ]C r r= πµ −

Substituting the value of C from equation (ii),

2 2
1 2 1 2

1 2

1[( ) ( ) ] . ( )
2 ( ) 2

WT r r W r r
r r

= πµ × − = × µ +
π −

                              



   �   

1. Static friction. It is the friction, experienced by a body, when at rest.
2. Dynamic friction. It is the friction, experienced by a body, when in motion. The dynamic

friction is also called kinetic friction and is less than the static friction.
 It is of the following three types :

(a) Sliding friction. It is the friction, experienced by a body , when it slides over another
body.

(b) Rolling friction. It is the friction, experienced between the surfaces which has balls or
rollers interposed between them.

(c) Pivot friction. It is the friction, experienced by a body, due to the motion of rotation as
in case of foot step bearings.

The friction may further be classified as :

10.3. Friction Between Unlubricated Surfaces

The friction experienced between two dry and unlubricated surfaces in contact is known as
dry or solid friction. 

10.4. Friction Between Lubricated Surfaces

When lubricant (i.e. oil or grease) is applied between two surfaces in contact, then the friction
may be classified into the following two types depending upon the thickness of layer of a lubricant.

1. Boundary friction (or greasy friction or non-viscous friction ). It is the friction,
experienced between the rubbing surfaces, when the surfaces have a very thin layer of lubri-
cant. 

2. Fluid friction (or film friction or viscous friction). It is the friction, experienced between
the rubbing surfaces, when the surfaces have a thick layer of the lubrhicant. 

10.5. Limiting Friction

The maximum value of frictional force, which comes into play, when a body just begins to 
slide over the surface of the other body, is known as limiting force of friction or simply limiting friction.

10.6. Laws of Static Friction

Following are the laws of static friction :
1. The force of friction always acts in a direction, opposite to that in which the body tends to

move.
2. The magnitude of the force of friction is exactly equal to the force, which tends the body

to move.
3. The magnitude of the limiting friction ( F ) bears a constant ratio to the normal reaction

(RN) between the two surfaces. Mathematically
        F/RN = constant
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FRICTION:
	when ever one block moves or tends to move tangentially with respect to the surface, on which it rests, the interlocking property of the projecting particles opposes the motion. This opposing force, which acts in the opposite direction of the movement of the upper block, is called the force of friction or simply friction.
Types of Friction: In general, the friction is of the following two types :
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4. The force of friction is independent of the area of contact, between the two surfaces.
5.The force of friction depends upon the roughness of the surfaces.
COEFFICIENT OF FRICTION: It is defined as the ratio of the limiting friction (F) to 
the normal reaction (RN) between the two bodies. 
                                          µ = F/RN
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10.14. Friction of a Body Lying on a Rough Inclined Plane

1.  Considering the motion of the body up the plane 
Let W = Weight of the body,

α = Angle of inclination of the plane to the horizontal,
φ = Limiting angle of friction for the contact surfaces,
P = Effort applied in a given direction in order to cause the body to slide with

uniform velocity parallel to the plane, considering friction,
P0 = Effort required to move the body up the plane neglecting friction,
θ = Angle which the line of action of P makes with the weight of the body W ,
µ = Coefficient of friction between the surfaces of the plane and the body,

RN = Normal reaction, and
R = Resultant reaction.

When friction is taken into account, a frictional force F = µ.RN acts in the direction opposite
to the motion of the body, as shown in Fig. 10.8 (a). The resultant reaction R between the plane and
the body is inclined at an angle φ with the normal reaction RN. The triangle of forces is shown in Fig.
10.8 (b). Now applying sine rule,

sin ( ) sin[ ( )]
P W=
α + φ θ − α + φ

(a) (b) (c)

Fig. 10.8. Motion of the body up the plane, considering friction.

∴           
sin( )

sin[ ( )]
WP α + φ=

θ− α + φ ...(ii)

Notes : 1. When the effort applied is horizontal, then  θ = 90º. In that case, the equations (i) and (ii) may be
written as
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ANGLE OF FRICTION: 
It may be defined as the angle which the resultant reaction R makes
with the normal reaction RN. 
tan φ = F/RN = µRN/RN = µ
ANGLE OF REPOSE:
	If the angle of inclination  α of the plane to the horizontal 
is such that the body begins to move down the plane, then the angle 
α is called the angle of repose. A little consideration will show that 
the body will begin to move down the plane when the angle of 
inclination of the plane is equal to the angle of friction (i.e. α = φ).

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text

Hampy
Typewritten Text



sin ( ) sin ( ) tan ( )
sin[90º ( ) cos ( )

W WP Wα + φ α + φ= = = α + φ
− α + φ α + φ

2.  When the effort applied is parallel to the plane, then θ = 90º + α. In that case, the equations (i) and
(ii) may be written as

                                           

sin ( ) sin ( )
sin[(90º ) ( )] cos

W WP α + φ α + φ= =
+ α − α + φ φ

                                               
(sin cos cos sin ) (sin cos . tan )

cos
W Wα φ + α φ= = α + α φ

φ

                                                       = W (sin α + µ cos α) ...( ∵ µ = tan φ)

2.  Considering the motion of the body down the plane

(a) (b) (c)

Fig. 10.9. Motion of the body down the plane, considering friction.
When the friction is taken into account, the force of friction F = µ.RN will act up the plane and

the resultant reaction R will make an angle φ with RN towards its right as shown in Fig. 10.9 (a). The
triangle of forces is shown in Fig. 10.9 (b). Now from sine rule,

sin ( ) sin[ ( )]
P W=
α − φ θ − α − φ

or                
sin ( )

sin[ ( )]
WP α − φ=

θ − α − φ ...(iv)

                              
10.15. Efficiency of Inclined Plane

The ratio of the effort required neglecting friction (i.e. P0) to the effort required considering
friction (i.e. P) is known as efficiency of the inclined plane. Mathematically, efficiency of the inclined
plane,
1. For the motion of the body up the plane

                            
cot ( ) cot

cot cot
α + φ − θη =

α − θ
2.  For the motion of the body down the plane

              
cot cot

cot ( ) cot
α − θη =

α − φ − θ
Example 1. An effort of 1500 N is required to just move a certain body up an inclined

plane of angle 12º, force acting parallel to the plane. If the angle of inclination is increased to 15 º,
then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.

Solution. Given : P1 = 1500 N ; α1 = 12º ; α2 = 15º ; P2 = 1720 N

Let        W = Weight of the body in newtons, and µ = Coefficient of friction.
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First of all, let us consider a body lying on a plane inclined at an angle of 12º with the
horizontal and subjected to an effort of 1500 N parallel to the plane as shown in Fig. 10.10 (a).

Let        RN1
 = Normal reaction, and

         F1 = Force of friction.
We know that for the motion of the body up the inclined plane, the effort applied parallel to

the plane (P1),
                        1500 = W (sin α1 + µ cos α1) = W  (sin 12º + µ cos 12º) ...(i)
Now let us consider the body lying on a plane inclined at an angle of 15º with the horizontal

and subjected to an effort of 1720 N parallel to the plane as shown in Fig. 10.10 (b).
Let                      RN2 

= Normal reaction, and
         F2 = Force of friction.

We know that for the motion of the body up the inclined plane, the effort applied parallel to
the plane (P2),

                         1720 = W (sin α2 + µ cos α2) = W (sin 15º + µ cos 15º) ...(ii)
Coefficient of friction

Dividing equation (ii) by equation (i),

                        1720 (sin 15º cos 15º )
1500 (sin 12º cos 12º )

W
W

+ µ= + µ    �   

1720 sin 12º + 1720 µ cos 12º = 1500 sin 15º + 1500 µ cos 15º
µ (1720 cos 12º – 1500 cos 15º) = 1500 sin 15º – 1720 sin 12º

∴ 1500 sin 15º 1720 sin 12º 1500 0.2588 1720 0.2079
1720 cos 12º 1500 cos 15º 1720 0.9781 1500 0.9659

− × − ×µ = =
− × − ×

    388.2 357.6 30.6 0.131
1682.3 1448.5 233.8

−= = =
−

Ans.

Weight of the body
Substituting the value of µ in equation (i),

      1500 = W (sin 12º + 0.131 cos 12º) = W (0.2079 + 0.131 × 0.9781) = 0.336 W
∴       W = 1500/0.336 = 4464 N Ans.

10.16. Screw Friction
The screws, bolts, studs, nuts etc. are widely used in various machines and structures for

temporary fastenings. The screw threads are mainly of two types i.e. V-threads and squarethreads.
The V-threads are stronger and offer more frictional resistance to motion than square threads. 
 
The following terms are important for the study of screw :

1.  Helix. It is the curve traced by a particle while moving along a screw thread.

2.  Pitch. It is the distance from a point of a screw to a corresponding point on the next thread,
measured parallel to the axis of the screw.

3.  Lead. It is the distance, a screw thread advances axially in one turn.
4.  Depth of thread. It is the distance between the top and bottom surfaces of a thread (also

known as crest and root of a thread).
5.  Single-threaded screw. If the lead of a screw is equal to its pitch, it is known as single

threaded screw.
6.  Multi-threaded screw. If more than one thread is cut in one lead distance of a screw, it is

known as multi-threaded screw.
                          Lead = Pitch × Number of threads
7. Helix angle. It is the slope or inclination of the thread with the horizontal.
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Lead of screwtan
Circumference of screw

α =

                = p/πd           ...(In single-threaded screw)
                 = n.p/πd          ...(In multi-threaded screw)

where             α = Helix angle,
            p = Pitch of the screw,

                                d = Mean diameter of the screw, and
                               n  = Number of threads in one lead.

10.17. Screw Jack

The screw jack is a device, for lifting heavy loads, by applying a comparatively smaller 
effort at its handle. The principle, on which a screw jack works is similar to that of an inclined plane.

(a) Screw jack. (b) Thrust collar.

Fig. 10.11

10.18. Torque Required to Lift the Load by a Screw Jack

If one complete turn of a screw thread by imagined to be unwound, from the body of the
screw and developed, it will form an inclined plane as shown in Fig. 10.12 (a).

 (a) Development of a screw. (b) Forces acting on the screw.

Fig. 10.12

Let p = Pitch of the screw,
d = Mean diameter of the screw,
α = Helix angle,
P = Effort applied at the circumference of the screw to lift the

load,
W = Load to be lifted, and
µ = Coefficient of friction, between the screw and nut = tan φ,

where φ is the friction angle.
From the geometry of the Fig. 10.12 (a), we find that

tan α = p/π d
Since the principle on which a screw jack works is similar to that of an inclined plane, there-

fore the force applied on the lever of a screw jack may be considered to be horizontal as shown in Fig.
10.12 (b).



Since the load is being lifted, therefore the force of friction (F = µ.RN) will act downwards.
All the forces acting on the screw are shown in Fig. 10.12 (b).

Resolving the forces along the plane,
P cos α = W sin α + F = W sin α + µ.RN ...(i)

and resolving the forces perpendicular to the plane,
RN = P sin α + W cos α ...(ii)

Substituting this value of RN in equation (i),
P cos α = W sin α + µ (P sin α + W  cos α)

= W sin α + µ P sin α + µ W  cos α
or P cos α – µ P sin α = W sin α + µ W cos α
or P (cos α – µ sin α) = W (sin α + µ cos α)

∴
sin cos
cos sin

P W α + µ α= ×
α − µ α

Substituting the value of µ = tan φ in the above equation, we get

sin tan cos
cos tan sin

P W α + φ α= ×
α − φ α

Multiplying the numerator and denominator by cos φ,
sin cos sin cos sin ( )
cos cos sin sin cos ( )

P W Wα φ + φ α α + φ= × = ×
α φ − α φ α + φ

tan ( )W= α + φ
∴ Torque required to overcome friction between the screw and nut,

1 tan ( )
2 2
d dT P W= × = α + φ

When the axial load is taken up by a thrust collar or a flat surface, as shown in Fig. 10.11 (b),
so that the load does not rotate with the screw, then the torque required to overcome friction at the
collar,

1 2
2 1 1. . .

2
R RT W W R+ = µ = µ  

where R1 and R2 = Outside and inside radii of the collar,
R = Mean radius of the collar, and

µ1 = Coefficient of friction for the collar.
∴ Total torque required to overcome friction (i.e. to rotate the screw),

 1 2 1. .
2
dT T T P W R= + = × + µ

* The nominal diameter of a screw thread is also known as outside diameter or major diameter.
** The core diameter of a screw thread is also known as inner diameter or root diameter or minor diameter.

10.19. Torque Required to Lower the Load by a Screw Jack

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar
to that of an inclined plane. If one complete turn of a screw thread be imagined to be unwound from
the body of the screw and developed, it will form an inclined plane as shown in Fig. 10.13 (a).

Let p = Pitch of the screw,
d = Mean diameter of the screw,
α = Helix angle,
P = Effort applied at the circumference of the screw to lower the

load,
W = Weight to be lowered, and
µ = Coefficient of friction between the screw and nut = tan φ,

where φ is the friction angle.



(a) (b)
Fig. 10.13

From the geometry of the figure, we find that
tan α = p/πd

Since the load is being lowered, therefore the force of friction (F = µ.RN) will act upwards.
All the forces acting on the screw are shown in Fig. 10.13  (b).

Resolving the forces along the plane,
P cos α = F – W  sin α = µ.RN – W  sin α ...(i)

and resolving the forces perpendicular to the plane,
RN = W cos α – P sin α ...(ii)

Substituting this value of RN in equation (i),
P cos α = µ (W cos α – P sin α) – W sin α

= µ.W  cos α – µ.P sin α – W  sin α
or P cos α + µ.P sin α = µ.W cos α – W sin α
or P (cos α + µ sin α) = W (µ cos α – sin α)

∴                                        
( cos sin )
(cos sin )

P W µ α − α= ×
α + µ α

Substituting the value of µ = tan φ in the above equation, we get

                                           
(tan cos sin )
(cos tan sin )

P W φ α − α= ×
α + φ α

Multiplying the numerator and denominator by cos φ,

                                           
(sin cos sin cos ) sin ( )
(cos cos sin sin ) cos ( )

P W Wφ α − α φ φ − α= × = ×
α φ + φ α φ − α

                                              tan ( )W= φ − α
∴ Torque required to overcome friction between the screw and nut,

tan ( )
2 2
d dT P W= × = φ − α

Note : When α > φ, then P = tan (α – φ).

Example 2. The  mean diameter of a square threaded screw jack is 50 mm. The pitch of
the thread is 10 mm. The coefficient of friction is 0.15. What force must be applied at the end of a
0.7 m long lever, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 kN
and to lower it?

Solution. Given : d = 50 mm = 0.05 m ; p = 10 mm ; µ = tan φ = 0.15 ; l = 0.7 m ; W = 20 kN
= 20 × 103 N

We know that        
10tan 0.0637

50
p
d

α = = =
π π ×

Let P1 = Force required at the end of the lever.
Force required to raise the load

We know that force required at the circumference of the screw,

                                           
tan tan

tan ( )
1 tan .tan

P W W
α + φ = α + φ =  − α φ 

                                               



3 0.0637 0.15
20 10 4314 N

1 0.0637 0.15
+ = × = − × 

Now the force required at the end of the lever may be found out by the relation,
P1 × l = P × d/2

∴ 1
4314 0.05 154 N

2 2 0.7
P dP

l
× ×= = =

×
Ans.

Force required to lower the load
We know that the force required at the circumference of the screw,

tan tan
tan ( )

1 tan .tan
P W W

φ − α = φ − α =  + φ α 

3 0.15 0.0637
20 10 1710 N

1 0.15 0.0637
− = × = + × 

Now the force required at the end of the lever may be found out by the relation,

                                     1 1
1710 0.05or 61 N

2 2 2 0.7
d P dP l P P

l
× ×× = × = = =

×
Ans.

10.20. Efficiency of a Screw Jack

The efficiency of a screw jack may be defined as the ratio between the ideal effort (i.e. the
effort required to move the load, neglecting friction) to  the actual effort (i.e. the effort required to
move the load taking friction into account).

We 

                       

0Ideal effort tan tanEfficiency,
Actual effort tan ( ) tan ( )

P W
P W

α α∴ η = = = =
α + φ α + φ

which shows that the efficiency of a screw jack, is independent of the load raised.
Example 3. The pitch of 50 mm mean diameter threaded screw of a screw jack is 12.5

mm.  The coefficient of friction between the screw and the nut is 0.13. Determine the torque required
on the screw to raise a load of 25 kN, assuming the load to rotate with the screw. Determine the ratio
of the torque required to raise the load to the torque required to lower the load and also the efficiency
of the machine.

Solution. Given : d = 50 mm ; p = 12.5 mm ; µ = tan φ = 0.13 ; W = 25 kN = 25 × 103 N

We know that,         
12.5tan 0.08

50
p
d

α = = =
π π ×

and force required on the screw to raise the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = α + φ =  + φ α 

                                          
3 0.08 0.13

25 10 5305 N
1 0.08 0.13

+ = × = − × 
Torque required on the screw

We know that the torque required on the screw to raise the load,
                                   T1 = P × d/2 = 5305 × 50/2 = 132 625 N-mm Ans.

Ratio of the torques required to raise and lower the load
We know that the force required on the screw to lower the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = φ − α =  + φ α 

                                          
3 0.13 0.08

25 10 1237 N
1 0.13 0.08

+ = × = + × 
and torque required to lower the load
                                                T2 = P × d/2 = 1237 × 50/2 = 30 905 N-mm

∴  Ratio of the torques required,

                                        1 2/ 132625 / 30925 4.3T T= = = Ans.

                                          



tan tan (1 tan .tan ) 0.08(1 0.08 0.13)
tan ( ) tan tan 0.08 0.13

α α − α φ − ×η = = =
α + φ α + φ +

                                          = 0.377 = 37.7%  Ans�

10.22. Over Hauling and Self Locking Screws
10.24. Friction of a V-thread

Let                             2β = Angle of the V-thread, and
                                   β  = Semi-angle of the V-thread.

∴                             N cos
WR =

β

and                frictional force, N 1. .
cos

WF R W= µ = µ × = µ
β

where                                      1,
cos

µ = µ
β  known as virtual coefficient of friction.

Fig. 10.14. V-thread.

                                          

             10.25. Friction in Journal Bearing-Friction Circle

A journal bearing forms a turning pair as shown in Fig. 10.15 (a). The fixed outer element of
a turning pair is called a bearing and that portion of the inner element ( i.e. shaft) which fits in the
bearing is called a journal.

                    (a)         (b)
Fig. 10.15. Friction in journal bearing.

When the bearing is not lubricated (or the journal is stationary), then there is a line contact
between the two elements as shown in Fig. 10.15 (a).

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15
(b). The lubricant between the journal and bearing forms a thin layer which gives rise to a greasy
friction.Therefore, the reaction R does not act vertically upward, but acts at another point of pressureB.

In order that the rotation may be maintained, there must be a couple rotating the shaft.
Let φ = Angle between R (resultant of F and RN) and RN,

µ = Coefficient of friction between the journal and bearing,
T = Frictional torque in N-m, and
r = Radius of the shaft in metres.

For uniform motion, the resultant force acting on the shaft must be zero and the resultant
turning moment on the shaft must be zero. In other words,

R = W , and T = W × OC = W × OB sin φ = W.r sin φ
Since φ is very small, therefore substituting sin φ = tan φ
∴ T = W.r tan φ = µ.W.r ...(∵ µ = tan φ)

If the shaft rotates with angular velocity ω rad/s, then power wasted in friction,
P = T.ω = T × 2πN/60 watts

where N = Speed of the shaft in r.p.m.
Notes : 1. If a circle is drawn with centre O and radius OC = r sin φ, then this circle is called the friction circle
of a bearing.

10.26. Friction of Pivot and Collar Bearing
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(a) Flat pivot. (b) Conical pivot. (c) Truncated pivot. (d) Single flat (e) Multiple flat
collar. collar.

Fig. 10.16. Pivot and collar bearings.
Hence, in the study of friction of bearings, it is assumed that
1.  The pressure is uniformly distributed throughout the bearing surface, and
2.  The wear is uniform throughout the bearing surface. 
 
10.27. Flat Pivot Bearing

When a vertical shaft rotates in a flat pivot bearing (known as 
foot step bearing ), as shown in Fig. 10.17, the sliding friction will be 
along the surface of contact between the shaft and the bearing.
Let W = Load transmitted over the bearing surface,

R = Radius of bearing surface,
p = Intensity of pressure per unit area of bear-

ing surface between rubbing surfaces, and
µ = Coefficient of friction.

                              

10.26. Friction of Pivot and Collar Bearing

The rotating shafts are frequently subjected to axial thrust. The bearing surfaces such as pivot
and collar bearings are used to take this axial thrust of the rotating shaft.

The bearing surfaces placed at the end of a shaft to take the axial thrust are known as
pivots.

Fig. 10.17. Flat pivot or footstep
bearing.

