UNIT-1

FRICTION:

when ever one block moves or tends to move tangentially with respect to the surface, on which it
rests, the interlocking property of the projecting particles opposes the motion. This opposing force, which
acts in the opposite direction of the movement of the upper block, is called the force of friction or simply

friction.
°

Types of Friction: In general, the friction is of the following two types :
1. Static friction. 1t is the friction, experienced by a body, when at rest.

2. Dynamic friction. 1t is the friction, experienced by a body, when in motion. The dynamic
friction is also called kinetic friction and is less than the static friction.
It is of the following three types :

(a) Sliding friction. 1t is the friction, experienced by a body , when it slides over another
body.

(b) Rolling friction. 1t is the friction, experienced between the surfaces which has balls or
rollers interposed between them.

(¢) Pivot friction. 1t is the friction, experienced by a body, due to the motion of rotation as
in case of foot step bearings.

The friction may further be classified as :
10.3. Friction Between Unlubricated Surfaces

The friction experienced between two dry and unlubricated surfaces in contact is known as
dry or solid friction.

10.4. Friction Between Lubricated Surfaces
When lubricant (i.e. oil or grease) is applied between two surfaces in contact, then the friction
may be classified into the following two types depending upon the thickness of layer of a lubricant.

1. Boundary friction (or greasy friction or non-viscous friction ). It is the friction,
experienced between the rubbing surfaces, when the surfaces have a very thin layer of lubri-
cant.

2. Fluid friction (or film friction or viscous friction). It is the friction, experienced between
the rubbing surfaces, when the surfaces have a thick layer of the lubrhicant.

10.5. Limiting Friction

The maximum value of frictional force, which comes into play, when a body just begins to
slide over the surface of the other body, is known as limiting force of friction or simply limiting friction.

10.6. Laws of Static Friction

Following are the laws of static friction :

1. The force of friction always acts in a direction, opposite to that in which the body tends to
move.

2. The magnitude of the force of friction is exactly equal to the force, which tends the body
to move.

3. The magnitude of the limiting friction (F') bears a constant ratio to the normal reaction
(R between the two surfaces. Mathematically

F/Ry = constant
4. The force of friction is independent of the area of contact, between the two surfaces.
5.The force of friction depends upon the roughness of the surfaces.
COEFFICIENT OF FRICTION: It is defined as the ratio of the limiting friction (F) to
the normal reaction (RN) between the two bodies.

w=F/RN
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FRICTION:
	when ever one block moves or tends to move tangentially with respect to the surface, on which it rests, the interlocking property of the projecting particles opposes the motion. This opposing force, which acts in the opposite direction of the movement of the upper block, is called the force of friction or simply friction.
Types of Friction: In general, the friction is of the following two types :
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4. The force of friction is independent of the area of contact, between the two surfaces.
5.The force of friction depends upon the roughness of the surfaces.
COEFFICIENT OF FRICTION: It is defined as the ratio of the limiting friction (F) to 
the normal reaction (RN) between the two bodies. 
                                          µ = F/RN
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Example 10.1. A body, resting on a rough horizontal planerequired a pull of 180 N inclined
at 30° to the plane just to move it. It was found that a push of 220 N inclined at 30° to the plane just
moved the body. Determine the weight of the body and the coefficient of friction.

Solution. Given : 6 = 30°

Let W = Weight of the body in newtons,

Ry = Normal reaction,
p = Coefficient of friction, and
F = Force of friction.

First of all, let usconsider apull of 180 N. Theforce of friction (F) actstowards|eft as shown
in Fig. 10.5 (a).
Resolving the forces horizontally,
F = 180 cos 30° = 180 x 0.866 = 156 N

Ry Ry

A 180 N A 220N

30° 30°

AN P 1]

v
w w

<
<

(@) (b)

Fig. 10.5
Now resolving the forces vertically,
Ry = W-180sin30°=W-180x0.5=(W-90) N
We know that F=uRy or 156=u(W-90) ()

Now let usconsider apush of 220 N. Theforceof friction (F) actstowardsright asshowninFig.
10.5 (b).