2
Wp
R

=
π

Consider a ring of radius r and thickness dr of the bearing area.
∴  Area of bearing surface,   A = 2πr.dr
Load transmitted to the ring,

                                                       δW   = p × A =  p × 2 π r.dr ...(i)
Frictional resistance to sliding on the ring acting tangentially at radius r,

Fr  = µ.δW  = µ p × 2π r.dr = 2π µ.p.r.dr
∴ Frictional torque on the ring,

     Tr = Fr × r = 2π µ p r.dr × r = 2 π µ p r2 dr ...(ii)
Integrating this equation within the limits from 0 to R for the total frictional torque on the

pivot bearing.

∴  Total frictional torque,  2 2
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We will consider the following two cases :
1.  Considering uniform pressure:
	When the pressure is uniformly distributed over the bearing area, then
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When the shaft rotates at ω rad/s, then power lost in friction,

P = T.ω = T × 2π N/60 ...( 2 / 60)Nω = π�

2.  Considering uniform wear
We have already discussed that the rate of wear depends upon the intensity of pressure (p) and

the velocity of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product
of intensity of pressure and the velocity of rubbing surfaces (i.e.  p.v..). Since the velocity of rubbing
surfaces increases with the distance (i.e. radius r) from the axis of the bearing, therefore for uniform
wear

p.r = C (a constant)     or     p = C / r
and the load transmitted to the ring,

δW = p × 2πr.dr ...[From equation (i)]

    2 . 2 .C r dr C dr
r

= × π = π

∴ Total load transmitted to the bearing

[ ]0
0

2 . 2 2 . or
2

R
R WW C dr C C R Cr R

= π = π = π =
π∫

We know that frictional torque acting on the ring,

 2 22 2r
CT p r dr r dr
r

= πµ = πµ × × ... Cp
r

 =  
�

= 2π µ.C.r  dr ...(iii)
∴  Total frictional torque on the bearing,
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10.30. Flat Collar Bearing

We have already discussed that collar bearings are used to take the axial thrust of the rotating
shafts. There may be a single collar or multiple collar bearings as shown in Fig. 10.20 ( a) and (b)
respectively. The collar bearings are also known as thrust bearings.

(a) Single collar bearing (b) Multiple collar bearing.

Fig. 10.20. Flat collar bearings.
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1.  Considering uniform pressure
When the pressure is uniformly distributed over the bearing surface, then the intensity of

pressure,

         2 2
1 2[ ) ( ) ]

W Wp
A r r

= =
π − ...(i)

We have seen in Art. 10.25, that the frictional torque on the ring of radius r and thickness dr,

         22 . . .rT p r dr= πµ

Integrating this equation within the limits from r2 to r1 for the total frictional torque on the
collar.

∴  Total frictional torque,
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Substituting the value of p from equation (i),
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2.  Considering unifrom wear

We have seen in Art. 10.25 that the load transmitted on the ring, considering uniform wear is,

        .2 . 2 . 2 .r
CW p r dr r dr C dr
r

δ = π = × π = π

∴  Total load transmitted to the collar,
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2 1 22 . 2 [ ] 2 ( )
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rr
W C dr C r C r r= π = π = π −∫ 

We also know that frictional torque on the ring,

. . 2 . . 2 . . .rT W r C dr r C r dr= µ δ = µ × π = πµ
∴  Total frictional torque on the bearing,
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Substituting the value of C from equation (ii),
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10.31. Friction Clutches

A friction clutch has its principal application in the transmission of power of shafts and
machines which must be started and stopped frequently. .
 
              In automobiles, friction clutch is used to connect the engine to the driven shaft. In 
operating such a clutch, care should be taken so that the friction surfaces engage easily and gradually 
brings the driven shaft up to proper speed.
 

The friction clutches of the following types are important from the subject point of view :
1. Disc or plate clutches (single disc or multiple disc clutch),
2. Cone clutches, and
3. Centrifugal clutches.

10.32. Single Disc or Plate Clutch

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both
sides are faced with a friction material (usually of Ferrodo). 
             It is mounted on the hub which is free to move axially along the splines of the driven shaft.
The pressure plate is mounted inside the clutch body which is bolted to the flywheel. 
             Both the pressure plate and the flywheel rotate with the enginecrankshaft or the driving shaft. 

 �    

          The pressure plate pushes the clutch 
plate towards the flywheel by a set of strong 
springs which are arranged radially inside the body. 
          The three levers (also known as release levers 
or fingers) are carried on pivots suspended
from the case of the body..  These are 
arranged in such a manner so that the pressure
plate moves away from the flywheel by the
inward movement of a thrust bearing. 
          The bearing is mounted upon a forked 

shaft and moves forward when the clutch pedal 
  is pressed.

 
When the clutch pedal is pressed 

     down, its linkage forces the thrust 
     release bearing to move in towards the flywheel      
     and pressing the longer ends of the levers inward. 
     The levers are forced to turn on their suspended 
     pivot and the pressure plate moves away from the
     flywheel by the knife edges, there by compressing 
     the clutch springs. This action removes the pressure 
     from the clutch plate and thus moves back from the 
     flywheel and the driven shaft becomes stationary. .        Fig. 10.21. Single disc or plate clutch.

On the other hand, when the foot is taken off from the clutch pedal, the thrust bearing moves 
back by the levers. This allows the    springs to extend and thus the pressure plate pushes the clutch 

             plate back towards the flywheel.
                                       The axial pressure exerted by the spring provides a frictional force in the circumferential direction
                          when the relative motion between the driving and driven members tends to take place. If the torque due to 
                         this frictional force exceeds the torque to be transmitted, then no slipping takes place and the power is 
                         transmitted from the driving shaft to the driven shaft.



Let T = Torque transmitted by the clutch,
p = Intensity of axial pressure with which the contact surfaces are held

together,
r1 and r2 = External and internal radii of friction faces, and

µ = Coefficient of friction.
Consider an elementary ring of radius r and thickness dr as shown in Fig. 10.22 (b).
We know that area of contact surface or friction surface,

= 2 π r.dr
∴  Normal or axial force on the ring,

δW = Pressure × Area = p × 2 π r.dr
and the frictional force on the ring acting tangentially at radius r,

Fr = µ.δW  = µ.p × 2 π r.dr
∴  Frictional torque acting on the ring,
                          Tr = Fr × r = µ.p × 2 π r.dr × r = 2 π × µ .p.r2 dr

                                                          (a)                                            (b)

Fig. 10.22. Forces on a single disc or plate clutch.

We shall now consider the following two cases :
1.  When there is a uniform pressure, and
2.  When there is a uniform wear.

1.  Considering uniform pressure
When the pressure is uniformly distributed over the entire area of the friction face, then the

intensity of pressure,

2 2
1 2[( ) ( ) ]

Wp
r r

=
π − ...(i)

where W = Axial thrust with which the contact or friction surfaces are held together.
We have discussed above that the frictional torque on the elementary ring of radius r and

thickness dr is
Tr = 2 π µ.p.r2 dr

Integrating this equation within the limits from r2 to r1 for the total frictional torque.

Now consider two friction surfaces, maintained in contact by an axial thrust W , as shown in
Fig. 10.22 (a).

∴  Total frictional torque acting on the friction surface or on the clutch,
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∫

Substituting the value of p from equation (i),

                          



3 3
1 2

2 2
1 2

( ) ( )
2

3[( ) ( ) ]
r rWT

r r
−

= πµ × ×
π −

3 3
1 2

2 2
1 2

( ) ( )2 . . .
3 ( ) ( )

r r
W W R

r r

 −
= × µ = µ 

−  
where                              R = Mean radius of friction surface
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2.  Considering uniform wear

In Fig. 10.22, let p be the normal intensity of pressure at a distance r from the axis of the
clutch. Since the intensity of pressure varies inversely with the distance, therefore

p.r. = C (a constant)   or   p = C/r ...(i)
and the normal force on the ring,

.2 . 2 . 2 .CW p r dr C dr C dr
r

δ = π = × π = π

∴  Total force acting on the friction surface,
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We know that the frictional torque acting on the ring,
2 22 . . 2 . 2 . . .r

CT p r dr r dr C r dr
r

= πµ = πµ × × = πµ

...(∵  p = C/r)
∴  Total frictional torque on the friction surface,
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where R = Mean radius of the friction surface 1 2

2
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10.33. Multiple Disc Clutch

A multiple disc clutch, as shown in Fig. 10.23, may be used when a lar ge torque is to be
transmitted. The inside discs (usually of steel) are fastened to the driven shaft to permit axial motion
(except for the last disc). The outside discs (usually of bronze) are held by bolts and are fastened to
the housing which is keyed to the driving shaft. The multiple disc clutches are extensively used in
motor cars, machine tools etc.

Let n1 = Number of discs on the driving shaft, and
n2 = Number of discs on the driven shaft.

∴  Number of pairs of contact surfaces,
n = n1 + n2 – 1

and total frictional torque acting on the friction surfaces or on the clutch,
T = n.µ.W.R

where R = Mean radius of the friction surfaces

   

3 3
1 2

2 2
1 2

( ) ( )2
3 ( ) ( )

r r
r r

 −
=  

−  
...(For uniform pressure)

1 2

2
r r+

= ...(For uniform wear)



Fig. 10.23. Multiple disc clutch.

Example 4. Determine the maximum, minimum and average pressure in plate clutch
when the axial force is 4 kN. The inside radius of the contact surface is 50 mm and the outside radius
is 100 mm. Assume uniform wear.

Solution. Given : W  = 4 kN = 4 × 103 N ; r2 = 50 mm ; r1 = 100 mm
Maximum pressure

Let pmax = Maximum pressure.
Since the intensity of pressure is maximum at the inner radius (r2), therefore

pmax × r2 = C   or  C = 50 pmax

We know that the total force on the contact surface (W ),
4 × 103 = 2 π C (r1 – r2) = 2 π × 50 pmax (100 – 50) = 15 710 pmax

∴ pmax = 4 × 103/15 710 = 0.2546 N/mm2  Ans.
Minimum pressure

Let pmin = Minimum pressure.
Since the intensity of pressure is minimum at the outer radius (r1), therefore

pmin × r1 = C    or    C = 100 pmin

We know that the total force on the contact surface (W ),
4 × 103 = 2 π C (r1 – r2) = 2π × 100 pmin (100 – 50) = 31 420 pmin

∴ pmin = 4 × 103/31 420 = 0.1273 N/mm2  Ans.
Average pressure

We know that average pressure,

Total normal force on contact surface
Cross-sectional area of contact surfacesavp =

3
2

2 2 2 2
1 2

4 10
0.17 N/mm

[( ) ( ) ] [(100) (50) ]
W

r r
×

= = =
π − π −

Ans.

Example 5. A single plate clutch, with both sides effective, has outer and inner
diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the
contact surface is not to exceed 0.1 N/mm2. If the coefficient of friction is 0.3, determine the power
transmitted by a clutch at a speed 2500 r.p.m.

Solution. Given : d1 = 300 mm or r1 = 150 mm ; d2 = 200 mm or r2 = 100 mm ; p = 0.1 N/mm2 ;
µ = 0.3 ; N = 2500 r.p.m. or ω = 2π × 2500/60 = 261.8 rad/s

Since the intensity of pressure (p) is maximum at the inner radius (r2), therefore for uniform
wear,

p.r2 = C    or   C = 0.1 × 100 = 10 N/mm
We know that the axial thrust,

W = 2 π C (r1 – r2) = 2 π × 10 (150 – 100) = 3142 N
and mean radius of the friction surfaces for uniform wear,



Fig. 10.24. Cone clutch.

It consists of one pair of friction surface only . In a cone clutch, the driver is keyed to the
driving shaft by a sunk key and has an inside conical surface or face which exactly fits into the outside
conical surface of the driven. The driven member resting on the feather key in the driven shaft, may
be shifted along the shaft by a forked lever provided at B, in order to engage the clutch by bringing the
two conical surfaces in contact. Due to the frictional resistance set up at this contact surface, the
torque is transmitted from one shaft to another. In some cases, a spring is placed around the driven
shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains
the pressure between them, and the forked lever is used only for disengagement of the clutch. The
contact surfaces of the clutch may be metal to metal contact, but more often the driven member is
lined with some material like wood, leather, cork or asbestos etc. The material of the clutch faces (i.e.
contact surfaces) depends upon the allowable normal pressure and the coefficient of friction.

Consider a pair of friction surface as shown in Fig. 10.25 (a). Since the area of contact of a
pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone clutch may
be determined in the similar manner as discussed for conical pivot bearings in Art. 10.28.

Let pn = Intensity of pressure with which the conical friction surfaces are held
together (i.e. normal pressure between contact surfaces),

r1 and r2 = Outer and inner radius of friction surfaces respectively.

1 2 150 100
125 mm 0.125m

2 2
r r

R
+ +

= = = =

We know that torque transmitted,
T = n.µ.W.R = 2 × 0.3 × 3142 × 0.125 = 235.65 N-m

...( 2,for both sides of plate effective)n =�

∴ Power transmitted by a clutch,
P = T.ω = 235.65 × 261.8 = 61 693 W = 61.693 kW Ans.

10.34. Cone Clutch

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it
has been replaced completely by the disc clutch.

R = Mean radius of the friction surface 1 2 ,
2

r r+
=

α = Semi angle of the cone (also called face angle of the cone) or the
angle of the friction surface with the axis of the clutch,

µ = Coefficient of friction between contact surfaces, and
b = Width of the contact surfaces (also known as face width or clutch

face).



Fig. 10.25. Friction surfaces as a frustrum of a cone.
Consider a small ring of radius r and thickness dr, as shown in Fig. 10.25 (b). Let dl is length

of ring of the friction surface, such that
dl = dr.cosec α

∴  Area of the ring,
A = 2π r.dl = 2πr.dr cosec α

1.  Considering uniform pressure
We know that normal load acting on the ring,

δWn = Normal pressure × Area of ring = pn × 2 π r.dr.cosec α
and the axial load acting on the ring,

δW = Horizontal component of δW n (i.e. in the direction of W )
= δWn × sin α = pn × 2π r.dr. cosec α × sin α = 2π × pn.r.dr

∴  Total axial load transmitted to the clutch or the axial spring force required,

                            

11

2
2

2 22
1 2( ) ( )2 . . 2 2

2 2

rr

n n n
r r

r rrW p r dr p p
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∴ 2 2
1 2[( ) ( ) ]n

Wp
r r

=
π − ...(i)

We know that frictional force on the ring acting tangentially at radius r,
Fr = µ.δW n = µ.pn × 2 π r.dr.cosec α

∴  Frictional torque acting on the ring,
                                 Tr = Fr × r = µ.pn × 2 π r.dr. cosec α.r = 2 π µ.pn.cosec α.r2 dr
Integrating this expression within the limits from r2 to r1 for the total frictional torque on the

clutch.
∴  Total frictional torque,
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3
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3
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Substituting the value of pn from equation (i), we get
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..(ii)



2.  Considering uniform wear
In Fig. 10.25, let pr be the normal intensity of pressure at a distance r from the axis of the

clutch. We know that, in case of uniform wear , the intensity of pressure varies inversely with the
distance.

∴ pr .r = C (a constant)    or    pr = C / r
We know that the normal load acting on the ring,

δWn = Normal pressure × Area of ring = pr × 2πr.dr cosec α
and the axial load acting on the ring ,

                            δW = δWn × sin α = pr.2 π r.dr.cosec α .sin α = pr × 2 π r.dr

2 . 2 .C r dr C dr
r

= × π = π ...(∵  pr = C / r)

∴   Total axial load transmitted to the clutch,
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r

W C dr C C r rr= π = π = π −∫

or                          
1 22 ( )
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r r

=
π −

...(iii)

We know that frictional force acting on the ring,
Fr = µ.δW n = µ.pr × 2 π r × dr cosec α

and frictional torque acting on the ring,
Tr = Fr × r = µ.pr  × 2 π r.dr.cosec α × r

22 . .cosec 2 . cosecC r dr C r dr
r

= µ × × π α = πµ α ×

∴  Total frictional torque acting on the clutch,
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Substituting the value of C from equation (i), we have

2 2
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W r rT
r r

 −= πµ × × α  π −  

1 2. cosec . . cosec
2

r rW W R+ = µ α = µ α  
...(iv)

where 1 2

2
r r

R
+

= =  Mean radius of friction surface

Since the normal force acting on the friction surface, W n = W /sin α, therefore the equation
(iv) may be written as

T = µ.Wn.R ...(v)
The forces on a friction surface, for steady operation of the clutch and after the clutch is

engaged, is shown in Fig. 10.26.

Fig. 10.26. Forces on a friction surface.



∴  From equation, (i), normal pressure acting on the friction surface,

2 2
1 2 1 21 2

( ) ( ) 2 . .sin[( ) ( ) ]n
W W Wp

r r r r R br r
= = =

π + − π απ −

or W = pn × 2 π R.b sin α = Wn sin α
where Wn = Normal load acting on the friction surface = pn × 2 π R.b

Now the equation (iv) may be written as,
2( 2 . sin ) cosec 2 . .n nT p R b R p R b= µ × π α α = πµ

Example 6. A conical friction clutch is used to transmit 90 kW at 1500 r.p.m. The semi-
cone angle is 20º and the coefficient of friction is 0.2. If the mean diameter of the bearing surface is
375 mm and the intensity of normal pressure is not to exceed 0.25 N/mm2, find the dimensions of the
conical bearing surface and the axial load required.

Solution. Given : P = 90 kW = 90 × 103 W ; N = 1500 r.p.m. or ω = 2 π × 1500/60 = 156
rad/s ; α = 20º ; µ = 0.2 ; D = 375 mm or R = 187.5 mm ; pn = 0.25 N/mm2

Dimensions of the conical bearing surface
Let r1 and r2 = External and internal radii of the bearing surface respectively,

b = Width of the bearing surface in mm, and
T = Torque transmitted.

We know that power transmitted (P),
90 × 103 = T.ω = T × 156

∴ T = 90 × 103/156 = 577 N-m = 577 × 103 N-mm

From Fig. 10.26 (a), we find that

1 2
1 2 1 2sin ; and or 2

2
r r

r r b R r r R
+

− = α = + =

1 2
1 2 1 2sin ; and or 2

2
r r

r r b R r r R
+

− = α = + =

and the torque transmitted (T),
577 × 103 = 2 π µ pn.R2.b = 2π × 0.2 × 0.25 (187.5)2 b = 11 046 b

∴ b = 577 × 103/11 046 = 52.2 mm  Ans.
We know that r1 + r2 = 2R = 2 × 187.5 = 375 mm ...(i)

and r1 – r2 = b sin α = 52.2 sin 20º = 18 mm ...(ii)
From equations (i) and (ii),

r1 = 196.5 mm, and r2 = 178.5 mm  Ans.
Axial load required

Since in case of friction clutch, uniform wear is considered and the intensity of pressure is
maximum at the minimum contact surface radius (r2), therefore

pn.r2 = C (a constant) or C = 0.25 × 178.5 = 44.6 N/mm
We know that the axial load required, W = 2πC (r1 – r2) = 2π × 44.6 (196.5 – 178.5) = 5045 N  Ans

10.35. Centrifugal Clutch

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a
number of shoes on the inside of a rim of the pulley, as shown in Fig. 10.28. 

Fig. 10.28. Centrifugal clutch.



  �    
In order to determine the mass and size of the shoes, the following procedure is adopted :

1.  Mass of the shoes
Consider one shoe of a centrifugal clutch as shown in Fig. 10.29.
Let m = Mass of each shoe,

n = Number of shoes,
r = Distance of centre of gravity of

the shoe from the centre of the
spider,

R = Inside radius of the pulley rim,
N = Running speed of the pulley in

r.p.m.,
ω = Angular running speed of the

pulley in rad/s = 2πN/60 rad/s,
ω1 = Angular speed at which the

engagement begins to take place,
and

µ = Coefficient of friction between
the shoe and rim.

We know that the centrifugal force acting on each shoe at the running speed,
*Pc = m.ω2.r

and the inward force on each shoe exerted by the spring at the speed at which engagement begins to
take place,

Ps = m (ω1)
2 r

∴  The net outward radial force (i.e. centrifugal  force) with which the shoe presses against
the rim at the running speed

= Pc – Ps
and the frictional force acting tangentially on each shoe,

F = µ (Pc – Ps)
∴  Frictional torque acting on each shoe,

= F × R = µ (Pc – Ps) R
and total frictional torque transmitted,

T = µ (Pc – Ps) R × n = n.F.R
From this expression, the mass of the shoes (m) may be evaluated.

2.  Size of the shoes
Let l = Contact length of the shoes,

b = Width of the shoes,

Fig. 10.29. Forces on a shoe of
centrifugal clutch.

              The outer surface of theshoes are covered with a friction material. These shoes, which can move 
radially in guides, are heldagainst the boss (or spider) on the driving shaft by means of springs.The springs
exert a radially inward force which is assumed constant. The mass of the shoe, when revolving, causes it to 
exert a radially outward force (i.e. centrifugal force). The magnitude of this centrifugal force depends upon
the speed at which the shoe is revolving. A little consideration will show that when the centrifugal force is 
less than the spring force, the shoe remains in the same position as when the driving shaft was stationary, 
but when the centrifugal force is equal to the spring force, the shoe is just floating. When the centrifugal
force exceeds the spring force, the shoe moves outward and comes into contact with the driven member and
presses against it. The force with which the shoe presses against the driven member is the difference of the 
centrifugal force and the spring force. The increase of speed causes the shoe to press harder and enables more
torque to be transmitted.



R = Contact radius of the shoes. It is same as the inside radius of the rim
of the pulley.

θ = Angle subtended by the shoes at the centre of the spider in radians.
p = Intensity of pressure exerted on the shoe. In order to ensure reason-

able life, the intensity of  pressure may be taken as 0.1 N/mm2.
We know that         θ = l/R rad     or     l = θ.R
∴  Area of contact of the shoe,

A = l.b
and the force with which the shoe presses against the rim

= A × p = l.b.p
Since the force with which the shoe presses against the rim at the running speed is (Pc – Ps),

therefore
l.b.p = Pc – Ps

From this expression, the width of shoe (b) may be obtained.
Example 7. A centrifugal clutch is to transmit 15 kW at 900 r.p.m. The shoes are four in

number. The speed at which the engagement begins is 3/4th of the running speed. The inside radius
of the pulley rim is 150 mm and the centre of gravity of the shoe lies at 120 mm from the centre of the
spider. The shoes are lined with Ferrodo for which the coefficient of friction may be taken as 0.25.
Determine : 1. Mass of the shoes, and 2. Size of the shoes, if angle subtended by the shoes at the
centre of the spider is 60º and the pressure exerted on the shoes is 0.1 N/mm2.

Solution. Given : P = 15 kW = 15 × 103 W ; N = 900 r.p.m. or ω = 25 × 900/60 = 94.26 rad/s ;
n = 4 ; R = 150 mm = 0.15 m ; r = 120 mm = 0.12 m ; µ = 0.25

Since the speed at which the engagement begins (i.e. ω1) is 3/4th of the running speed (i.e.
ω), therefore

                          
1

3 3
94.26 7 0.7 rad/s

4 4
ω = ω = × =

Let T = Torque transmitted at the running speed.
We know that power transmitted (P),

15 × 103 = T.ω = T × 94.26    or    T = 15 × 103/94.26 = 159 N-m
1.  Mass of the shoes

Let m = Mass of the shoes in kg.
We know that the centrifugal force acting on each shoe,

Pc = m.ω2.r = m (94.26)2 × 0.12 = 1066 m N
and the inward force on each shoe exerted by the spring i.e. the centrifugal force at the engagement
speed ω1,

Ps = m (ω1)2 r = m (70.7)2 × 0.12 = 600 m N
∴  Frictional force acting tangentially on each shoe,

F = µ (Pc – Ps) = 0.25 (1066 m – 600 m) = 116.5 m N
We know that the torque transmitted (T ),

159 = n.F.R = 4 × 116.5 m × 0.15 = 70 m    or   m = 2.27 kg  Ans.
2.  Size of the shoes

Let l = Contact length of shoes in mm,
b = Width of the shoes in mm,
θ = Angle subtended by the shoes at the centre of the spider in radians

= 60º = π/3 rad, and ...(Given)

p = Pressure exerted on the shoes in N/mm2 = 0.1 N/mm2 ...(Given)

We know that         . 150 157.1 mm
3

l R π= θ = × =

and l.b.p = Pc – Ps = 1066 m – 600 m = 466 m
∴    157.1 × b × 0.1 = 466 × 2.27 = 1058

or b = 1058/157.1 × 0.1 = 67.3  mm  Ans.

EXERCISES



19.1. Introduction
  A brake is a device by means of which artificial frictional resistance is applied to a moving 
machine member, in order to retard or stop the motion of a machine. . The energy absorbed by brakes 
is dissipated in the form of heat.. 

 
The capacity of a brake depends upon the following factors :

1. The unit pressure between the braking surfaces,
2. The coefficient of friction between the braking

surfaces,
3. The peripheral velocity of the brake drum,
4. The projected area of the friction surfaces, and
5. The ability of the brake to dissipate heat equivalent

to the energy being absorbed.

19.2. Materials for Brake Lining
The material used for the brake lining should have the following characteristics :
1.It should have high coefficient of friction with minimum fading. In other words, the coeffi-cient 
of friction should remain constant with change in temperature.
2.It should have low wear rate.
3.It should have high heat resistance.
4.It should have high heat dissipation capacity.
5.It should have adequate mechanical strength.
6.It should not be affected by moisture and oil.

 

Types of Brakes:
The brakes, according to the means used for transforming the energy by the braking  elements,are classified as :
1.  Hydraulic brakes e.g. pumps or hydrodynamic brakeand fluid agitator,
2.  Electric brakes e.g. generators and eddy currentbrakes,
3.  Mechanical brakes.
 
The mechanical brakes, according to the direction ofacting force, may be divided into the following two groups :

(a) Radial brakes: In these brakes, the force acting onthe brake drum is in radial direction. 
     The radial brakes may be sub-divided into external brakes and internal brakes. 
     According to the shape of the friction elements, these brakes may be block or shoe brakes and band brakes.

(b) Axial brakes: In these brakes, the force acting on the brake drum is in axial direction. 
                                    The axial brakes may be disc brakes and cone brakes. 

19.4. Single Block or Shoe Brake
          A single block or shoe brake is consists of a block or shoe which is  pressed against the rim of a 
revolving brake wheel drum. The block is made of a softer material than the rim of the wheel.  This type 
of a brake is commonly used on railway trains and tram cars.  

             The friction between the block and the wheel causes a tangential braking force to act on the wheel, which 
retard the rotation of the wheel. The block is pressed against the wheel by a force applied to one end of a lever to 
which the block is rigidly fixed as shown in Fig. 19.1. The other end of the lever is  pivoted on a fixed fulcrum O.

 (a) Clockwise rotation of brake wheel                             (b) Anticlockwise rotation of brake wheel.
Fig. 19.1. Single block brake. Line of action of tangential force passes through the fulcrum of the lever.
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Let             P = Force applied at the end of the lever,
          RN= Normal force pressing the brake block on the wheel,
              r = Radius of the wheel,
          2θ = Angle of contact surface of the block,
           µ = Coefficient of friction, and
Ft = Tangential braking force or the frictional force acting at the contact

surface of the block and the wheel.
If the angle of contact is less than 60°, then it may be assumed that the normal pressure between
the block and the wheel is uniform. In such cases, tangential braking force on the wheel,

            Ft = µ.RN  ...(i)
and the braking torque,   TB = Ft.r = µ.RN.r  ... (ii)

 
Let us now consider the following three cases :
 
             Case 1. When the line of action of tangential braking force (Ft ) passes through the fulcrum O
of the lever, and the brake wheel rotates clockwise as shown in Fig. 19.1(a), then for equilibrium, taking 
moments about the fulcrum O, we have

  NR x P l× = ×  or N
P lR

x
×=

∴  Braking torque,

                       B N
. . . .. . P l P l rT R r r

x x
µ= µ = µ × × =   �  

It may be noted that when the brake wheel rotates anticlockwise as shown in Fig. 19.1 ( b),
then the braking torque is same, i.e.

          B N
. . .. . P l rT R r

x
µ= µ =

Case 2. When the line of action of the tangential braking force (Ft ) passes through a distance
‘a’ below the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.2 ( a), then for
equilibrium, taking moments about the fulcrum O,

      RN × x + Ft × a = P.l  or   RN × x + µ RN × a = P.l     or    RN = 
.

.
P l

x a+ µ

and braking torque,       B N
. . ..

.
p l rT R r

x a
µ= µ =

+ µ

(a)  Clockwise rotation of brake wheel.       (b) Anticlockwise rotation of brake wheel.
Fig. 19.2. Single block brake. Line of action of Ft  passes below the fulcrum.

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (b), then for equilibrium,
         RN.x = P.l + Ft.a = P.l + µ.RN.a ...(i)

or          RN (x – µ.a) = P.l    or RN = 
.

.
P l

x a− µ

and braking torque,        B N
. . .. .

.
P l rT R r

x a
µ= µ =

− µ
Case 3. When the line of action of the tangential braking force (Ft ) passes through a distance

‘a’ above the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.3 ( a), then for
equilibrium, taking moments about the fulcrum O, we have

         RN.x = P.l + Ft . a = P.l + µ.RN.a . . . (ii)

or           RN (x – µ.a) = P.l         or            RN = .
.

P l
x a− µ



  �    

When the brake wheel rotates anticlockwise as shown in Fig. 19.3 (b), then for equilibrium,
taking moments about the fulcrum O, we have

    RN × x + Ft × a = P.l     or     RN × x + µ.RN × a = P.l    or    RN = 
.

.
P l

x a+ µ

and braking torque,       TB = µ.RN.r = 
. . .

.
P l r

x a
µ

+ µ

19.5. Pivoted Block or Shoe Brake
We have discussed in the previous article that when the 

angle of contact is less than 60°, then it may be assumed that the 
normal pressure between the block and the wheel is uniform. 
But when the angle of contact is greater than 60°, then the unit 
pressure normal to the surface of contact is less at the ends than 
at the centre. This gives uniform wear of the brake lining in the 
direction of the applied force. The braking torque for a pivoted 
block or shoe brake ( i.e. when 2 θ  > 60°) is given by
 

        B N. .tT F r R r′= × = µ

where         ′µ = Equivalent coefficient of friction = 
4 sin

2 sin 2
µ θ

θ + θ , and
           µ = Actual coefficient of friction.

Fig. 19.4. Pivoted block or shoe brake.

(a) Clockwise rotation of brake wheel.                   (b) Anticlockwise rotation of brake wheel.

Fig. 19.3. Single block brake. Line of action of Ft passes above the fulcrum.

and braking torque,       TB = µ.RN.r = 
. . .

.
P l r

x a
µ

− µ

Example 1. A single block brake is shown in Fig. 19.5.
The diameter of the drum is 250 mm and the angle of contact is
90°. If the operating force of 700 N is applied at the end of a lever
and the coefficient of friction between the drum and the lining is
0.35, determine the torque that may be transmitted by the block
brake.

Solution. Given : d = 250 mm or r = 125 mm ; 2θ = 90°

 = / 2π  rad ; P = 700 N ; µ = 0.35
Since the angle of contact is greater than 60°, therefore

equivalent coefficient of friction,

                

4 sin 4 0.35 sin 45
2 sin 2 / 2 sin 90

µ θ × × °′µ = =
θ + θ π + ° = 0.385

Let                  RN = Normal force pressing the block to the brake drum, and

                  Ft = Tangential braking force = N.R′µ
Taking moments about the fulcrum O, we have

            

350 40 600 750
0.3

t
t

F F× + = ×  or 1207 Ft = 450 × 103

∴                  Ft = 450 × 103/1207 = 372.8 N
We know that braking torque,

      TB = Ft × r = 372.8 × 0.16 = 59.6 N-m Ans.

All dimensions in mm.
Fig. 19.5

Fig. 19.6

N700(250 200) 50 200 200 200 520
0.385

t t
t t

F F
F R F+ + × = × = × = × =

′µ

or  520 Ft – 50Ft = 700 × 450    or     Ft = 700 × 450/470 = 670 N
We know that torque transmitted by the block brake,

               TB = Ft × r = 670 × 125 = 8 3750 N-mm = 83.75N-m Ans.



19.6. Double Block or Shoe Brake
It consists of two brake blocks applied at the opposite ends of a 
diameter of the wheel which eliminate or reduces the unbalanced 
force on the shaft. The brake is set by a spring which pulls the 
upper ends of the brake arms together. When a force P is applied to the 
bellcrank lever, the spring is compressed and the brake is released.

In a double block brake, the braking action is doubled
by the use of two blocks and these blocks may be operated
practically by the same force which will operate one. In case of
double block or shoe brake, the braking torque is given by

      TB = (Ft1 + Ft2) r
where Ft1 and Ft2 are the braking forces on the two blocks.

Example 2. A double shoe brake, as shown in Fig. 19.10,
is capable of absorbing a torque of 1400 N-m. The diameter of the
brake drum is 350 mm and the angle of contact for each shoe is 100°.
If the coefficient of friction between the brake drum and lining is
0.4 ; find 1. the spring force necessary to set the brake ; and 2. the
width of the brake shoes, if the bearing pressure on the lining
material is not to exceed 0.3 N/mm2.

Solution. Given :  TB = 1400 N-m = 1400 × 103 N-mm ;
d = 350 mm or r = 175 mm ;2θ  = 100° = 100 × π /180 = 1.75 rad;
µ = 0.4 ; pb = 0.3 N/mm2

1. Spring force necessary to set the brake

Let            S  = Spring force necessary to set the brake
RN1 and Ft1 = Normal reaction and the braking force on the right hand side shoe, and                   

            RN2 and Ft2 = Corresponding values on the left hand side shoe.
Since the angle of contact is greater than 60°, therefore equivalent coefficient of friction,

4 sin 4 0.4 sin 50 0.45
2 sin 2 1.75 sin100

µ θ × × °µ′ = = =
θ + θ + °

 
   �  

Taking moments about the fulcrum O1, we have

         1
N1 1 1 1450 200 (175 40) 200 135 579.4

0.45 t t
t

t
FS R F F F× = × + − = × + × =

. . . 

1
N1Substituting tFR 

= ′µ 
∴   Ft1 = S × 450 / 579.4 = 0.776 S

Again taking moments about O2, we have

            2
2 N2 2450 (175 40) 200 200 444.4

0.45
t

t t
FS F R F× + − = × = × =

. . .

2
N2Substituting tFR 

= ′µ 
      444.4 Ft2 – 135Ft2 = S × 450   or   309.4 Ft2 = S × 450
∴  Ft2 = S × 450 / 309.4 = 1.454 S

We know that torque capacity of the brake (TB),
  1400 × 103  = (Ft1 + Ft2 ) r = (0.776 S + 1.454 S) 175 = 390.25 S

∴     S = 1400 × 103/390.25 = 3587 N Ans.
2. Width of the brake shoes

Let     b = Width of the brake shoes in mm.
We know that projected bearing area for one shoe,

2(2 sin ) (2 175sin 50 ) 268 mmbA b r b b= θ = × ° =
Normal force on the right hand side of the shoe,

1
N1

0.776 0.776 3587 6186 N
0.45 0.45

tF SR × ×= = = =
′µ

and normal force on the left hand side of the shoe,

             
2

N2
1.454 1.454 3587 11 590 N

0.45 0.45
tF SR × ×= = = =
′µ

We see that the maximum normal force is on the left hand side of the shoe. Therefore we shall
find the width of the shoe for the maximum normal force i.e. RN2.

We know that the bearing pressure on the lining material (pb),
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θ  = Angle of lap (or embrace) of the band on the drum,
 µ = Coefficient of friction between the band and the drum,
  r = Radius of the drum,
  t = Thickness of the band, and

re = Effective radius of the drum = 
2

+ tr

(a) Clockwise rotation of drum. (b) Anticlockwise rotation of drum.
Fig. 19.11. Simple band brake.

We know that limiting ratio of the tensions is given by the relation,

             
1

2

µθ=T e
T

or 1

2
2.3log .T

T
 

= µ θ 
 

and braking force on the drum = T1 – T2

∴  Braking torque on the drum,
              TB = (T1 – T2) r . . . (Neglecting thickness of band)

    = (T1 – T2) re  . . . (Considering thickness of band)

Now considering the equilibrium of the lever OBC. It may be noted that when the drum
rotates in the clockwise direction, as shown in Fig. 19.1 1 (a), the end of the band attached to the
fulcrum O will be slack with tension T2 and end of the band attached to B will be tight with tension T1.
On the other hand, when the drum rotates in the anticlockwise direction, as shown in Fig. 19.11 (b),
the tensions in the band will reverse, i.e. the end of the band attached to the fulcrum O will be tight
with tension T1 and the end of the band attached to B will be slack with tension T2. Now taking
moments about the fulcrum O, we have

           P.l = T1.b . . . (For clockwise rotation of the drum)

and            P.l = T2.b  . . . (For anticlockwise rotation of the drum)

N2 11 590 43.250.3
268b

R
A b b

= = =

∴                  b = 43.25 / 0.3 = 144.2 mm Ans.

19.7. Simple Band Brake
A band brake consists of a flexible band of leather , one or more ropes,or a steel lined with

friction material, which embraces a part of the circumference of the drum. A band brake, as shown in
Fig. 19.11, is called a simple band brake in which one end of the band is attached to a fixed pin or
fulcrum of the lever while the other end is attached to the lever at a distance b from the fulcrum.

When a force P is applied to the lever at C, the lever turns about the fulcrum pin O and tightens
the band on the drum and hence the brakes are applied. The friction between the band and the drum
provides the braking force. The force P on the lever at C may be determined as discussed below :

Let T1 = Tension in the tight side of the band,
T2 = Tension in the slack side of the band,

where   l = Length of the lever from the fulcrum (OC), and
 b = Perpendicular distance from O to the line of action of T1  or T2.



Example 3. The simple band brake, as shown in Fig. 19.12, is applied to a shaft carrying
a flywheel of mass 400 kg. The radius of gyration of the flywheel is 
 450 mm and runs at 300 r.p.m.

If the coefficient of friction is 0.2 and the brake drum
diameter is 240 mm, find :

1. the torque applied due to a hand load of 100 N,
2. the number of turns of the wheel before it is brought to

rest, and
3. the time required to bring it to rest, from the moment of

the application of the brake.

Solution. Given :  m = 400 kg ; k = 450 mm = 0.45 m ;
N = 300 r.p.m. or 2 300 / 60ω = π×  = 31.42 rad/s ; µ = 0.2 ;
d = 240 mm = 0.24 m or r = 0.12 m
1. Torque applied due to hand load

First of all, let us find the tensions in the tight and slack sides of the band i.e. T1 and T2
respectively.

From the geometry of the Fig. 19.12, angle of lap of the band on the drum,

         
360 150 210 210 3.666 rad

180
πθ = ° − ° = ° = × =

We know that

     

1

2
2.3log . 0.2 3.666 0.7332

 
= µ θ = × = 

 

T
T

           
1

2

0.7332log 0.3188
2.3

 
= = 

 

T
T

       or 1

2
2.08=T

T
. . . (i)

... (Taking antilog of 0.3188)
Taking moments about the fulcrum O,
           T2 × 120 = 100 × 300 = 30 000 or  T2 = 30 000/120 = 250 N

∴                      T1 = 2.08T2 = 2.08 × 250 = 520 N  . . . [From equation (i)]
We know that torque applied,

       TB = (T1 – T2 ) r =  (520 – 250) 0.12 = 32.4 N-m Ans.
2. Number of turns of the wheel before it is brought to rest

Let          n = Number of turns of the wheel before it is brought to rest.
We know that kinetic energy of rotation of the drum

           
2 2 2 2 21 1 1. . . 400(0.45) (31.42)

2 2 2
= × ω = × ω = ×I m k = 40 000 N-m

This energy is used to overcome the work done due to the braking torque (TB).
∴              40 000 = TB × 2πn  = 32.4 × 2πn  = 203.6 n

or          n = 40 000 / 203.6 = 196.5 Ans.

All dimensions in mm.
Fig. 19.12

 3. Time required to bring the wheel to rest
We know that the time required to bring the wheel to rest

= n / N = 196.5 / 300 = 0.655 min = 39.3 s Ans

19.8. Differential Band Brake
In a differential band brake, as shown in Fig. 19.14, the ends of the band are joined at A and

B to a lever AOC pivoted on a fixed pin or fulcrum O. It may be noted that for the band to tighten, the
length OA must be greater than the length OB.



The braking torque on the drum may be obtained in the similar way as discussed in simple band brake.
Now considering the equilibrium of the lever AOC. It may be noted that when the drum rotates in the
clockwise direction, as shown in Fig. 19.14 ( a), the end of the band attached to A will be slack with
tension T2 and end of the band attached to B will be tight with tension T1. On the other hand, when the
drum rotates in the anticlockwise direction, as shown in Fig. 19.14 (b), the end of the band attached to 
A will be tight with tension T1 and end of the band attached to B will be slack with tension T2. Now
taking moments about the fulcrum O, we have

 P.l  + T1.b = T2.a                     ... (For clockwise rotation of the drum )

        or                     P.l = T2.a – T1.b            ... (i)
                  and        P.l + T2.b = T1.a                      .. (For anticlockwise rotation of the drum )

                                     or         P.l = T1.a – T2.b ... (ii)

We have discussed in block brakes (Art. 19.4), that when the frictional force helps to apply
the brake, it is said to be self energizing brake. In case of differential band brake, we see from equa-
tions (i) and (ii) that the moment T1.b and T2.b helps in applying the brake (because it adds to the
moment P.l ) for the clockwise and anticlockwise rotation of the drum respectively.