Resolving the forces horizontally,
F = 220 cos 30° = 220 x 0.866 = 190.5 N

Now resolving the forces vertically,

Ry = W+220sin30°=W +220x0.5=(W+110) N
We know that F=uR, or 190.5=p (W +110) (i)
From equations (i) and (ii),

W=1000N, and n=0.1714 Ans

10.14. Friction of a Body Lying on a Rough Inclined Plane



ANGLE OF FRICTION:

It may be defined as the angle which the resultant reaction R makes

with the normal reaction RN.
tan @ = F/RN =pRN/RN =p
ANGLE OF REPOSE:

If the angle of inclination o of the plane to the horizontal
is such that the body begins to move down the plane, then the angle
a is called the angle of repose. A little consideration will show that
the body will begin to move down the plane when the angle of

inclination of the plane is equal to the angle of friction (i.e. a. = @).

10.14. Friction of a Body Lying on a Rough Inclined Plane

1. Considering the motion of the body up the plane
Let W = Weight of the body,
o = Angle of inclination of the plane to the horizontal,
¢ = Limiting angle of friction for the contact surfaces,
P = Effort applied in a given direction in order to cause the body to slide with
uniform velocity parallel to the plane, considering friction,
P, = Effort required to move the body up the plane neglecting friction,
0 = Angle which the line of action of P makes with the weight of the body 7,
= Coefficient of friction between the surfaces of the plane and the body

Ry

R = Resultant reaction.

= Normal reaction, and

When friction is taken into account, a frictional force/’= [1.R acts in the direction opposite
to the motion of the body, as shown in Fig. 10.8 (a). The resultant reaction R between the plane and
the body is inclined at an angle with the normal reactionR. The triangle of forces is shown in Fig.
10.8 (b). Now applying sine rule, P W

sin(o +0)  sin[0— (o + 0)]

(b) (o)
Fig. 10.8. Motion of the body up the plane, considering friction.

_ W sin (o + ¢) .
sin[6— (0t + 0)] (i)

Notes : 1. When the effort applied is horizontal, then 6 = 90°. In that case, the equations (7) and (i7) may be
written as
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ANGLE OF FRICTION: 
It may be defined as the angle which the resultant reaction R makes
with the normal reaction RN. 
tan φ = F/RN = µRN/RN = µ
ANGLE OF REPOSE:
	If the angle of inclination  α of the plane to the horizontal 
is such that the body begins to move down the plane, then the angle 
α is called the angle of repose. A little consideration will show that 
the body will begin to move down the plane when the angle of 
inclination of the plane is equal to the angle of friction (i.e. α = φ).
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_ Wsin(ou+0)  Wsin (o + 0)
sin[90° — (a0 + @)  cos (o + )
2. When the effort applied is parallel to the plane, then ® = 90° + .. In that case, the equations (/) and
(if) may be written as

=W tan (o0 + )

_ W sin(o + ¢) _ Wsin(o + ¢)
T sin[(90° + o) — (0L + )] cos O

__ W (sinco cos ¢ + cos o sin ¢)

=W (sin o + cos o.tan ¢)

cos ¢
=W (sin ot + L cos o) . u=tan 0)
2. Considering the motion of the body down the plane
R, R
*
A ¢ 180°—0 — (- ¢
0-(o—9)
180° — (0. — ) )
RY YW 4
(a—9) \«{I‘)
(0= 9) “

w
(b) (c)

Fig. 10.9. Motion of the body down the plane, considering friction.
When the friction is taken into account, the force of frictiod’= .R will act up the plane and
the resultant reaction R will make an angle ¢ with R towards its right as shown in Fig. 10.9 ). The
triangle of forces is shown in Fig. 10.9 (b). Now from sine rule,

P w
sin(ot— ¢)  sin[0 — (o — )]
or sin[0 — (ct — )] ..(iv)

10.15. Efficiency of Inclined Plane

The ratio of the effort required neglecting friction (i.e. P) to the effort required considering
friction (i.e. P) is known as efficiency of the inclined plane. Mathematically efficiency of the inclined
plane,

1. For the motion of the body up the plane

_ cot(o+ ¢) —cot 6
cot o0 — cot O

2. For the motion of the body down the plane
_ cota—cotB
- cot(o — ¢) —cot O
Example 1. An effort of 1500 N is required to just move a certain body up an inclined

plane of angle 12°, force acting parallel to the plane. If the angle of inclination is increased to 15 °,
then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.