We have also discussed that when the force P is negative or zero, then brake is self locking.
Thus for differential band brake and for clockwise rotation of the drum, the condition for self locking
is

2 1. .T a T b≤ or 2 1/ /T T b a≤
and for anticlockwise rotation of the drum, the condition for self locking is

1 2. .T a T b≤ or 1 2/ /T T b a≤

Example 4. In a winch, the rope supports a load W and is wound round a barrel 450 mm
diameter. A differential band brake acts on a drum 800 mm diameter which is keyed to the same shaft
as the barrel. The two ends of the bands are attached to pins on opposite sides of the fulcrum of the
brake lever and at distances of 25 mm and 100 mm from the fulcrum. The angle of lap of the brake
band is 250° and the coefficient of friction is 0.25. What is the maximum load W which can be
supported by the brake when a force of 750 N is applied to the lever at a distance of 3000 mm from
the fulcrum ?

Solution. Given : D = 450 mm or R = 225 mm ; d = 800 mm or r = 400 mm ; OB = 25 mm ;
OA = 100 mm ; θ  = 250° = 250 × π /180 = 4.364 rad ;
µ = 0.25 ; P = 750 N ; l = OC = 3000 mm

Since OA is greater than OB, therefore the
operating force (P = 750 N) will act downwards.

First of all, let us consider that the drum rotates
in clockwise direction.

We know that when the drum rotates in clock-
wise direction, the end of band attached to A  will be
slack with tension T2 and the end of the band attached
to B will be tight with tension T1, as shown in Fig. 19.15.
Now let us find out the values of tensions  T1 and T2. We
know that

All dimensions in mm.
Fig. 19.15

1

2
2.3log . 0.25 4.364 1.091T

T
 

= µ θ = × = 
 

∴    1

2

1.091log 0.4743
2.3

T
T

 
= = 

 
 or

 
 

 
 

 
 

 
 

 
 

 
 

or T2 × 100 – 2.98 T2 × 25 = 2250 × 103  ... (�  T1 = 2.98 T2)

 25.5 T2 = 2250 × 103 or T2 = 2250 × 103/25.5 = 88 × 103 N
and         T1 = 2.98T2 = 2.98 × 88 × 103 = 262 × 103 N

We know that braking torque,
       TB = (T1 – T2) r

= (262 × 103 – 88 × 103) 400 = 69.6 × 106 N-mm ...(i)
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  T1 = 2.98 T2... (i)
Now taking moments about the fulcrum O,    750 × 3000 + T1 × 25 = T2 × 100
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(�
and the torque due to load W newtons,

      TW = W.R = W × 225 = 225 W N-mm ... (ii)
Since the braking torque must be equal to the torque due to load W  newtons, therefore from

equations (i) and (ii),
      W  = 69.6 × 106/225 = 309 × 103 N = 309 kN

Now let us consider that the drum rotates in
anticlockwise direction. We know that when the drum rotates
in anticlockwise direction, the end of the band attached to A
will be tight with tension T1 and end of the band attached to
B will be slack with tension T2, as shown in Fig. 19.16. The
ratio of tensions T1 and T2 will be same as calculated above,
i.e.

       

1

2
2.98T

T
=  or T1 = 2.98 T2

Now taking moments about the fulcrum O,
       750 × 3000 + T2 × 25 = T1 × 100
or 2.98 T2 × 100 – T2 × 25 = 2250 × 103  ... (�  T1 = 2.98 T2)

273 T2 = 2250 × 103      or      T2 = 2250 × 103/273 = 8242 N
and         T1 = 2.98 T2 = 2.98 × 8242 = 24 561 N
∴        Braking torque, TB = (T1 × T2) r

           = (24 561 – 8242)400 = 6.53 × 106 N-mm ...(iii)
From equations (ii) and (iii),

W = 6.53 × 106/225 = 29 × 103 N = 29 kN
From above, we see that the maximum load (W ) that can be supported by the brake is 309 kN,

when the drum rotates in clockwise direction. Ans.

Example 5. A differential band brake, as shown in Fig. 19.17, has an angle of contact of
225°. The band has a compressed woven lining and bears against a cast iron drum of 350 mm
diameter. The brake is to sustain a torque of 350 N-m and the coefficient of friction between the band
and the drum is 0.3. Find : 1. The necessary force (P) for the clockwise and anticlockwise rotation of
the drum; and 2. The value of ‘OA’ for the brake to be self locking, when the drum rotates clockwise.

Solution. Given: θ = 225° = 225 × π /180 = 3.93 rad ; d = 350 mm    or   r = 175 mm ;
T = 350 N-m = 350 × 103 N-mm
1. Necessary force (P) for the clockwise and anticlockwise rotation of the drum

When the drum rotates in the clockwise direction, the end of the band attached to A will be
slack with tension T2 and the end of the band attached to B will be tight with tension T1, as shown in
Fig. 19.18. First of all, let us find the values of tensions T1 and T2.

All dimensions in mm.
Fig. 19.16

              

All dimensions in mm.
     Fig. 19.17   Fig. 19.18

We know that

      

1

2
2.3log . 0.3 3.93 1.179T

T
 

= µ θ = × = 
 

∴         1

2

1.179log 0.5126
2.3

T
T

 
= = 

 
     or    



1

2
3.255T

T
= ... (Taking antilog of 0.5126 ) ... (i)

and braking torque (TB),
          350 × 103 = (T1 – T2)r = (T1 – T2) 175

∴           T1 – T2 = 350 × 103/175 = 2000 N  ... (ii)
From equations (i) and (ii), we find that

        T1 = 2887 N ; and T2 = 887 N
Now taking moments about the fulcrum O, we have
            P × 500 = T2 × 150 – T1 × 35 = 887 × 150 – 2887 × 35 = 32 ×103

∴          P = 32 × 103/500 = 64 N Ans.
When the drum rotates in the anticlockwise

direction, the end of the band attached to A will be tight
with tension T1 and end of the band attached to B will
be slack with tension T2, as shown in Fig. 19.19. Taking
moments about the fulcrum O, we have

             P × 500 = T1 × 150 – T2 × 35
            = 2887 × 150 – 887 × 35
            = 402 × 103

          P = 402 × 103/500 = 804 N  Ans.
2. Value of ‘OA’ for the brake to be self locking, when
the drum rotates clockwise

The clockwise rotation of the drum is shown in Fig 19.18.
For clockwise rotation of the drum, we know that
            P × 500 = T2 × OA – T1 × OB

For the brake to be self locking, P must be equal to zero. Therefore
             T2 × OA = T1 × OB

1

2

2887 35
887

T OBOA
T
× ×= =  = 114 mm Ans.

Fig. 19.19

           �           

Taking moments about O,
           200 × 750 + T1 × 30 = T2 × 120

        12 T2 – 3T1 = 15 000              . . . (i)

We know that             

1

2

1 tan
1 tan

nT
T

 + µ θ=  − µ θ 

          = 
141 0.25 tan 7.5

1 0.25 tan 7.5
+ ° 

 − ° 
          = 

141 0.25 0.1317
1 .025 0.1317

+ × 
 − × 

          = (1.068)14 = 2.512 . . . (ii)
From equations (i) and (ii),

                 T1 = 8440 N, and T2 = 3360 N
We know that maximum braking torque,

                   B 1 2( ) (8440 3360)0.5 2540 N-mT T T r= − = − = Ans.

2.  Angular retardation of the drum
Let                  α  = Angular retardation of the drum.
We know that braking torque (TB ),

              2 22540 . . . 2000(0.5) 500I m k= α = α = α = α

∴                                2540 / 500α = = 5.08 rad/s2 Ans.

19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake

All dimensions in mm
Fig. 19.23



3.  Time taken by the system to come to rest
Let                     t = Required time.
Since the system is to come to rest from the rated speed of 360 r.p.m., therefore

Initial angular speed, 1 2 360 / 60 37.7 rad/sω = π× =

and final angular speed, 2 0ω =

We know that 2 1 .tω = ω − α  . . . (– ve sign due to retardation )

∴                   1 / 37.7 / 5.08t = ω α =  = 7.42 s Ans.

19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake
An internal expanding brake consists of two shoes S1 and S2 as shown in Fig. 19.24. The

outer surface of the shoes are lined with some friction material (usually with Ferodo) to increase the
coefficient of friction and to prevent wearing away of the metal. Each shoe is pivoted at one end about
a fixed fulcrum O1 and O2 and made to contact a cam at the other end. When the cam rotates, the
shoes are pushed outwards against the rim of the drum. The friction between the shoes and the drum
produces the braking torque and hence reduces the speed of the drum. The shoes are normally held in
off position by a spring as shown in Fig. 19.24. The drum encloses the entire mechanism to keep out
dust and moisture. This type of brake is commonly used in motor cars and light trucks.

We shall now consider the forces acting on such a brake, when the drum rotates in the
anticlockwise direction as shown in Fig. It may be noted that for the anticlockwise direction,
the left hand shoe is known as leading or primary shoe while the right hand shoe is known as trailing
or secondary shoe.

Let  r = Internal radius of the wheel rim,
 b =  Width of the brake lining,
p1 = Maximum intensity of normal pressure,

            pN = Normal pressure,
F1 = Force exerted by the cam on the leading shoe, and
F2 = Force exerted by the cam on the trailing shoe.

Consider a small element of the brake lining AC subtending an angle δθ  at the centre. Let OA
makes an angle θ with OO1 as shown in Fig. 19.25. It is assumed that the pressure distribution on 
the shoe is nearly uniform, however the friction lining wears out more at the free end. Since the 
shoe turns about O1, therefore the rate of wear of the shoe lining at A will be proportional to the 
radial displacement of that point. 

The rate of wear of the shoe lining varies directly as the perpendicular distance from O1 to OA, i.e. O1B. 
From the geometry of the figure,

                 O1B = OO1 sin θ
and normal pressure at A,

         N 1Nsin or sinp p p∝ θ = θ

∴      Normal force acting on the element,
 NRδ  = Normal pressure × Area of the element

          = 1N ( . . ) sin ( . . )p b r p b rδθ = θ δθ



and braking or friction force on the element,

    N 1. sin ( . . )F R p b rδ = µ × δ = µ θ δθ

∴   Braking torque due to the element about O,     

                 2
B 1 1. sin ( . . ) . (sin . )T F r p b r r p b rδ = δ × = µ θ δθ = µ θ δθ           �           

and total braking torque about O for whole of one shoe,

         [ ]
2

2

1
1

2 2
B 1 1sin cosT p b r d p b r

θ
θ

θ
θ

= µ θ θ = µ − θ∫
= 2

1 21 (cos cos )p brµ θ − θ

Moment of normal force NRδ  of the element about the fulcrum O1,

   N N 1 N 1( sin )M R O B R OOδ = δ × = δ θ

= 1
2

1 1 1sin ( . . ) ( sin ) sin ( . . )p b r OO p b r OOθ δθ θ = θ δθ

∴   Total moment of normal forces about the fulcrum O1,

     

2 2

1 1

2 2
N 1 1 11sin ( . . ) . . . sinM p b r OO p b r OO d

θ θ

θ θ

= θ δθ = θ θ∫ ∫

= 
2

1

1 1
1. . . (1 cos 2 )
2

p b r OO d
θ

θ

− θ θ∫        ... 2 1sin (1 cos2 )
2

 θ = − θ  
∵

= 
2

1

11
1 sin 2. . .
2 2

p b r OO
θ

θ

θ θ −  

= 2 1
1 2 11

sin 2 sin 21 . . .
2 2 2

p b r OO
θ θ θ − − θ +  

= 1 2 1 1 21
1 1. . . ( ) (sin 2 sin 2 )
2 2

p b r OO  θ − θ + θ − θ  
Moment of frictional force Fδ  about the fulcrum O1,

      F 1( cos )M F AB F r OOδ = δ × = δ − θ ... (∵  AB = r – OO1 cos θ )

11 sin ( . . ) ( cos )p b r r OO= µ θ δθ − θ

1 1. . . ( sin sin cos )p b r r OO= µ θ − θ θ δθ

= 1
1. . . sin sin 2

2
OO

p b r r µ θ − θ δθ  
... ( 2sin cos sin2 )θ θ = θ∵

∴    Total moment of frictional force about the fulcrum O1,

         MF =
2

1

1
1 sin sin 2

2
OOp b r r d

θ

θ

 µ θ − θ θ  ∫
2

1

1
1 cos cos 2

4
OOp b r r

θ

θ

 = µ − θ + θ  

        = 1 1
1 2 2 1 1cos cos 2 cos cos 2

4 4
OO OO

p b r r r µ − θ + θ + θ − θ  

        = 1
1 1 2 2 1(cos cos ) (cos 2 cos 2 )

4
OO

p b r r µ θ − θ + θ − θ  
Now for leading shoe, taking moments about the fulcrum O1,

   F1 × l = MN – MF
and for trailing shoe, taking moments about the fulcrum O2,

 F2 × l  = MN + MF
Note : If MF > MN, then the brake becomes self locking.



Example 6. The arrangement of an internal expanding friction brake, in which the
brake shoe is pivoted at ‘C’ is shown in Fig. 19.26. The distance ‘CO’ is 75 mm, O being the centre
of the drum. The internal radius of the brake drum is
100 mm. The friction lining extends over an arc AB, such
that the angle AOC is 135° and angle BOC is 45°. The
brake is applied by means of a force at Q, perpendicular
to the line CQ, the distance CQ being 150 mm.

The local rate of wear on the lining may be taken as
proportional to the normal pressure on an element at an
angle of ‘ θ ’ with OC and may be taken as equal to
 p1 sin θ , where p1 is the maximum intensity of normal
pressure.

The coefficient of friction may be taken as 0.4 and
the braking torque required is 21 N-m. Calculate the force
Q required to operate the brake when 1. The drum rotates
clockwise, and 2. The drum rotates anticlockwise.

Solution. Given : OC = 75 mm ; r = 100 mm ;

2θ  = 135° = 135 × π  /180 = 2.356 rad ; 1θ  = 45° = 45 × π /180 = 0.786 rad ; l = 150 mm ;
µ  = 0.4 ; TB = 21 N-m = 21 × 103 N-mm

1. Force ‘Q’ required to operate the brake when drum rotates clockwise
We know that total braking torque due to shoe (TB ),

 1
3 2

1 221 10 . . . (cos cos )p b r× = µ θ − θ

1
2

10.4 (100) (cos 45 cos135 ) 5656 .p b p b= × × ° − ° =

∴ 3
1. 21 10 / 5656 3.7p b = × =

Total moment of normal forces about the fulcrum C,

     
N 1 2 1 1 2

1 1. . . ( ) (sin 2 sin 2 )
2 2

M p b r OC  = θ − θ + θ − θ  

= 
1 13.7 100 75 (2.356 0.786) (sin 90 sin 270 )
2 2

 × × × − + ° − °  
= 13 875 (1.57 + 1) = 35 660 N-mm

and total moment of friction force about the fulcrum C,

       F 1 1 2 2 1. . . (cos cos ) (cos 2 cos 2 )
4

OCM p b r r = µ θ − θ + θ − θ  

= 0.4 × 3.7 × 100 75100 (cos 45 cos135 ) (cos 270 cos90 )
4

 ° − ° + ° − °  
= 148 × 141.4 = 20 930 N-mm

All dimensions in mm
Fig. 19.26

           �           

Taking moments about the fulcrum C, we have
 Q × 150 = MN + MF = 35 660 + 20 930 = 56 590

∴                      Q = 56 590 / 150 = 377 N Ans.
2. Force ‘Q’ required to operate the brake when drum rotates anticlockwise

Taking moments about the fulcrum C, we have
 Q × 150 = MN – MF = 35 660 – 20 930 = 14 730

∴                     Q = 14 730/150 = 98.2 N Ans.

19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle
In a four wheeled moving vehicle, the brakes may be applied to
1. the rear wheels only,
2. the front wheels only, and
3. all the four wheels.



Example 7. A car moving on a level r oad at a speed 50 km/h has a wheel base 2.8
metres, distance of C.G. from ground level 600 mm, and the distance of C.G. fr om rear wheels 1.2
metres. Find the distance travelled by the car before coming to rest when brakes are applied,

1. to the rear wheels, 2. to the front wheels, and 3. to all the four wheels.
The coefficient of friction between the tyres and the road may be taken as 0.6.

Solution. Given : u = 50 km/h = 13.89 m/s ; L = 2.8 m ; h = 600 mm = 0.6 m ; x = 1.2 m ; µ = 0.6
 Let      s = Distance travelled by the car before coming to rest.

1. When brakes are applied to the rear wheels
Since the vehicle moves on a level road, therefore retardation of the car,

             
2. ( ) 0.6 9.81(2.8 1.2) 2.98 m/s

. 2.8 0.6 0.6
g L xa
L h

µ − × −= = =
+ µ + ×

We know that for uniform retardation,
2 2(13.89)

2 2 2.98
us

a
= =

×
= 32.4 m Ans.

2. When brakes are applied to the front wheels
Since the vehicle moves on a level road, therefore retardation of the car,

2. . 0.6 9.18 1.2 2.9 m/s
. 2.8 0.6 0.6

g xa
L h
µ × ×= = =
− µ − ×

We know that for uniform retardation,
2 2(13.89)

2 2 2.9
us

a
= =

×
 = 33.26 m Ans.

3. When the brakes are applied to all the four wheels
Since the vehicle moves on a level road, therefore retardation of the car,

2. 9.81 0.6 5.886 m/sa g= µ = × =
We know that for uniform retardation,

2 2(13.89)
2 2 5.886
us

a
= =

×
 = 16.4 m  Ans.

19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer
A dynamometer is a brake but in addition it has a device to measure the frictional resistance.

Knowing the frictional resistance, we may obtain the torque transmitted and hence the power of the
engine.            �           

19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers
Following are the two types of dynamometers, used for measuring the brake power of an engine.

1. Absorption dynamometers, and
            2. Transmission dynamometers. 

In the absorption dynamometers, the entire energy or power produced by the engine is absorbed by the 
friction resistances of the brake and is transformed into heat, during the process of measurement. But in
the transmission dynamometers, the energy is not wasted in friction but is used for doing work.

19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers
The following two types of absorption dynamometers are important from the subject point of view :

1. Prony brake dynamometer, and 2. Rope brake dynamometer.

 

19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer
A simplest form of an absorption type dynamometer is a prony brake dynamometer, as shown

in Fig. 19.31. It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine
whose power is required to be measured. The blocks are clamped by means of two bolts and nuts, as
shown in Fig. 19.31. A helical spring is provided between the nut and the upper block to adjust the
pressure on the pulley to control its speed. The upper block has a long lever attached to it and carries
a weight W at its outer end. A counter weight is placed at the other end of the lever which balances the
brake when unloaded. Two stops S, S are provided to limit the motion of the lever.



Fig. 19.31. Prony brake dynamometer.

When the brake is to be put in operation, the long end of the lever is loaded with suitable
weights W and the nuts are tightened until the engine shaft runs at a constant speed and the lever is in
horizontal position. Under these conditions, the moment due to the weight W must balance the mo-
ment of the frictional resistance between the blocks and the pulley.
      �                

Let W = Weight at the outer end of the lever in newtons,
L = Horizontal distance of the weight W from the centre of the pulley in metres,

F = Frictional resistance between the blocks and the pulley in newtons,
R = Radius of the pulley in metres, and  N = Speed of the shaft in r.p.m.
We know that the moment of the frictional resistance or torque on the shaft,
                T = W.L = F.R N-m

Work done in one revolution = T orque × Angle turned in radians = 2 N-mT × π
  ∴    Work done per minute  = 2 N-mT N× π

We know that brake power of the engine,

            
Work done per min. 2 . 2. . watts

60 60 60
T N W L NB P × π × π= = =

19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer

It is another form of absorption type dynamometer which is most commonly used for measur-
ing the brake power of the engine. It consists of one, two or more ropes wound around the flywheel or
rim of a pulley fixed rigidly to the shaft of an engine. The upper end of the ropes is attached to a spring
balance while the lower end of the ropes is kept in position by applying a dead weight as shown in Fig.
19.32. In order to prevent the slipping of the rope over the flywheel, wooden blocks are placed at
intervals around the circumference of the flywheel.

In the operation of the brake, the engine is made to run at a constant speed. The frictional
torque, due to the rope, must be equal to the torque being transmitted by the engine.

Let W = Dead load in newtons,
S = Spring balance reading in newtons,
D = Diameter of the wheel in metres,
d = diameter of rope in metres, and
N  = Speed of the engine shaft in r.p.m.

∴  Net load on the brake
   = (W – S) N

We know that distance moved in one revolution
  = ( )mD dπ +

           �           

∴     Work done per revolution
= ( ) ( ) N-mW S D d− π +

and work done per minute
= ( ) ( ) N-mW S D d N− π +

Fig. 19.32. Rope brake dynamometer.
∴     Brake power of the engine,

 

           �           

Fig. 19.32. Rope brake dynamometer.
∴     Brake power of the engine,

 Work done per min ( ) ( )B.P watts
60 60

W S D d N− π += =

If the diameter of the rope (d) is neglected, then brake
power of the engine,

( )B.P. watts
60

W S D N− π=



      �                

                      UNIT-IV   BALANCING OF ROTATING MASSES 
           The process of providing the second mass in order to counteract the effect of the centrifugal force of 
the first mass, is called balancing of rotating masses .

21.3.21.3.21.3.21.3.21.3. Balancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating in
the Same Planethe Same Planethe Same Planethe Same Planethe Same Plane
Consider a disturbing mass m1 attached to a shaft rotating at ω  rad/s as shown in Fig. 21.1.

Let r1 be the radius of rotation of the mass m1.
.

We know that the centrifugal force exerted by the mass m1 on the shaft,

= ⋅ω ⋅2
Cl 1 1F m r . . . (i)

This centrifugal force acts radially outwards and thus produces bending moment on the
shaft. 

Fig. 21.1. Balancing of a single rotating mass by a single mass rotating in the same plane.

Let          r2 = Radius of rotation of the balancing mass m2.

∴   Centrifugal force due to mass m2,

     = ⋅ω ⋅2
C2 2 2F m r . . . (ii)

Equating equations (i) and (ii),

         2 2
1 1 2 2.m r m rω ⋅ = ⋅ω ⋅    or   1 1 2 2m r m r⋅ = ⋅

           �           

21.4.21.4.21.4.21.4.21.4. Balancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating in
Different PlanesDifferent PlanesDifferent PlanesDifferent PlanesDifferent Planes

            Two balancing masses are placed in two different planes, parallel to the plane of rotation of 
the disturbing mass, in such a way that they satisfy the following two conditions of equilibrium.

1. The net dynamic force acting on the shaft is equal to zero. This requires that the line of
action of three centrifugal forces must be the same. In other words, the centre of the
masses of the system must lie on the axis of rotation. This is the condition for Static
balancing.

2. The net couple due to the dynamic forces acting on the shaft is equal to zero. In other
words, the algebraic sum of the moments about any point in the plane must be zero.
The conditions (1) and (2) together give dynamic balancing. 
 

1.  When the plane of the disturbing mass lies in between the planes of the two balancing
   masses

Consider a disturbing mass m lying in a plane A to be balanced by two rotating masses m1
and m2 lying in two different planes L and M as shown in Fig. 21.2. Let r, r1 and r2 be the radii of
rotation of the masses in planes A, L and M respectively.
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We know that the centrifugal force exerted by the mass m in the plane A,

    = ⋅ω ⋅2
CF m r

Similarly, the centrifugal force exerted by the mass m1 in the plane L,

  = ⋅ω ⋅2
C1 1 1F m r

and, the centrifugal force exerted by the mass m2 in the plane M,

  = ⋅ω ⋅2
C2 2 2F m r

Since the net force acting on the shaft must be equal to zero, therefore the centrifugal force
on the disturbing mass must be equal to the sum of the centrifugal forces on the balancing masses,
therefore

    C C1 C2F F F  

∴              1 1 2 2m r m r m r⋅ = ⋅ + ⋅  . . .  (i)

Now in order to find the magnitude of balancing force in the plane L (or the dynamic force
at the bearing Q of a shaft), take moments about P which is the point of intersection of the plane M
and the axis of rotation. Therefore

           C1 C 2F l F l× = ×      

∴          1 1 2m r l m r l⋅ ⋅ = ⋅ ⋅                                             . . . (ii)

Similarly, in order to find the balancing force in plane M (or the dynamic force at the
bearing P of a shaft), take moments about Q which is the point of intersection of the plane L and
the axis of rotation. Therefore

          C2 C 1F l F l× = ×  

∴          2 2 1m r l m r l⋅ ⋅ = ⋅ ⋅                                                            . . .  (iii)

           �           

2.  When the plane of the disturbing mass lies on one end of the planes of the balancing
    masses



In this case, the mass m lies in the plane A and the balancing masses lie in the planes L and
M, the following conditions must be satisfied in order
to balance the system, i.e.

      C2 C1CF F F+ =

∴    2 2 1 1.m r m r m r⋅ + ⋅ =  . . . (iv)

Now, to find the balancing force in the plane L (or the dynamic force at the bearing Q of a
shaft), take moments about P which is the point of intersection of the plane M and the axis of
rotation. Therefore

         C1 C 2F l F l× = ×    

∴                    1 1 2m r l m r l⋅ ⋅ = ⋅ ⋅                              
                                                             . . . (v)

. . . [Same as equation (ii)]
Similarly, to find the balancing force in the plane M (or the dynamic force at the bearing P

of a shaft), take moments about Q which is the point of intersection of the plane L and the axis of
rotation. Therefore

          C2 C 1F l F l× = ×   

         2 2 1m r l m r l⋅ ⋅ = ⋅ ⋅  

21.5.21.5.21.5.21.5.21.5. Balancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same Plane

Example 1. Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg and 260 kg
respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m r espectively
and the angles between successive masses are 45°, 75° and 135°. Find the position and magnitude
of the balance mass r equired, if its radius of r otation is 0.2 m.

Solution. Given : m1 = 200 kg ; m2 = 300 kg ; m3 = 240 kg ; m4 = 260 kg ; r1 = 0.2 m ;
r2 = 0.15 m ; r3 = 0.25 m ; r4 = 0.3 m ; 1θ  = 0° ; 2θ  = 45° ; 3θ  = 45° + 75° = 120° ; 4θ  = 45° + 75°
+ 135° = 255° ; r = 0.2 m      �                

Let               m = Balancing mass, and
                 θ = The angle which the balancing mass makes with m1.

Since the magnitude of centrifugal forces are proportional to the product of 
each mass and its radius, therefore

            ⋅ = × =1 1 200 0.2 40 kg-mm r

           ⋅ = × =2 2 300 0.15 45kg-mm r

                        ⋅ = × =3 3 240 0.25 60 kg-mm r

           ⋅ = × =4 4 260 0.3 78 kg-mm r

1. Analytical method

 
   1 1 1 2 2 2 3 3 3 4 4 4cos cos cos cosH m r m r m r m rΣ = ⋅ θ + ⋅ θ + ⋅ θ + ⋅ θ

        40 cos0 45cos45 60 cos120 78cos255= ° + ° + ° + °

       40 31.8 30 20.2 21.6 kg-m= + − − =
Now resolving vertically,

   Σ = ⋅ θ + ⋅ θ + ⋅ θ + ⋅ θ1 1 1 2 2 2 3 3 3 4 4 4sin sin sin sinV m r m r m r m r

       40 sin0 45sin45 60 sin120 78sin255= ° + ° + ° + °

       0 31.8 52 75.3 8.5 kg-m= + + − =



2 2 2 2.Resultant,   R = ( ) ( ) (21.6) (8.5) 23.2 kg-mH VΣ + Σ = + =
We know that

 23.2m r R⋅ = =    or  = = =23.2 / 23.2 / 0.2 116 kgm r  Ans.

and  tan / 8.5/ 21.6 0.3935V H′θ = Σ Σ = =    or  ′θ  = 21.48°
Since ′θ  is the angle of the resultant R from the horizontal mass of 200 kg, therefore the

angle of the balancing mass from the horizontal mass of 200 kg
θ  = 180° + 21.48° = 201.48° Ans.

2. Graphical method
1. First of all, draw the space diagram showing the positions of all the given masses as

shown in Fig 21.6 ( a).
2. Since the centrifugal force of each mass is proportional to the product of the mass and

radius, therefore
  m1.r1 = 200 × 0.2 =  40 kg-m & m2.r2 = 300 × 0.15 = 45 kg-m

(a) Space diagram. (b) Vector diagram
Fig. 21.6

4. The balancing force is equal to the resultant force, but opposite in direction as shown in
Fig. 21.6 (a). Since the balancing force is proportional to m.r, therefore
          m × 0.2 = vector ea = 23 kg-m   or   m = 23/0.2 = 115 kg Ans.

By measurement we also find that the angle of inclination of the balancing mass ( m) from
the horizontal mass of 200 kg

θ  = 201° Ans.

21.6.21.6.21.6.21.6.21.6. Balancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different Planes.
Example 2. A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg,

400 kg and 200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes
measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks measured
anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing masses ar e to be placed
in planes X and Y . The distance between the planes A and X is 100 mm, between X and Y is 400
mm and between Y and D is 200 mm. If the balancing masses r evolve at a radius of 100 mm, find
their magnitudes and angular positions .

Solution. Given : mA = 200 kg ; mB = 300 kg ; mC = 400 kg ; mD = 200 kg ; rA = 80 mm
= 0.08m ; rB = 70 mm = 0.07 m ; rC = 60 mm = 0.06 m ; rD = 80 mm = 0.08 m ; rX = rY = 100 mm
= 0.1 m

Let     mX = Balancing mass placed in plane X, and
    mY = Balancing mass placed in plane Y.

The position of planes and angular position of the masses (assuming the mass A as
horizontal) are shown in Fig. 21.8 ( a) and (b) respectively.

Assume the plane X as the reference plane (R.P.). The distances of the planes to the right of
plane X are taken as + ve while the distances of the planes to the left of plane X are taken as – ve.



Table 21.2Table 21.2Table 21.2Table 21.2Table 21.2

Plane Mass (m) Radius (r) Cent.force ÷ ω2 Distance from Couple ÷ ω2

kg  m (m.r) kg-m Plane x(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A 200 0.08 16 – 0.1 – 1.6
X(R.P.) mX 0.1 0.1 mX 0 0

B 300 0.07 21 0.2 4.2
C 400 0.06 24 0.3 7.2
Y mY 0.1 0.1 mY 0.4 0.04 mY
D 200 0.08 16 0.6 9.6

 
1. First of all, draw the couple polygon from the data given in Table 21.2 (column 6) as

shown in Fig. 21.8 ( c) to some suitable scale. The vector  d o′ ′  represents the balanced
couple. Since the balanced couple is proportional to 0.04 mY, therefore by measurement,

Y. vector . kg-mm d o′ ′= = 20 04 7 3      or    mY = 182.5 kg Ans.

All dimensions in mm.
(a) Position of planes. (b) Angular position of masses.

          (c) Couple polygon. (d) Force polygon.
Fig. 21.8

By measurement, the angular position of mY is Y 12θ = °  in the clockwise
direction from mass mA (i.e. 200 kg ). Ans.

2. Now draw the force polygon from the data given in Table 21.2 (column 4) as shown in
Fig. 21.8 ( d). The vector eo represents the balanced force. Since the balanced force is
proportional to 0.1 mX, therefore by measurement,

X0.1 vector 35.5 kg-mm eo= =     or    mX = 355 kg Ans.
By measurement, the angular position of mX is X 145θ = ° in the clockwise
direction from mass mA (i.e. 200 kg ). Ans.

Table 21.3Table 21.3Table 21.3Table 21.3Table 21.3



Example 3. A, B, C and D ar e four masses carried by a r otating shaft at radii 100,
125, 200 and 150 mm r espectively. The planes in which the masses r evolve are spaced 600 mm
apart and the mass of B, C and D ar e 10 kg, 5 kg, and 4 kg r espectively.

Find the required mass A and the r elative angular settings of the four masses so that the
shaft shall be in complete balance.

Solution. Given : rA = 100 mm = 0.1 m ; rB = 125 mm = 0.125 m ; rC = 200 mm = 0.2 m ;
rD = 150 mm = 0.15 m ; mB = 10 kg ; mC = 5 kg ; mD = 4 kg

The position of planes is shown in Fig. 21.10 ( a). Assuming the plane of mass A as the
reference plane (R.P.), the data may be tabulated as below :

Table 21.4Table 21.4Table 21.4Table 21.4Table 21.4

Plane Mass (m) Radius (r) Cent. Force ÷ ω2 Distance from Couple ÷ ω2

kg m (m.r)kg-m plane A (l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A(R.P.) mA 0.1 0.1 mA 0 0
B 10 0.125 1.25 0.6 0.75
C 5 0.2 1 1.2 1.2
D 4 0.15 0.6 1.8 1.08

Drawing the couple polygon from the data given in Table 21.4 (column 6). Assume the position 
of mass B in the horizontal direction. By measurement, we find that the angular setting of mass C 

from mass B in the anticlockwise direction, i.e.

   BOC∠  = 240° Ans.
and angular setting of mass D from mass B in the anticlockwise direction, i.e  BOD∠  = 100° Ans.

            Draw the force polygon to some suitable scale, as shown in Fig. 21.10 ( d).
Since the closing side of the force polygon (vector do) is proportional to 0.1 mA, therefore

           by measurement,
      0.1 mA = 0.7 kg-m 2   or   mA = 7 kg Ans.

Now draw OA in Fig. 21.10 ( b), parallel to vector do. By measurement, we find that the
angular setting of mass A from mass B in the anticlockwise direction, i.e.

    BOA∠  = 155° Ans.

All dimensions in mm
(a) Position of planes. (b) Angular position of masses.



22.1.22.1.22.1.22.1.22.1. IntroductionIntroductionIntroductionIntroductionIntroduction

BALANCING OF RECIPROCATING MASSES:
                   The resultant of all the forces acting on the body of the engine due to inertia forces only is known as 
unbalanced force or shaking force. 

Fig. 22.1. Reciprocating engine mechanism.
Let FR = Force required to accelerate the

        reciprocating parts,
FI = Inertia force due to reciprocating parts,

           FN = Force on the sides of the cylinder walls or normal force acting on
       the cross-head guides, and
FB = Force acting on the crankshaft bearing or main bearing.

22.2.22.2.22.2.22.2.22.2. Primary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating Masses
Consider a reciprocating engine mechanism as shown in Fig. 22.1.
Let         m = Mass of the reciprocating parts,

         l = Length of the connecting rod PC,
         r = Radius of the crank OC,
        θ  = Angle of inclination of the crank with the line of stroke PO,
       ω = Angular speed of the crank,
         n = Ratio of length of the connecting rod to the crank radius = l / r.

The acceleration of the reciprocating parts is approximately given by the expression,
 

       

θ = ω ⋅ θ +  
2

R
cos2cosa r

n
∴  Inertia force due to reciprocating parts or force required to accelerate the reciprocating

parts,

        FI = FR = Mass × acceleration = 
2 cos2cosm r

n
θ ⋅ω ⋅ θ +  

The horizontal component of the force exerted
on the crank shaft bearing ( i.e. FBH) is equal and opposite to inertia force ( FI). This force is an
unbalanced one and is denoted by FU.

∴ Unbalanced force,

       
2 2 2

U
cos2 cos2cos . cosF m r m r m r

n n
θ θ = ⋅ω ⋅ θ + = ω ⋅ θ + ⋅ω ⋅ ×  

 = FP + FS

The expression 2( cos )m r⋅ω ⋅ θ  is known as primary unbalanced force  and

2 cos2m r
n

θ ⋅ω ⋅ ×  
is called secondary unbalanced force.
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22.4.22.4.22.4.22.4.22.4. Partial Balancing of LocomotivesPartial Balancing of LocomotivesPartial Balancing of LocomotivesPartial Balancing of LocomotivesPartial Balancing of Locomotives
The locomotives, usually, have two cylinders with cranks placed at right angles to each

other in order to have uniformity in turning moment diagram. The two cylinder locomotives may
be classified as :

1. Inside cylinder locomotives ; and 2. Outside cylinder locomotives.
In the inside cylinder locomotives, the two cylinders are placed in between the planes of

two driving wheels as shown in Fig. 22.3 (a) ; whereas in the outside cylinder locomotives, the two
cylinders are placed outside the driving wheels, one on each side of the driving wheel, as shown in
Fig. 22.3 (b). The locomotives may be

(a) Single or uncoupled locomotives ; and (b) Coupled locomotives.

        (a) Inside cylinder locomotives. (b) Outside cylinder locomotives.
Fig. 22.3

           �           

22.5.22.5.22.5.22.5.22.5. Effect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two Cylinder
LocomotivesLocomotivesLocomotivesLocomotivesLocomotives

22.6.22.6.22.6.22.6.22.6. Variation of Tractive ForceVariation of Tractive ForceVariation of Tractive ForceVariation of Tractive ForceVariation of Tractive Force
The resultant unbalanced force due to the two cylinders, along the line of stroke, is known

as tractive force.
∴  As per definition, the tractive force,

         FT = Resultant unbalanced force
   along the line of stroke

          = 2(1 ) . . cosc m r− ω θ

     + 2(1 ) . . cos(90 )− ω ° + θc m r

          = 2(1 ) . . (cos sin )c m r− ω θ − θ

Thus, the tractive force is maximum or minimum when θ  = 135° or 315°.
∴  Maximum and minimum value of the tractive force or the variation in tractive force

           = 2 2(1 ) . . (cos135 sin135 ) 2 (1 ) . .c m r c m r± − ω ° − ° = ± − ω      �                

22.7.22.7.22.7.22.7.22.7. Swaying CoupleSwaying CoupleSwaying CoupleSwaying CoupleSwaying Couple
The unbalanced forces along the line of stroke for the two cylinders constitute a couple

about the centre line YY between the cylinders as shown in Fig. 22.5.
This couple has swaying effect about a vertical axis, and tends to sway the engine alternately

in clockwise and anticlockwise directions. Hence the couple is known as swaying couple.
Let            a = Distance between the centre lines of the two cylinders.
∴  Swaying couple

           = 2(1 ) . . cos
2
ac m r− ω θ×

       



2(1 ) . . (cos sin )
2
ac m r− ω × θ + θ

   

Thus, the swaying couple is maximum or minimum when θ  = 45° or 225°.

∴  Maximum and minimum value of the swaying couple

 = 2 2(1 ) . . (cos 45 sin 45 ) (1 ) . .
2 2
a ac m r c m r± − ω × ° + ° = ± − ω

22.8.22.8.22.8.22.8.22.8. Hammer BlowHammer BlowHammer BlowHammer BlowHammer Blow
The maximum magnitude of the unbalanced force along the

perpendicular to the line of stroke is known as hammer blow.

∴      Hammer blow = B. ω2.b

2(1 ) . . cos (90 )
2
ac m r− − ω ° + θ

             = 

Example 4. An inside cylinder locomotive has its cylinder centre lines 0.7 m apart and
has a stroke of 0.6 m. The r otating masses per cylinder are equivalent to 150 kg at the crank pin,
and the reciprocating masses per cylinder to 180 kg. The wheel centr e lines are 1.5 m apar t. The
cranks are at right angles. The whole of the r otating and 2/3 of the r eciprocating masses are to 
be balanced by  masses placed at a radius of 0.6 m. Find the magnitude and dir ection of the 
balancing masses. Find the fluctuation in rail pr essure under one wheel, variation of tractive 
effort and the magnitude of swaying couple at a crank speed of 300 r .p.m.

Solution. Given : a = 0.7 m; lB = lC = 0.6 m or rB = rC = 0.3 m; m1 = 150 kg;
 m2 = 180 kg; c = 2/3; rA = rD = 0.6 m; N  = 300 r .p.m. or

2 300 / 60ω = π× = 31.42 rad/s
The equivalent mass of the rotating parts to be balanced per cylinder at the crank pin,

 m = mB = mC = m1 + c.m2 = 150 + 
2
3 × 180 = 270 kg

Magnitude and direction of the balancing masses
Let        mA and mD = Magnitude of the balancing masses

          Aθ and Dθ = Angular position of the balancing masses mA and mD from the first crank B.
The magnitude and direction of the balancing masses may be determined graphically as

discussed below :
1. First of all, draw the space diagram to show the positions of the planes of the wheels and

the cylinders, as shown in Fig. 22.7 ( a). Since the cranks of the cylinders are at right
angles, therefore assuming the position of crank of the cylinder B in the horizontal direc-
tion, draw OC and OB at right angles to each other as shown in Fig. 22.7 ( b).

2. Tabulate the data as given in the following table. Assume the plane of wheel A as the
reference plane.

Table 22.1Table 22.1Table 22.1Table 22.1Table 22.1

Plane mass. Radius Cent. force ÷÷÷÷÷ 2ω Distance from Couple ÷÷÷÷÷ 2ω
(m) kg (r)m (m.r) kg-m plane A (l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A (R.P.) mA 0.6 0.6 mA 0 0
B 270 0.3 81 0.4 32.4
C 270 0.3 81 1.1 89.1
D mD 0.6 0.6mD 1.5 0.9 mD

3. Now, draw the couple polygon from the data given in T able 22.1 (column 6), to some
suitable scale, as shown in Fig 22.7 ( c). The closing side c o′ ′  represents the balancing
couple and it is proportional to 0.9 mD. Therefore, by measurement,

0.9 mD = vector c ′o′ = 94.5 kg-m2   or   mD = 105 kg  Ans.

            



               (a) Position of planes.  (b) Angular position of masses.

                                  

          (c) Couple polygon.             ( d) Force polygon.
Fig. 22.7

4. To determine the angular position of the balancing mass D, draw OD in Fig. 22.7 ( b)
parallel to vector c o′ ′ . By measurement,

     Dθ  = 250° Ans.
5. In order to find the balancing mass A, draw the force polygon from the data given in

Table 22.1 (column 4), to some suitable scale, as shown in Fig. 22.7 ( d), The vector do
represents the balancing force and it is proportional to 0.6 mA. Therefore by measurement,

 0.6 mA = vector do = 63 kg-m or mA = 105 kg  Ans.
6. To determine the angular position of the balancing mass A, draw OA in Fig. 22.7 ( b)

parallel to vector do. By measurement,
     Aθ  = 200° Ans.