Solution. Given : P, =1500N; o, =12°; o, = 15°; P, = 1720 N

Let W = Weight of the body in newtons, and pu = Coefficient of friction.
Ry, A,
1800 N 2o
Fy Fa
12° 15°
Yw Yw
(@) (b)

Fig. 10.10
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First of all, let us consider a body lying on a plane inclined at an angle of 12° with the
horizontal and subjected to an effort of 1500 N parallel to the plane as shown in Fig. 10.10 ().

Let RNl = Normal reaction, and
F, = Force of friction.

We know that for the motion of the body up the inclined plane, the efort applied parallel to
the plane (P)),
1500 =W (sin o, + W cos o) = W (sin 12° + . cos 12°) ()]

Now let us consider the body lying on a plane inclined at an angle of 15° with the horizontal
and subjected to an effort of 1720 N parallel to the plane as shown in Fig. 10.10 (D).

Let RNz = Normal reaction, and
F, = Force of friction.

We know that for the motion of the body up the inclined plane, the efort applied parallel to
the plane (P,),
1720 =W (sin oL, + WL cos 0,) = W (sin 15° + [ cos 15°) ...(i)
Coefficient of friction
Dividing equation (i7) by equation (i),
1720 W (sin 15° + u cos 15°)
1500 W (sin 12° T H cos 12°)
1720 sin 12°+ 1720 @ cos 12°= 1500 sin 15° + 1500 W cos 15°

W (1720 cos 12°— 1500 cos 15°) = 1500 sin 15° — 1720 sin 12°

_ 1500 sin 15° = 1720 sin 12° 1500 x 0.2588 — 1720 x 0.2079
" 1720 cos 12° — 1500 cos 15° 1720 x 0.9781 — 1500 x 0.9659

388.2-357.6 306

= = =0.131Ans.
1682.3 —1448.5 233.8

Weight of the body
Substituting the value of |l in equation (7),
1500 = W (sin 12°+ 0.131 cos 12°) = W (0.2079 + 0.131 x 0.9781) = 0.336 W
. W =1500/0.336 = 4464 N Ans.
10.16. Screw Friction

The screws, bolts, studs, nuts etc. are widely used in various machines and structures for
temporary fastenings. The screw threads are mainly of two types i.e. V-threads and squarethreads.
The V-threads are stronger and ofer more frictional resistance to motion than square threads.

The following terms are important for the study of screw :
1. Helix. It is the curve traced by a particle while moving along a screw thread.

2. Pitch. 1t is the distance from a point of a screw to a corresponding point on the next thread,
measured parallel to the axis of the screw.

3. Lead. 1t is the distance, a screw thread advances axially in one turn.

4. Depth of thread. 1t is the distance between the top and bottom surfaces of a thread (also
known as crest and root of a thread).

5. Single-threaded screw. If the lead of a screw is equal to its pitch, it is known as single
threaded screw.

6. Multi-threaded screw. If more than one thread is cut in one lead distance of a screw; it is
known as multi-threaded screw.

Lead = Pitch x Number of threads

7. Helix angle. 1t is the slope or inclination of the thread with the horizontal.
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Lead of screw

tan o =
Circumference of screw
=plnd ...(In single-threaded screw)
=n.p/nd ...(In multi-threaded screw)
where o = Helix angle,

p = Pitch of the screw,
d = Mean diameter of the screw, and
n = Number of threads in one lead.