Fluctuation in rail pressure
We know that each balancing mass  = 105 kg 

                        Balancing mass for rotating masses,    
                                                                D = 1 150105 105 58.3 kg

270
m
m

× = × =

and balancing mass for reciprocating masses,

         2. 2 180105 105 46.6 kg
3 270

c mB
m

= × = × × =

This balancing mass of 46.6 kg for reciprocating masses gives rise to the centrifugal force.
∴  Fluctuation in rail pressure or hammer blow

 = 2 2. . 46.6 (31.42) 0.6B bω = = 27 602 N. Ans. ... (∵  b = rA = rD)

Variation of tractive ef fort
We know that maximum variation of tractive ef fort

 = 
2 2

2
22(1 ) . . 2 1 180(31.42) 0.3N
3

c m r  ± − ω = ± −  



 = ± 25 127 N  Ans. ... (∵  r = rB = rC)

Swaying couple
We know that maximum swaying couple

 = 2 2
2

20.7 1
(1 ) 3. . 180(31.42) 0.3 N-m

2 2
a c m r

 − −  × ω = ×

= 8797 N-m  Ans.

33.33 37rad/s
/ 2 1.8 / 2
v

D
ω = = =

We know that hammer blow

             2 2. . 33(37) 0.675B b= ± ω =  = ± 30.494 N Ans.

. . . (  EB m′′=∵ , and b = rB = rE)

22.10.22.10.22.10.22.10.22.10. Balancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line Engines
The multi-cylinder engines with the cylinder centre lines in the same plane and on the same

side of the centre line of the crankshaft, are known as In-line engines. The following two conditions
must be satisfied in order to give the primary balance of the reciprocating parts of a multi-cylinder
engine :

1. The algebraic sum of the primary forces must be equal to zero. In other words, the pri-
mary force polygon must *close ; and

2. The algebraic sum of the couples about any point in the plane of the primary forces must
be equal to zero. In other words, the primary couple polygon must close.

22.11.22.11.22.11.22.11.22.11. Balancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line Engines
When the connecting rod is not too long ( i.e. when the obliquity of the connecting rod is

considered), then the secondary disturbing force due to the reciprocating mass arises.
The secondary force,

      
2

 S
cos 2. .F m r

n
θ= ω ×

      
Example 5. A four cylinder vertical engine has cranks 150 mm long. The planes of

rotation of the first, second and fourth cranks are 400 mm, 200 mm and 200 mm r espectively from
the third crank and their r eciprocating masses are 50 kg, 60 kg and 50 kg r espectively. Find the
mass of the r eciprocating parts for the thir d cylinder and the r elative angular positions of the
cranks in order that the engine may be in complete primary balance.

Solution. Given r1 = r2 = r3 = r4 = 150 mm = 0.15 m ; m1 = 50 kg ; m2 = 60 kg ;
m4 = 50 kg

The position of planes is shown in Fig. 22.17 ( a). Assuming the plane of third cylinder as
the reference plane, the data may be tabulated as given in T able 22.8.

Table 22.8Table 22.8Table 22.8Table 22.8Table 22.8

Plane Mass Radius Cent. force 2÷ ω Distance from Couple 2÷ ω
(m) kg (r) m (m.r) kg-m plane 3(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

1 50 0.15 7.5 – 0.4 – 3
2 60 0.15 9 – 0.2 – 1.8

3(R.P.) m3 0.15 0.15m3 0 0
4 50 0.15 7.5 0.2 1.5
First of all, the angular position of cranks 2 and 4 are obtained by drawing the couple

polygon from the data given in T able 22.8 (column 6). Assume the position of crank 1 in the
horizontal direction as shown in Fig 22.17 ( b), The couple polygon, as shown in Fig. 22.17 ( c), is
drawn as discussed below:

1. Draw vector o a′ ′  in the horizontal direction ( i.e. parallel to O1) and equal to – 3 kg-m 2,
to some suitable scale.

2. From point o′  and a′ , draw vectors o b′ ′  and a b′ ′  equal to – 1.8 kg-m 2 and 1.5 kg-m 2

respectively. These vectors intersect at b′.



      (a) Position of planes.       ( b) Angular position of cranks.

      (c) Couple polygon.      ( d) Force polygon.
Fig. 22.17

3. Now in Fig. 22.17 ( b), draw O2 parallel to vector o b′ ′  and O4 parallel to vector a b′ ′ .
By measurement, we find that the angular position of crank 2 from crank 1 in the

anticlockwise direction is

2θ  = 160° Ans.
and the angular position of crank 4 from crank 1 in the anticlockwise direction is

 4θ = 26° Ans.
In order to find the mass of the third cylinder ( m3) and its angular position, draw the force

polygon, to some suitable scale, as shown in Fig. 22.17 ( d), from the data given in T able 22.8
(column 4). Since the closing side of the force polygon (vector co) is proportional to 0.15 m3,
therefore by measurement,

     0.15m3 = 9 kg-m   or   m3 = 60 kg Ans.
 

 

22.13.22.13.22.13.22.13.22.13. Balancing of V-enginesBalancing of V-enginesBalancing of V-enginesBalancing of V-enginesBalancing of V-engines
Consider a symmetrical two cylinder V-engine as shown in Fig. 22.33, The common crank

OC is driven by two connecting rods PC and QC. The lines of stroke OP and OQ are inclined to
the vertical OY, at an angle α as shown in Fig 22.33.

Let          m = Mass of reciprocating parts per cylinder ,
           l = Length of connecting rod,
          r = Radius of crank,
        n = Ratio of length of connecting rod to crank radius =  l / r
         θ  = Inclination of crank to the vertical at any instant,
        ω = Angular velocity of crank.
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Now draw O3 in Fig 22.17 (b), parallel to vector co. By measurement, 
we find that theangular position of crank 3 from crank 1 in the anticlockwise
 direction is θ3 = 227° Ans.
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      �                

The balancing of V-engines is only considered for primary and secondary forces * as
discussed below :

Considering primary forces
We know that primary force acting along the line of stroke of cylinder 1,

      2
P1 . . cos( )F m r= ω α −θ

∴   Component of FP1 along the vertical line OY,

            = 2
P1 cos . .cos( )cosF m rα = ω α −θ α  . . .  (i)

and component of FP1 along the horizontal line OX

= 2
P1 sin . . cos( )sinF m rα = ω α −θ α . . . (ii)

Similarly, primary force acting along the line of stroke of cylinder 2,

    2
P2 . . cos( )F m r= ω α +θ

∴   Component of FP2 along the vertical line OY

= 2
P2 cos . . cos( )cosF m rα = ω α +θ α  . . . (iii)

and component of FP2 along the horizontal line OX ′

                       = 2
P2 sin . . cos( )sinF m rα = ω α +θ α  . . . (iv)

Total component of primary force along the vertical line OY

    PVF = (i) + (iii) 2. . cos [cos( ) cos( )]m r= ω α α −θ + α + θ

            = 2. . cos 2 cos cosm rω α× α θ

... [ cos( ) cos( ) 2cos cos ]α − θ + α + θ = α θ∵

= 2 22 . . cos .cosm rω α θ

and total component of primary force along the horizontal line OX

     PHF = (ii) – (iv) 2. . sin [cos( ) cos( )]m r= ω α α − θ − α + θ

= 2. . sin 2sin sinm rω α× α θ

...  [ cos( ) cos( ) 2sin sin ]α − θ − α + θ = α θ∵

= 2 22 . . sin .sinm rω α θ
∴   Resultant primary force,

       2 2
P PV PH( ) ( )F F F= +

= 2 2 2 2 22 . . (cos .cos ) (sin .sin )m rω α θ + α θ  . . .  (v)
Notes : The following results, derived from equation (v), depending upon the value of α may be noted :

1. When 2 60α = °    or   30 ,α = °

     

2 2 2 2 2
P 2 . . (cos 30 cos ) (sin 30 sin )F m r= ω ° θ + ° θ

We know that inertia force due to reciprocating parts of cylinder 1, along the line of stroke

           2 cos 2( ). . cos( )m r
n
α − θ = ω α − θ +  

and the inertia force due to reciprocating parts of cylinder 2, along the line of stroke

            
2 cos 2( ). . cos( )m r

n
α + θ = ω α − θ +  



2 2
2 3 12 . . cos sin

4 4
m r    ω θ + θ      

 = 2 2 2. 9cos sin
2
m r× ω θ + θ      ...(vi)

2. When 2 90α = °    or  45α = °

      2 2 2 2 2
P 2 . . (cos 45 cos ) (sin 45 sin )F m r= ω ° θ + ° θ

            
2 2

2 21 12 . . cos ) sin . .
2 2

m r m r   = ω θ + θ = ω      
 . . . (vii)

3. When 2 120α = °    or   60α = ° ,

       2 2 2 2 2
P 2 . . (cos 60 cos ) (sin 60 sin )F m r= ω ° θ + ° θ

= 
2 2

2 1 32 . . cos sin
4 4

m r    ω θ + θ      
= 2 2 2. cos 9sin

2
m r× ω θ + θ ... (viii)

Considering secondary forces
We know that secondary force acting along the line of stroke of cylinder 1,

     2
S1

cos 2( ). .F m r
n
α − θ= ω ×

∴   Component of FS1 along the vertical line OY

         2
S1

cos 2( )cos . . cosF m r
n
α − θ= α = ω × × α . . . (ix)

and component of FS1 along the horizontal line OX

          2
S1

cos 2( )sin . . sinF m r
n
α − θ= α = ω × × α  . . . (x)

Similarly, secondary force acting along the line of stroke of cylinder 2,

      2
S2

cos 2( ).F m r
n
α + θ= ω ×

∴   Component of FS2 along the vertical line OY

          2
S2

cos 2( )cos . . cosF m r
n
α + θ= α = ω × × α  . . . (xi)

and component of FS2 along the horizontal line OX ′

           2
S2

cos 2( )sin . . sinF m r
n
α + θ= α = ω × × α  . . . (xii)

Total component of secondary force along the vertical line OY,

    SVF = (ix) + (xi) 2. cos [cos 2( ) cos 2( )]m r
n

= ×ω α α − θ + α + θ

= 2. cos 2 cos 2 cos 2m r
n

×ω α× α θ  = 22 . cos .cos 2 cos 2m r
n

×ω α α θ

and total component of secondary force along the horizontal line OX,

      FSH = (x) – (xii) 2. sin [cos 2( ) cos 2( )]m r
n

= × ω α α − θ − α + θ

           2. sin 2sin 2 .sin 2m r
n

= ×ω α × α θ

       22 . sin .sin 2 .sin 2m r
n

= ×ω α α θ      �                

∴ Resultant secondary force,

      2 2
S SV SH( ) ( )F F F= +

          2 2 22 . (cos .cos 2 .cos 2 ) (sin .sin 2 .sin 2 )m r
n

= ×ω α α θ + α α θ

 . . . (xiii)
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1. Period of vibration or time period . It is the time interval after which the motion is
                 repeated itself.

2. Cycle. It is the motion completed during one time period.
3. Frequency. It is the number of cycles described in one second. In S.I. units, the

                 frequency is expressed in hertz (Hz)

23.3.23.3.23.3.23.3.23.3. Types of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory Motion

The following types of vibratory motion are important from the subject point of view :
1. Free or natural vibrations . When no external force acts on the body , after giving it an

initial displacement, then the body is said to be under free or natural vibrations.
2. Forced vibrations. When the body vibrates under the influence of external force, then

the body is said to be under  forced vibrations.
3. Damped vibrations. When there is a reduction in amplitude over every cycle of vibration,

the motion is said to be damped vibration.

23.4.23.4.23.4.23.4.23.4. Types of Free VibrationsTypes of Free VibrationsTypes of Free VibrationsTypes of Free VibrationsTypes of Free Vibrations
The following three types of free vibrations are important from the subject point of view :
1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsional vibrations.
Consider a weightless constraint (spring or shaft) whose one end is fixed and the other end

carrying a heavy disc, as shown in Fig. 23.1.

B = Mean position ; A and C = Extreme positions.
(a) Longitudinal vibrations.  (b) Transverse vibrations.     ( c) Torsional vibrations.

Fig. 23.1. Types of free vibrations.
1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel to the

axis of the shaft, as shown in Fig. 23.1 (a), then the vibrations are known as longitudinal vibrations.           �           
2. Transverse vibrations. When the particles of the shaft or disc move approximately

perpendicular to the axis of the shaft, as shown in Fig. 23.1 ( b), then the vibrations are known as
transverse vibrations. In this case, the shaft is straight and bent alternately and bending stresses are
induced in the shaft.
              3. Torsional vibrations*. When the particles of the shaft or disc move in a circle about the

             axis of the shaft, as shown in Fig. 23.1 ( c), then the vibrations are known as  torsional vibrations.

23.5.23.5.23.5.23.5.23.5. Natural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal Vibrations
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      �                

δ = Static deflection of the spring in metres due to weight W newtons, and
                  x = Displacement given to the body by the external force, in metres.

Fig. 23.2. Natural frequency of free longitudinal vibrations.
In the equilibrium position, as shown in Fig. 23.2 ( b), the gravitational pull W = m.g, is

balanced by a force of spring, such that W = s. δ .
Since the mass is now displaced from its equilibrium position by a distance x, as shown in

Fig. 23.2 (c), and is then released, therefore after time t,

Restoring force           ( ) . .W s x W s s x= − δ + = − δ −

          . . . .s s s x s x= δ − δ − = −  . . . ( . )W s= δ∵  . . . (i)
 . . . (Taking upward force as negative)

and          Accelerating force = Mass × Acceleration
2

2
d xm
dt

= × . . . (Taking downward force as positive)  . .  .  (ii)

Equating equations (i) and (ii), the equation of motion of the body of mass m after time t is

          
2

2
.d xm s x

dt
× = −    or    

2

2
. 0d xm s x

dt
× + =

∴
2

2
0d x s x

mdt
+ × =  . . . (iii)

We know that the fundamental equation of simple harmonic motion is

     
2

2
2

. 0d x x
dt

+ ω =  . . .  (iv)

Comparing equations (iii) and (iv), we have

       
s
m

ω =

∴     T ime period,      
2 2p

mt
s

π= = π
ω

           �           

23.5.23.5.23.5.23.5.23.5. Natural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal Vibrations
The natural frequency of the free longitudinal vibrations may be determined by the following three methods :

1. Equilibrium Method
Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as shown in

Fig. 23.2 (a).
Let  s = Stiffness of the constraint. It is the force required to produce unit displacement 
              in the direction of vibration. It is usually expressed in N/m.

                m = Mass of the body suspended from the constraint in kg,
                W = Weight of the body in newtons = m.g,



           �           

and natural frequency,     
1 1 1

2 2n
p

s gf
t m

= = =
π π δ

. . . ( . . )m g s= δ∵

Taking the value of g as 9.81 m/s2 and δ in metres,

    
1 9.81 0.4985 Hz

2nf = =
π δ δ

Note : The value of static deflection δ may be found out from the given conditions of the problem. For
longitudinal vibrations, it may be obtained by the relation,

     .
.

W l
E A

δ =

where                       δ   = Static deflection i.e. extension or compression of the constraint,

    W = Load attached to the free end of constraint,
      l = Length of the constraint,
    E = Young’s modulus for the constraint, and

     A = Cross-sectional area of the constraint.

2.  Energy method
               In the case of vibrations, the datum position is the mean or equilibrium position at
which the potential energy of the body or the system is zero. In the free vibrations, no energy is 
transferred to the system or from the system. Therefore the summation of kinetic ener gy and 

           potential energy must be a constant quantity which is same at all the times.
                  

              In other words,

                      ∴  ( . . . .) 0d K E P E
dt

+ =

We know that kinetic energy,

    
21. .

2
dxK E m
dt

 = ×   
      �                

and potential energy,           20 . 1. . .
2 2
s xP E x s x+ = = ×  

. . . ( ∵P.E. = Mean force × Displacement )

∴          
2

21 1 . 0
2 2

d dxm s x
dt dt

   × + ×  =    

           
2

2
1 12 2 0
2 2

dx d x dxm s x
dt dtdt

× × × × + × × × =

or      
2

2
. 0d xm s x

dt
× + =     or     

2

2
0d x s x

mdt
+ × =  . . . (Same as before)

The time period and the natural frequency may be obtained as discussed in the previous
method.

3. Rayleigh’s method
In this method, the maximum kinetic energy at the mean position is equal to the maximum

potential energy (or strain energy) at the extreme position. Assuming the motion executed by the
vibration to be simple harmonic, then

       sin .x X t= ω . . . (i)
where          x = Displacement of the body from the mean position after time t

   seconds, and
          X = Maximum displacement from mean position to extreme position.

Now, differentiating equation (i), we have

     



cos .dx X t
dt

= ω× ω

Since at the mean position, t = 0, therefore maximum velocity at the mean position,

        .dxv X
dt

= = ω

∴    Maximum kinetic ener gy at mean position

          2 2 21 1. . .
2 2

m v m X= × = × ω  . . . (ii)

and maximum potential energy at the extreme position

          
20 . 1 .

2 2
s X X s X+ = = ×  

 . . . (iii)

Equating equations (ii) and (iii),

     2 2 21 1
. . .

2 2
m X s X× ω = ×     or   2 s

m
ω =  , and s

m
ω =

∴    Time period,        
2 2p

s
t

m
π= = π

ω
. . . (Same as before)           �                      �           

and natural frequency, 1 1
2 2n

p

s
f

t m

ω
= = =

π π
. . . (Same as before)

23.6.23.6.23.6.23.6.23.6. Natural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse Vibrations
Consider a shaft of negligible mass, whose one

end is fixed and the other end carries a body of weight
W, as shown in Fig. 23.3.

Let            s = Stiffness of shaft,
         δ = Static deflection due to

    weight of the body,
            x = Displacement of body from

      mean position after time t.
           m = Mass of body = W/g

As discussed in the previous article,
    Restoring force  = – s.x . . . (i)

  and accelerating force       2

2
d x

m
dt

= × . . . (ii)

Equating equations (i) and (ii), the equation of motion becomes

   
2

2
.d x

m s x
dt

× = −       or      
2

2
. 0d x

m s x
dt

× + =

∴     
2

2
0d x s

x
mdt

+ × =                    . . . (Same as before )

Hence, the time period and the natural frequency of the transverse vibrations are same as
that of longitudinal vibrations. Therefore

Time period, 

Fig. 23.3. Natural frequency of free
       transverse vibrations.

2p
m

t
s

= π

and natural frequency,    1 1 1
2 2n

p

s g
f

t m
= = =

π π δ

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection
curve of a cantilever beam loaded at the end.  The static deflection of a cantilever beam loaded at the free end is

3

3
Wl

EI
δ =  



Example 1. A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass
100 kg at its fr ee end. The Y oung's modulus for the shaft material is 200 GN/m 2. Determine the
frequency of longitudinal and transverse vibrations of the shaft.

Solution. Given : d = 50 mm = 0.05 m ; l = 300 mm = 0.03 m ; m = 100 kg ;
E = 200 GN/m 2 = 200 ×10 9 N/m2

We know that cross-sectional area of the shaft,

       
2 2 3 2(0.05) 1.96 10 m

4 4
A d −π π

= × = = ×

and moment of inertia of the shaft,

      4 4 6 4(0.05) 0.3 10 m
64 64

I d −π π= × = = ×

Frequency of longitudinal vibration
We know that static deflection of the shaft,

               6
3 9

. 100 9.81 0.3 0.751 10
. 1.96 10 200 10

W l
A E

−
−

× ×δ = = = ×
× × ×

 m

( . )W m g=… ∵

∴Frequency of longitudinal vibration,

     
6

0.4985 0.4985 575
0.751 10

nf −
= = =

δ ×
 Hz  Ans.

Frequency of transverse vibration
We know that static deflection of the shaft,

      
3 3

3
9 6

. 100 9.81 (0.3) 0.147 10
3 . 3 200 10 0.3 10
W l

E I
−

−
× ×δ = = = ×

× × × ×
 m

∴     Frequency of transverse vibration,

     3

0.4985 0.4985

0.147 10
nf −

= =
δ ×

 = 41 Hz Ans.

23.7.23.7.23.7.23.7.23.7. Effect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and Transverse
VibrationsVibrationsVibrationsVibrationsVibrations
In deriving the expressions for natural frequency of

longitudinal and transverse vibrations, we have neglected the inertia
of the constraint i.e. shaft. We shall now discuss the ef fect of the
inertia of the constraint, as below :

1. Longitudinal vibration
Consider the constraint whose one end is fixed and other end

is free as shown in Fig. 23.4.
Let   l = Length of the constraint,
            mC = Total mass of the constraint 

Fig. 23.4. Effect of inertia
of the constraint in

longitudinal vibrations.           �           
When the mass of the constraint mC and the mass

of the disc m at the end is given, then natural frequency of vibration,

      
C

1
2

3

n
sf mm

=
π +

2. Transverse vibration
Consider a constraint whose one end is fixed and the other

end is free as shown in Fig. 23.5.
    

C

1
332
140

n
sf mm

=
π +



23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)
               In vibrating systems, the effect of friction is referred to as damping. The damping provided
by fluid resistance is known as viscous damping.
 
              The resistance to the motion of the body is 
provided partly by the medium in which the vibration 
takes place and partly by the internal friction, and in 
some cases partly by a dash pot or other external 
damping device.

Consider a vibrating system, as shown in
Fig. 23.17, in which a mass is suspended from one
end of the spiral spring and the other end of which
is fixed. A damper is provided between the mass
and the rigid support.

Let   m = Mass suspended from the spring,
 s = Stiffness of the spring,

  x = Displacement of the mass from the mean position at time t,
           δ = Static deflection of  the spring  = m.g/s, and

             c = Damping coefficient or the damping  force per unit velocity .
                     Since in viscous damping, it is assumed that the frictional resistance to the motion of the body 
       is directly proportional to  the speed of the movement, therefore 

                   Damping force or frictional force on the mass acting in opposite direction to the motion of the mass
dxc
dt

= ×

Accelerating force on the mass, acting along the motion of the mass

2

2
d xm
dt

= ×

Fig. 23.17. Frequency of free damped
vibrations.

      �                

and spring force on the mass, acting in opposite direction to the motion of the mass, = s.x
                             Therefore the equation of motion becomes

         

2

2 .d x dxm c s x
dtdt

 × = − × +  

 …(Negative sign indicates that the force opposes the motion)

or      
2

2 0d x c dx s x
m dt mdt

+ × + × =

This is a dif ferential equation of the second order . Assuming a solution of the form
x = ek t where k is a constant to be determined.

∴      The two roots of the equation are

     

2

1 2 2
c c sk
m m m

 = − + −  

and       
2

2 2 2
c c sk
m m m

 = − − −  
The most general solution of the dif ferential equation with its right hand side equal to

zero has only complementary function and it is given by

       1 2
1 2

k t k tx C e C e= +  . . . (ii)

where C1 and C2 are two arbitrary constants which are to be determined from the initial conditions
of the motion of the mass.



           �           

1. When the roots are real (overdamping)

If  
2

2
c s
m m

  >  
, then the roots k1 and k2 are real but negative. This is a case of overdamping

or large damping and the mass moves slowly to the equilibrium position. This motion is known as
aperiodic. When the roots are real, the most general solution of the dif ferential equation is

       1 2
1 2

k t k tx C e C e= +

         

2 2

2 2 2 2
1 2

c c s c c st t
m m m m m m

C e C e

         − + − − − −            = +

2. When the roots are complex conjugate (underdamping)

If 
2

2
s c
m m

 >   
, then the radical ( i.e. the term under the square root) becomes negative.

The two roots k1 and k2 are then known as complex conjugate. This is a most practical case of
damping and it is known as underdamping or small damping. The two roots are

      

2

1 2 2
c s ck i
m m m

 = − + −   

and      
2

2 2 2
c s ck i
m m m

 = − − −   

      cos .at
dx Ae t−= ω  . . .  (vi)

where      
2

2 2– ( )
2d n

s c a
m m

 ω = = ω −  
 ; and 

2
ca
m

=

We see from equation (vi), that the motion of the mass is simple harmonic whose circular

damped frequency is dω  and the amplitude is atAe−  which diminishes exponentially with time as
shown in Fig. 23.18. Though the mass eventually returns to its equilibrium position because of its
inertia, yet it overshoots and the oscillations may take some considerable time to die away .

Fig. 23.18. Underdamping or small damping.
We know that the periodic time of vibration,

 
2 2 2

2 2 2

( )
2

p
d n

t
as c

m m

π π π= = =
ω ω − −   

and frequency of damped vibration,

    
2

2 21 1 1( )
2 2 2 2

d
d n

p

s cf a
t m m

ω  = = = ω − = −  π π π  
 . . . (vii)



3. When the roots are equal (critical damping)

If 
2

2
c s
m m

  =  
, then the radical becomes zero and the two roots k1 and k2 are equal. 
 

This is a case of critical damping. In other words, the critical damping is said to occur when 
frequency of damped vibration (fd) is zero (i.e. motion is aperiodic). This type of damping is 
also avoided because the mass moves back rapidly to its equilibrium position, in
the shortest possible time.

For critical damping, equation (ii) may be
written as

      

− −ω= + = +21 2 1 2( ) ( ) n

c t tmx C C e C C e ...  
= = ω 

  
∵

2 n
c s
m m

Thus the motion is again aperiodic. The critical damping coef ficient (cc) may be obtained
by substituting cc for c in the condition for critical damping, i.e.

          
2

2
cc s
m m

  =  
      or     2 2c n

sc m m
m

= = ×ω

The critical damping coef ficient is the amount of damping required for a system to be
critically damped.

23.14.23.14.23.14.23.14.23.14. Damping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping Ratio
The ratio of the actual damping coef ficient (c) to the critical damping coef ficient (cc) is

known as damping factor or damping ratio. Mathematically,

Damping factor           
2 .c n

c c
c m

= =
ω

. . . ( 2 . )c nc = π ω∵

23.15.23.15.23.15.23.15.23.15. Logarithmic DecrementLogarithmic DecrementLogarithmic DecrementLogarithmic DecrementLogarithmic Decrement
It is defined as the natural logarithm of the amplitude reduction factor . The amplitude

reduction factor is the ratio of any two successive amplitudes on the same side of the mean position.
If x1 and x2 are successive values of the amplitude on the same side of the mean position,

as shown in Fig. 23.18, then amplitude reduction factor ,

    1
( )

2

p

p

at at
a t t

x Ae e
x Ae

−

− += =  = constant

where tp is the period of forced oscillation or the time difference between two consecutive amplitudes.
As per definition, logarithmic decrement,

       
1

2
log log patx e

x
 

δ = = 
 

or                   1
2 22

2 2
log .

( )
e p

d n

x aa t a
x a

  π × π
δ = = = × =  ω  ω −

. . . 2 2

2

( )c

c

c c

π×=
−

In general, amplitude reduction factor,

     
31 2

2 3 4 1
.... patn

n

x xx x e
x x x x +

= = = = =  = constant

∴      Logarithmic decrement,

      
2 21

2
log .

( )
n

e p
n c

x ca t
x c c+

  π×
δ = = = 

  −

     



Example 2. The following data ar e given for a vibratory system with viscous damp-
ing:

Mass = 2.5 kg ; spring constant = 3 N/mm and the amplitude decr eases to 0.25 of the
initial value after five consecutive cycles.

Determine the damping coefficient of the damper in the system.
Solution. Given : m = 2.5 kg ; s = 3 N/mm = 3000 N/m ; x6 = 0.25 x1

We know that natural circular frequency of vibration,

                  
3000
2.5

ω = =n
s
m

 = 34.64 rad/s

Let             c = Damping coefficient of the damper in N/m/s,
x1 = Initial amplitude, and

        x6 = Final amplitude after five consecutive cycles = 0.25 x1    …(Given)
We know that

3 51 2 4

2 3 4 5 6

x xx x x
x x x x x

= = = =

or
5

3 51 1 2 4 1

6 2 3 4 5 6 2

x xx x x x x
x x x x x x x

 
= × × × × =  

 

∴

1/ 5 1/ 5
1/ 51 1 1

2 6 1
(4) 1.32

0.25
x x x
x x x

   
= = = =   

  
We know that

1
2 22

2
log

( )
e

n

x a
x a

  π
= × 

  ω −

2 2

2log (1.32)
(34.64)

e a
a

π
= ×

−
     or        

2

20.2776
1200

a

a

× π=
−

Squaring both sides,

2

2
39.50.077

1200
a
a

=
−

                  or      2 292.4 0.077 39.5a a− =

∴         2 2.335a =      or     a = 1.53

We know that     a = c / 2m      or     c = a × 2m =  1.53 × 2 × 2.5 = 7.65 N/m/s   Ans.

Example 3. The measurements on a mechanical vibrating system show that it has a
mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness
5.4 N/mm. If the vibrating system have a dashpot attached which exerts a for ce of 40 N when the
mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2. damping factor, 3. logarithmic
decrement, and 4. ratio of two consecutive amplitudes.

Solution. Given : m = 8 kg ; s = 5.4 N/mm = 5400 N/m
Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore
Damping coefficient (actual),

       c = 40 N/m/s           �           

1. Critical damping coef ficient
We know that critical damping coef ficient,

     

54002 . 2 2 8
8c n

sc m m
m

= ω = × = ×  = 416 N/m/s  Ans.

         



2. Damping factor
We know that damping factor

         

40
416

= =
c

c
c

 = 0.096 Ans.

3. Logarithmic decrement
We know that logarithmic decrement,

     2 2 2 2

2 2 40

( ) (416) (40)

π π×δ = =
− −c

c

c c
 = 0.6 Ans.

4. Ratio of two consecutive amplitudes
Let     xn and xn+1 = Magnitude of two consecutive amplitudes,
We know that logarithmic decrement,

      1
log

+

 
δ =  

 
n

e
n

x
x

 or 0.6

1
(2.7)δ

+
= =n

n

x
e

x
 = 1.82 Ans

       

54002 . 2 2 8
8c n

sc m m
m

= ω = × = ×  = 416 N/m/s  Ans.

2. Damping factor
We know that damping factor

         

Example 4. The mass of a single degree damped vibrating system is 7.5 kg and makes
24 free oscillations in 14 seconds when disturbed fr om its equilibrium position. The amplitude of
vibration reduces to 0.25 of its initial value after five oscillations. Determine : 1. stiffness of the
spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to
critical damping.

Solution. Given : m = 7.5 kg
Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations,

   fn = 24/14 = 1.7

and   2 2 1.7 10.7n nfω = π× = π× =  rad/s

1. Stiffness of the spring
Let       s =  Stiffness of the spring in N/m.

We know that      2( ) /n s mω =  or 2 2( ) (10.7) 7.5ns m= ω =  = 860 N/m Ans.

2. Logarithmic decrement
Let      x1 =  Initial amplitude,

x6 = Final amplitude after five oscillations = 0.25 x1 ... (Given)

∴          
5

3 51 1 2 4 1

6 2 3 4 5 6 2

x xx x x x x
x x x x x x x

 
= × × × × =  

 
1 2 3 4 5

2 3 4 5 6

x x x x x
x x x x x

 
= = = = 

 
… ∵

1/ 5 1/ 5
1/ 51 1 1

2 6 1
(4) 1.32

0.25
x x x
x x x

   
= = = =   

  
We know that logarithmic decrement,

    1

2
log log 1.32e e

x
x

 
δ = = 

 
 = 0.28 Ans.

3. Damping factor
Let         c = Damping coefficient for the actual system, and

       cc = Damping coefficient for the critical damped system.
We know that logarithmic decrement ( δ ),

 2 2 2 2

2 20.28
( ) (10.7)n

a a

a a

× π × π= =
ω − −



2

2
39.50.0784

114.5
a

a
×=

−
 . . . (Squaring both sides)

         8.977 – 0.0784 a2 = 39.5 a2     or       a2 = 0.227     or    a = 0.476
We know that             a = c / 2m         or    c = a × 2m = 0.476 × 2 × 7.5 = 7.2 N/m/s Ans.

and       2 . 2 7.5 10.7c nc m= ω = × ×  = 160.5 N/m/s  Ans.

∴              Damping factor = c/cc = 7.2 / 160.5 = 0.045  Ans.

23.16.23.16.23.16.23.16.23.16. Frequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced Vibrations

Consider a system consisting of spring, mass and
damper as shown in Fig. 23.19. Let the system is acted
upon by an external periodic ( i.e. simple harmonic)
disturbing force,

      cos .xF F t= ω

where                     F = Static force, and
                   ω= Angular velocity of

     the periodic disturbing
   force.

When the system is constrained to move in vertical
guides, it has only one degree of freedom. Let at sometime
t, the mass is displaced downwards through a distance x
from its mean position.

Using the symbols as discussed in the previous article, the equation of motion may be
written as 2

2
. cos .d x dxm c s x F t

dtdt
× = − × − + ω

or    
2

2
. cos .d x dxm c s x F t

dtdt
× + × + = ω . . . (i)

Fig. 23.19. Frequency of under
damped forced vibrations.

      �                

This equation of motion may be solved either by differential equation method or by graphi-
cal method as discussed below :

1. Differential equation method
The equation (i) is a differential equation of the second degree whose right hand side is

some function in t. The solution of such type of dif ferential equation consists of two parts ; one
part is the complementary function and the second is particular integral. Therefore the solution
may be written as

        x = x1 + x2
where         x1 = Complementary function, and

      x2 = Particular integral.

∴      The complete solution of the dif ferential equation (i) becomes
                                x = x1 + x2

                     2 2 2 2
. cos ( . ) cos( . )

. ( . )
at

d
FC e t t

c s m
−= ω − θ + × ω − φ

ω + − ω

In actual practice, the value of the complementary function x1 at any time t is much smaller
as compared to particular integral x2. Therefore, the displacement x, at any time t, is given by the
particular integral x2 only.

∴                     
2 2 2 2

cos ( . )
. ( . )

Fx t
c s m

= × ω − φ
ω + − ω

... (vii)

∴      Maximum displacement or the amplitude of forced vibration,

                           2 2 2 2. ( . )
max

Fx
c s m

=
ω + − ω  . . . (viii)

Notes : 1. The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takesplace

                          



           �           

23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier
It is the ratio of maximum displacement of the forced vibration (x max ) to the deflection

due to the static force  F(xo). We have proved in the previous article that the maximum displace-
ment or the amplitude of forced vibration,

   
22 2 2

2 2
. 1

( )

o
max

n

x
x

c
s

=
 ω ω+ −  ω 

    Fig. 23.21.  Relationship between magnification factor and phase angle for dif ferent values of / nω ω .

∴     Magnification factor or dynamic magnifier ,

       
22 2 2

2 2

1

. 1
( )

max

o

n

x
D

x
c

s

= =
 ω ω+ −  ω 

... (i)

          
22 2

2

1

2 . 1
. ( )c n n

c
c

=
  ω ω+ −     ω ω   

. . . 
Example 5. A mass of 10 kg is suspended fr om one end of a helical spring, the other

end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude
to decrease to one-tenth of the initial value in four complete oscillations. If a periodic for ce of
150 cos 50 t N is applied at the mass in the vertical dir ection, find the amplitude of the for ced
vibrations. What is its value of r esonance ?

Solution.  Given :  m = 10 kg ; s = 10 N/mm = 10 × 10 3 N/m ; 1
5 10

xx =

Since the periodic force, cos . 150cos50xF F t t= ω = , therefore

Static force,        F = 150 N
and angular velocity of the periodic disturbing force,

       50ω = rad/s

    



      �                

Amplitude of the forced vibrations
Since the amplitude decreases to 1/10th of the initial value in four complete oscillations,

therefore, the ratio of initial  amplitude ( x1) to the final amplitude after four complete oscillations
(x5) is given by

                             
4

31 1 2 4 1

5 2 3 4 5 2

 
= × × × =  

 

xx x x x x
x x x x x x         . . . 1 2 3 4

2 3 4 5

x x x x
x x x x

 
= = = 

 
∵

∴                   
1/ 4 1/ 4

1/ 41 1 1

2 5 1
(10) 1.78

/10
x x x
x x x

   
= = = =   

  
. . . 1

5 10
xx =  

We know that

        
1

2 22

2
log

( )

  π
= × 

  ω −
e

n

x a
x a

          2 2

2log 1.78
(31.6)

π= ×
−

e a
a

 or 
2

20.576
1000

× π=
−

a

a
Squaring both sides and rearranging,

         39.832 a2 = 332     or    a2 = 8.335    or     a = 2.887
We know that           a = c/2m   or     c = a × 2m = 2.887 × 2 × 10 = 57.74 N/m/s

and deflection of the system produced by the static force F,
       xo = F/s = 150/10 × 10 3 = 0.015 m

We know that amplitude of the forced vibrations,

  
22 2 2

2 2
. 1

( )

o
max

n

xx
c

s

=
 ω ω+ − 

ω  

           
222 2

3 2

0.015 0.015
0.083 2.25

(57.74) (50) 501
31.6(10 10 )

= =
+  + −   ×   

           30.015 9.8 10
1.53

−= = ×  m = 9.8 mm  Ans.

Amplitude of forced vibrations at resonance
We know that amplitude of forced vibrations at resonance,

    
3

0
10 100.015 0.0822

. 57.54 31.6max
n

sx x
c

×= × = × =
ω ×  m = 82.2 mm Ans.

Example 6. A body of mass 20 kg is suspended fr om a spring which deflects 15 mm
under this load. Calculate the frequency of free vibrations and verify that a viscous damping force
amounting to appr oximately 1000 N at a speed of 1 m/s is just-sufficient to make the motion
aperiodic.

We know that angular speed or natural circular frequency of free vibrations,

    
310 10

10
×ω = =n

s
m

 = 31.6 rad/s

If when damped to this extent, the body is subjected to a disturbing for ce with a maximum
value of 125 N making 8 cycles/s, find the amplitude of the ultimate motion .

Solution . Given : m = 20 kg ; δ   = 15 mm = 0.015 m ; c = 1000 N/m/s ; F = 125 N ;
f = 8 cycles/s

Frequency of free vibrations
We know that frequency of free vibrations,

      



1 1 9.81
2 2 0.015

= =
π δ πn

gf  = 4.07 Hz Ans.

The critical damping to make the motion aperiodic is such that damped frequency is zero,
i.e.

 
2

2
  =  

c s
m m

∴          2 .4 4 . 4= × = = × ×
δ

s m gc m s m m
m

. . . 
.m gs = δ 

∵

          20 9.814 20 1023
0.015

×= × × =  N/m/s

This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore a
viscous damping force amounting to approximately 1000 N at a speed of 1 m/s is just sufficient to
make the motion aperiodic. Ans.

Amplitude of ultimate motion
We know that angular speed of forced vibration,

       2 2 8 50.3ω = π× = π× =f  rad/s

and stiffness of the spring,      s = m.g/ δ  =  20 × 9.81 / 0.015 = 13.1 × 10 3 N/m
∴      Amplitude of ultimate motion i.e. maximum amplitude of forced vibration,

  2 2 2 2. ( . )
max

Fx
c s m

=
ω + − ω

          2 2 3 2 2

125

(1023) (50.3) [13.1 10 20(50.3) ]
=

+ × −

          36 6

125 125
63.7 102600 10 1406 10

= =
×× + ×

 = 1.96 × 10 –3 m

           = 1.96 mm  Ans.
Example 7. A machine part of mass 2 kg vibrates in a viscous medium. Determine the

damping coefficient when a harmonic exciting for ce of 25 N r esults in a r esonant amplitude of
12.5 mm with a period of 0.2 second. If the system is excited by a harmonic for ce of frequency
4 Hz what will be the per centage increase in the amplitude of vibration when damper is r emoved
as compared with that with damping .

Solution . Given : m = 2 kg ; F = 25 N ; Resonant xmax = 12.5 mm = 0.0125 m ;
tp = 0.2 s ; f = 4 Hz

Damping coefficient
Let         c = Damping coefficient in N/m/s.
We know that natural circular frequency of the exicting force,

    2 / 2 / 0.2ω = π = πn pt  = 31.42 rad/s

We also know that the maximum amplitude of vibration at resonance ( xmax ),

25 0.7960.0125
. 31.42

= = =
ω ×n

F
c c c

 or c = 63.7 N/m/s  Ans.

Percentage increase in amplitude
Since the system is excited by a harmonic force of frequency (  f ) = 4 Hz, therefore corre-

sponding circular frequency

       2 2 4 25.14ω = π× = π× =f  rad/s

We know that maximum amplitude of vibration with damping,

 



2 2 2 2. ( . )
max

Fx
c s m

=
ω + − ω

         

2 2 2 2 2

25

(63.7) (25.14) [2(31.42) 2 (25.14) ]
=

+ −

. . . 2 2( ) / or ( )n ns m s m ω = = ω ∵

          
6 6

25 25 0.0143
17492.56 10 0.5 10

= = =
× + ×

 m = 14.3 mm

and the maximum amplitude of vibration when damper is removed,

 2 22 2
25 25

7102[(31.42) (25.14) ]( )
max

n

Fx
m

= = =
  −ω − ω 

 = 0.0352 m

          = 35.2 mm
∴     Percentage increase in amplitude

          
35.2 14.3

14.3
−=  = 1.46    or    146%  Ans.

     23.18.23.18.23.18.23.18.23.18. Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility
A little consideration will show that when an

unbalanced machine is installed on the foundation, it produces
vibration in the foundation. In order to prevent these vibrations
or to minimise the transmission of forces to the foundation,
the machines are mounted on springs and dampers or on some
vibration isolating material, as shown in Fig. 23.22. The
arrangement is assumed to have one degree of freedom, i.e. it
can move up and down only .

It may be noted that when a periodic ( i.e. simple
harmonic) disturbing force F cos ω t is applied to a machine

Fig. 23.22. Vibration isolation.      �                

of mass m supported by a spring of stiffness s, then the force is transmitted by means of the spring
and the damper or dashpot to the fixed support or foundation.

The ratio of the force transmitted ( FT) to the force applied ( F) is known as the isolation
factor or transmissibility ratio of the spring support.

We have discussed above that the force transmitted to the foundation consists of the fol-
lowing two forces :

1. Spring force or elastic force which is equal to s. xmax, and
2. Damping force which is equal to c. ω .xmax.
Since these two forces are perpendicular to one another , as shown in Fig.23.23, therefore

the force transmitted,

     
2 2

T ( . ) ( . . )max maxF s x c x= + ω

          2 2 2.maxx s c= + ω
∴     T ransmissibility ratio,

        
2 2 2

T .maxx s cF
F F

+ ωε = =

.

  

Fig. 23.23

2

22 2

2

2 .1
.

2 . 1
. ( )

 ω+  ω ε =
  ω ω+ −    ω ω   

c n

c n n

c
c

c
c

. . . (i)

When the damper is not provided, then c = 0, and

        2
1

1 ( / )
ε =

− ω ωn
 . . .  (ii)



Example 8. The mass of an electric motor is 120 kg and it runs at 1500 r .p.m. The
armature mass is 35 kg and its C.G. lies 0.5 mm fr om the axis of rotation.  The motor is mounted
on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed
force. Assume that the mass of the motor is equally distributed among the five springs.

Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the base at the
operating speed; and 3. natural frequency of the system.

Solution. Given m1 = 120 kg ;  m2 = 35 kg;   r = 0.5 mm = 5 × 10 –4 m;  ε = 1 / 11;
N = 1500 r.p.m.  or  ω = 2π × 1500 / 60 = 157.1 rad/s ;
1. Stiffness of each spring

Let                   s = Combined stiffness of the spring in N-m, and
            ωn = Natural circular frequency of vibration of the machine in

  rad/s.
We know that transmissibility ratio ( ε),

     

2 2

2 2 2 2 2
( ) ( )1 1

11 ( ) (157.1) ( )
1

n n

n n

n

ω ω
= = =

ω − ω − ω ω − ω 

or                    2 2 2(157.1) ( ) 11( )n n− ω = ω    or   2( ) 2057ω =n   or   45.35ω =n  rad/s

We know that     1/n s mω =

                 2
1( ) 120 2057 246 840 N / mns m= ω = × =

Since these are five springs, therefore stif fness of each spring
        = 246 840 / 5 = 49 368 N/m  Ans.

2.  Dynamic force transmitted to the base at the operating speed (i.e. 1500 r.p.m.  or  157.1 rad/s)
We know that maximum unbalanced force on the motor due to armature mass,

     2 2 4
2 35(157.1) 5 10 432 NF m r −= ω ⋅ = × =

∴ Dynamic force transmitted to the base,

     
T

1
. 432 39.27 N

11
F F= ε = × =  Ans.

3. Natural frequency of the system
We have calculated above that the natural frequency of the system,

     45.35ω =n  rad/s   Ans.



1 0.4985
2n

gf = =
π δ δ

 Hz

.
.

Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (δδδδδ) for the various types of beams) for the various types of beams) for the various types of beams) for the various types of beams) for the various types of beams
and under various load conditions.and under various load conditions.and under various load conditions.and under various load conditions.and under various load conditions.

S.No. Type of beam Deflection (δδδδδ)

1. Cantilever beam with a point load W at the δ =
3

3
Wl

EI
 (at the free end)

free end.

2. Cantilever beam with a uniformly δ =
4

8
wl
EI

 (at the free end)
distributed load of w per unit length.

3. Simply supported beam with an eccentric δ =
2 2

3
Wa b

E I l  (at the point load)
point load W.

4. Simply supported beam with a central point δ =
3

48
W l

EI
 (at the centre)

load W.

Fig. 23.6. Simply supported beam
with a point load.

23.8.23.8.23.8.23.8.23.8. Natural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a Point
Load Acting Over aLoad Acting Over aLoad Acting Over aLoad Acting Over aLoad Acting Over a Simply Supported ShaftSimply Supported ShaftSimply Supported ShaftSimply Supported ShaftSimply Supported Shaft

If δ is the static deflection due to load W, then the
natural frequency of the free transverse vibration is
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Example 1. A shaft of length 0.75 m, supported freely at the ends, is carrying a body of
mass 90 kg at 0.25 m fr om one end. Find the natural fr equency of transverse vibration. Assume
E = 200 GN/m 2 and shaft diameter = 50 mm.

Solution. Given : l = 0.75 m ; m = 90 kg ; a = AC = 0.25 m ; E = 200 GN/m2 = 200 × 109

N/m2; d = 50 mm = 0.05 m
The shaft is shown in Fig. 23.7.
We know that moment of inertia of the shaft,

       
4 4 4(0.05) m

64 64
I dπ π= × =

          6 40.307 10 m−= ×
and static deflection at the load point ( i.e. at point C),

       

2 2 2 2
3

9 6
90 9.81(0.25) (0.5) 0.1 10

3 3 200 10 0.307 10 0.75
Wa b

E I l
−

−
×δ = = = ×

× × × × ×
 m

. . . ( ∵b = BC = 0.5 m)

Fig. 23.7

We know that natural frequency of transverse vibration,

  
3

0.4985 0.4985

0.1 10
nf −

= =
δ ×

 = 49.85 Hz Ans.

   23.9.23.9.23.9.23.9.23.9. Natural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to Uniformly
Distributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported Shaft
Consider a shaft AB carrying a uniformly distributed load of w per unit length as shown in

Fig. 23.9.
Let     y1 = Static deflection at the middle of the shaft,

     a1= Amplitude of vibration at the middle of the shaft, and
    w1 = Uniformly distributed load per unit static deflection at the

 middle of the shaft = w/y1.

Fig. 23.9. Simply supported shaft carrying a uniformly distributed load.



Now, consider a small section of the shaft at a distance x from A and length xδ .
Let        y = Static deflection at a distance x from A, and

     a = Amplitude of its vibration.
∴     Work done on this small section

         
1

1 1 1
1 1

1 1 1. . .
2 2 2

aww a x a a x a w a x
y y

= × δ × = × × δ × = × × × × δ

Since the maximum potential energy at the extreme position is equal to the amount of work
done to move the beam from the mean position to one of its extreme positions, therefore

Maximum potential energy at the extreme position

         
1

10

1
2

.
l

aw a dx
y

= × × ×∫  . . .  (i)

Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection
curve of a beam, therefore

     1

1

a a
y y

=  = Constant, C      or     1

1

a C
y

=  and a = y.C

Substituting these values in equation (i), we have maximum potential energy at the extreme
position

        2

0 0

1 1. . . .
2 2

l l

w C y C dx w C y dx= × × × = ×∫ ∫  . . . (ii)
           �           

Since the maximum velocity at the mean position is 1.aω , where ω is the circular frequency
of vibration, therefore

Maximum kinetic energy at the mean position

          
2 2 2 2

0 0

1 . ( . ) .
2 2

l l
w dx wa C y dx

g g
= × ω = ×ω ×∫ ∫  . . . (iii)

. . .(Substituting a = y.C )
We know that the maximum potential energy at the extreme position is equal to the maximum

kinetic energy at the mean position, therefore equating equations (ii) and (iii),

           
2 2 2 2

0 0

1 . .
2 2

l l
ww C y dx C y dx
g

× × = ×ω ×∫ ∫

∴                  2 0

2

0

.

.

l

l

g y dx

y dx

ω =
∫

∫
      or       0

2

0

.

.

l

l

g y dx

y dx

ω =
∫

∫
. . . (iv)

When the shaft is a simply supported, then the static deflection at a distance x from A is

 
4 3 3( 2 )

24
wy x l x l x
EI

= − + . . . (v)

where        w = Uniformly distributed load unit length,
       E = Young’s modulus for the material of the shaft, and
        I = Moment of inertia of the shaft.



2
4 4

24 630
155

EI EI gg
wl wl

= × = π  . . .  (viii)

∴    Natural frequency due to uniformly distributed load,

     
2

4 42 2 2n
EI g EIgf
wl wl

ω π π= = =
π π . . . (ix)

We know that the static deflection of a simply supported shaft due to uniformly distributed
load of w per unit length, is

      
4

S
5

384
wl

EI
δ =       or     4

S

5
384

EI
wl

=
δ

Equation (ix) may be written as

     
S S

5 0.5615
2 384n

gf π
= =

δ δ
 Hz . . . (Substituting, g = 9.81 m/s 2)

23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at
 Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load
Consider a shaft AB fixed at both ends

and carrying a uniformly distributed load of w
per unit length as shown in Fig. 23.10.

We know that the static deflection at a
distance x from A is given by

      *
4 2 2 3( 2 )

24
wy x l x lx
EI

= + −  . . .  (i)

*

       

Fig. 23.10. Shaft fixed at both ends
carrying a uniformly distributed load.

2
2 4 3 3

0 0

( 2 )
24

l l
wy dx x l x l x dx
EI

 
= − + 

 ∫ ∫

           

2 9

2 2
31
630576

w l
E I

= × . . . (vii)

Substituting the value in equation (iv) from equations (vi) and (vii), we get circular frequency
due to uniformly distributed load,

        
5 2 2

2 9
576 630

120 31
wl E Ig

EI w l
 ×ω = ×  × 

Integrating the above equation within limits from 0 to l,

 

4 2 2 3

0 0

( 2 )
24

l l
wy dx x l x l x dx
EI

= + −∫ ∫

          

5 5

24 30 720
w l wl
EI EI

= × =

 

Now integrating y2 within the limits from 0 to l,

           

2
2 4 2 2 3 2

0 0

( 2 )
24

ll
wy dx x l x l x dx
EI

 
= + − 

 ∫ ∫

          



           �           

23.11.23.11.23.11.23.11.23.11.Natural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a Shaft
Subjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point Loads
Consider a shaft AB of negligible mass loaded with

point loads W1 , W2, W3 and W4 etc. in newtons, as shown
in Fig. 23.1 1. Let m1, m2, m3 and m4 etc. be the corre-
sponding masses in kg. The natural frequency of such a
shaft may be found out by the following two methods :

1. Energy (or Rayleigh’s) method

Let y1, y2, y3, y4 etc. be total deflection under loads
W1, W2, W3 and W4 etc. as shown in Fig. 23.1 1.

We know that maximum potential energy

      1 1 2 2 3 3 4 4
1 1 1 1. . . . . . . . .....
2 2 2 2

m g y m g y m g y m g y= × + × + + × +

      and maximum kinetic energy

1 . .
2

m g y= Σ

.

      2 2 2 2
1 1 2 2 3 3 4 4

1 1 1 1( . ) ( . ) ( . ) ( . ) ......
2 2 2 2

m y m y m y m y= × ω + × ω + × ω + × ω +

      2 2 2 2 2
1 1 2 2 3 3 4 4

1 ( ) ( ) ( ) ( ) ....
2

m y m y m y m y = × ω + + + + 

      2 21 .
2

m y= × ω Σ . . . ( where ω  = Circular frequency of vibration)

Equating the maximum kinetic energy to the maximum potential energy, we have

2 21 1. . .
2 2

m y m g y× ω Σ = Σ

∴ 2
2 2

. . .
. .

m g y g m y
m y m y

Σ Σω = =
Σ Σ

          or      
2
.

.
g m y

m y
Σω =

Σ

∴    Natural frequency of transverse vibration,

 2
1 .

2 2 .n
g m yf

m y
ω Σ= =
π π Σ

2. Dunkerley’s method

The natural frequency of transverse vibration for a shaft carrying a number of point loads
and uniformly distributed load is obtained from Dunkerley’ s empirical formula. According to this

         2 2 2 2 2
1 2 3

1 1 1 1 1....
( ) ( ) ( ) ( ) ( )n n n n nsf f f f f

= + + + +

Fig. 23.11. Shaft carrying a
number of point loads.

      �                

where                       fn = Natural frequency of transverse vibration of the shaft
  carrying point loads and uniformly distributed load.

        1 2 3, ,n n nf f f , etc.  =   Natural frequency of transverse vibration of each point load.

   nsf  =  Natural frequency of transverse vibration of the uniformly
  distributed load (or due to the mass of the shaft).

Now, consider a shaft AB loaded as shown in Fig. 23.12.

Fig. 23.12. Shaft carrying a number of point loads and a uniformly distributed load.
    



Let 1 2 3, , ,δ δ δ  etc. =  Static deflection due to the load W1, W2, W3 etc. when
  considered separately.

     Sδ  =   Static deflection due to the uniformly distributed load or due
   to the mass of the shaft.

We know that natural frequency of transverse vibration due to load W1,

    1
1

0.4985
nf =

δ
 Hz

Similarly, natural frequency of transverse vibration due to load W2,

   2
2

0.4985
nf =

δ
 Hz

and, natural frequency of transverse vibration due to load W3,

   3
3

0.4985
nf =

δ
 Hz

Also natural frequency of transverse vibration
due to uniformly distributed load or weight of the shaft,

    
S

0.5615
nsf =

δ
 Hz

Therefore, according to Dunkerley’ s empirical
formula, the natural frequency of the whole system,

2 2 2 3 2
1 2 3

1 1 1 1 1....
( ) ( ) ( ) ( ) ( )n n n n nsf f f f f

= + + + +

         
3 S1 2

2 2 2 2....
(0.4985) (0.4985) (0.4985) (0.5615)

δ δδ δ
= + + + +

         
S

1 2 32
1 ....

1.27(0.4985)
δ = δ + δ + δ + +  

or     
S

1 2 3

0.4985

....
1.27

nf =
δδ + δ + δ + +

 Hz

Example 1. A shaft 50 mm diameter and 3 metr es long is simply supported at the ends
and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m fr om the left support.
The Young's modulus for shaft material is 200 GN/m 2. Find the frequency of transverse vibration.

Solution. Given : d = 50 mm = 0.05 m ; l = 3 m, W1 = 1000 N ; W2 = 1500 N ;
W3 = 750 N; E = 200 GN/m 2 = 200 × 10 9 N/m2

The shaft carrying the loads is shown in Fig. 23.13
We know that moment of inertia of the shaft,

       4 4 6 4(0.05) 0.307 10 m
64 64

I d −π π= × = = ×

and the static deflection due to a point load W,

      
2 2

3
Wa b

EIl
δ =

Fig. 23.13

     



      �                

Similarly, static deflection due to a load of 1500 N,

      
2 2

3
2 9 6

1500 2 1 10.86 10
3 200 10 0.307 10 3

−
−

× ×δ = = ×
× × × × ×

 m

. . . (Here a = 2 m, and b = 1 m)
and static deflection due to a load of 750 N,

     
2 2

3
3 9 6

750(2.5) (0.5) 2.12 10
3 200 10 0.307 10 3

−
−δ = = ×

× × × × ×
 m

. . . (Here a = 2.5 m, and b = 0.5 m)
We know that frequency of transverse vibration,

                     3 3 31 2 3

0.4985 0.4985

7.24 10 10.86 10 2.12 10
nf − − −

= =
δ + δ + δ × + × + ×

          
0.4985
0.1422

= = 3.5 Hz  Ans.

23.12.23.12.23.12.23.12.23.12. Critical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a Shaft
The speed at which the shaft runs so that the additional deflection of the shaft fr om

the axis of rotation becomes infinite, is known as critical or whirling speed.

(a) When shaft is stationary . (b) When shaft is rotating.
Fig. 2

2 2
3

1 9 6
1000 1 2 7.24 10

3 200 10 0.307 10 3
−

−
× ×δ = = ×

× × × × ×
 m

. . . (Here a = 1 m, and b = 2 m)

∴      Static deflection due to a load of 1000 N,

     

∴      Critical or whirling speed,

    c n
s g
m

ω = ω = =
δ

 Hz . . . .m g
s

 δ =  
∵

If Nc is the critical or whirling speed in r .p.s., then

 2 c
gNπ =
δ

     or   1 0.4985 r.p.s.
2c

gN = =
π δ δ

where      δ  = Static deflection of the shaft in metres.
Hence the critical or whirling speed is the same as the natural frequency of transverse

vibration but its unit will be r evolutions per second.



Example 2. A shaft 1.5 m long, supported in flexible bearings at the ends carries two
wheels each of 50 kg mass. One wheel is situated at the centr e of the shaft and the other at a
distance of 375 mm fr om the centre towards left. The shaft is hollow of external diameter 75 mm
and internal diameter 40 mm. The density of the shaft material is 7700 kg/m 3 and its modulus of
elasticity is 200 GN/m2. Find the lowest whirling speed of the shaft, taking into account the mass
of the shaft.

Solution. l = 1.5 m ; m1 = m2 = 50 kg ;
d1 = 75 mm = 0.075 m ; d2 = 40 mm = 0.04 m ;
ρ = 7700 kg/m3 ; E = 200 GN/m 2 = 200 × 10 9

N/m2

The shaft is shown in Fig. 23.16.
We know that moment of inertia of the shaft,

      
4 4 4 4 6 4

1 2( ) ( ) (0.075) (0.04) 1.4 10 m
64 64

I d d −π π   = − = − = ×   
Since the density of shaft material is 7700 kg/m 3, therefore mass of the shaft per metre

length,
     mS = Area × length × density

         2 2(0.075) (0.04) 1 7700
4
π  = − ×   = 24.34 kg/m

We know that the static deflection due to a load W

         
2 2 2 2.

3 3
Wa b m ga b

EIl EIl
= =

∴     Static deflection due to a mass of 50 kg at C,

     

2 2 2 2
1

1 9 6
50 9.81(0.375) (1.125)

3 3 200 10 1.4 10 1.5
m ga b

EIl −
×δ = =

× × × × ×
 = 70 × 10 –6 m

. . . (Here a = 0.375 m, and b = 1.125 m)
Similarly, static deflection due to a mass of 50 kg at D

    

2 2 2 2
1

2 9 6
50 9.81(0.75) (0.75)

3 3 200 10 1.4 10 1.5
m ga b

EIl −
×δ = =

× × × × ×
 = 123 × 10 –6 m

. . . (Here a = b = 0.75 m)

Fig. 23.16

     �                

We know that static deflection due to uniformly distributed load or mass of the shaft,

 
4 4

S 9 6
5 5 24.34 9.81(1.5)

384 384 200 10 1.4 10
wl
EI −

×δ = × = ×
× × ×

 = 56 × 10 –6 m

. . . (Substituting, w = mS × g)
We know that frequency of transverse vibration,

6
S 6 6

1 2

0.4985 0.4985

56 1070 10 123 101.27 1.27

nf −
− −

= =
δ ×δ + δ + × + × +

 Hz

   = 32.4 Hz
Since the whirling speed of shaft ( Nc ) in r.p.s. is equal to the frequency of transverse

vibration in Hz, therefore
Nc = 32.4 r .p.s. = 32.4 × 60 = 1944 r .p.m. Ans.

  



24.1.24.1.24.1.24.1.24.1. IntroductionIntroductionIntroductionIntroductionIntroduction
The particles of a shaft or disc move in a circle about the axis of a shaft, then the vibrations are known as
torsional vibrations. 

24.2.24.2.24.2.24.2.24.2. Natural Frequency of Free TorsionalNatural Frequency of Free TorsionalNatural Frequency of Free TorsionalNatural Frequency of Free TorsionalNatural Frequency of Free Torsional
VibrationsVibrationsVibrationsVibrationsVibrations
Consider a shaft of negligible mass whose one end is fixed and the other end carrying a disc as 
shown in Fig. 24.1.
Let        θ = Angular displacement of the shaft from mean position after time t in radians,

                               m = Mass of disc in kg,
                                     I = Mass moment of inertia of disc in kg-m2  = m.k2,

                                                             k = Radius of gyration in metres,
                                                             q = Torsional stiffness of the shaft in N-m.

           �           

Fig 24.1. Natural frequency of
free torsional vibrations.

∴     Restoring force        = .θq  ... (i)

and accelerating force          
2

2
θ= × dI

dt
... (ii)

Equating equations (i) and (ii), the equation of
motion is 2

2
.dI q

dt
θ× = − θ

or
2

2
0θ + × θ =d q

Idt
. . . (iii)

The fundamental equation of the simple harmonic motion is

       

2
2

2
. 0θ + ω =d x

dt
. . . (iv)

Comparing equations (iii) and (iv),

       ω = q
I

∴     T ime period,        2 2π= = π
ωp

It
q

and natural frequency ,        
1 1

2
= =

πn
p

qf
t I
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24.5.24.5.24.5.24.5.24.5. Free Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor System
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24.6.24.6.24.6.24.6.24.6. Free Torsional Vibrations of a Three Rotor SystemFree Torsional Vibrations of a Three Rotor SystemFree Torsional Vibrations of a Three Rotor SystemFree Torsional Vibrations of a Three Rotor SystemFree Torsional Vibrations of a Three Rotor System
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