10.17. Screw Jack

The screw jack is a device, for lifting heavy loads, by applying a comparatively smaller
effort at its handle. The principle, on which a screw jack works is similar to that of an inclined plane.

w
Head < !
/
P
{——— - w
! Lever
Y
R
«— Sq. threaded rod 117 Collar
I
«— Nut |
R,
Head —? R
/iC»‘_ Screw rod
LN
(a) Screw jack. (b) Thrust collar.
Fig. 10.11

10.18. Torque Required to Lift the Load by a Screw Jack

If one complete turn of a screw thread by imagined to be unwound, from the body of the
screw and developed, it will form an inclined plane as shown in Fig. 10.12 (@).

//‘T
p
o Y

le—— rd ——>

(a) Development of a screw. (b) Forces acting on the screw.
Fig. 10.12
Let p = Pitch of the screw,

d = Mean diameter of the screw,
o = Helix angle,

P = Effort applied at the circumference of the screw to lift the
load,

W = Load to be lifted, and

= Coefficient of friction, between the screw and nut = tan 0,
where ¢ is the friction angle.

From the geometry of the Fig. 10.12 (a), we find that
tana = p/md



NOTE: Lift the load by screw jack is same as raise a load by inclined plane under applied load is horizontal.
P 4
sin(o+ ¢)  sin[0 — (o0 + )]

®) (©)

Fig. 10.8. Motion of the body up the plane, considering friction.

W sin (o + ¢)
=" ...(i)
sin[0— (o + )]
Notes : 1. When the effort applied is horizontal, then 6 = 90°. In that case, the equations (7) and (i7) may be
written as p_ Wsin(a+0) _ Wsin(o+9)
sin[90° — (o + 0) cos (o + 0)

=Wtan (o0 + )

.. Torque required to overcome friction between the screw and nut,
d d
T, :PXE:Wtan(oc—Hb)E

When the axial load is taken up by a thrust collar or a flat surface, as shown in Fig. 1011(b),
so that the load does not rotate with the screw, then the torque required to overcome friction at the

collar.
’ R +R
T2 = l.ll W(%) = lll WR

where R, and R, = Outside and inside radii of the collar,
R = Mean radius of the collar, and

i, = Coefficient of friction for the collar.

.. Total torque required to overcome friction (i.e. to rotate the screw),
d
T=T+T, :sz + W W.R

The nominal diameter of a screw thread is also known as outside diameter or major diameter.
*t  The core diameter of a screw thread is also known as inner diameter or root diameter or minor diameter.

10.19. Torque Required to Lower the Load by a Screw Jack

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar
to that of an inclined plane. If one complete turn of a screw thread be imagined to be unwound from
the body of the screw and developed, it will form an inclined plane as shown in Fig. 10.13 @).

Let p = Pitch of the screw,

d = Mean diameter of the screw,

o = Helix angle,

P = Effort applied at the circumference of the screw to lower the
load

oad,
W = Weight to be lowered, and
p = Coefficient of friction between the screw and nut = tan 0,
where ¢ is the friction angle.
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e—— nd ——>

(a) (b)
Fig. 10.13
From the geometry of the figure, we find that
tan o0 = p/nd

NOTE: Lower the load by screw jack is same as Lower a load by inclined plane under applied load is horizontal.

R
Ry :
A U 180°—0 — (- ¢
0—(a—d¢)
180° — (0.— ) )
R w
(a—9) .
) |
WL,‘«* M
(a) () ()

Fig. 10.9. Motion of the body down the plane, considering friction.
When the friction is taken into account, the force of frictior'= R will act up the plane and
the resultant reaction R will make an angle ¢ with R towards its right as shown in Fig. 10.9 @). The
triangle of forces is shown in Fig. 10.9P(b). Now from s;;/le rule,

sin(oe— ¢)  sin[0 — (o0 — )]
_ Wsin(o_9) .
STCCRON (0
Notes : 1. When the effort applied is horizontal, then 6 = 90°. In that case, the equations (7) and (i7) may be
written as P Wsin (ot +¢)  Wsin (o + 0)
) o sin[90° — (o + 0) cos (o + 0)
-~ Torque required to overcome friction between the screw and nut,

d d
T=Px—=W tan -o) —
2 () )2

=Wtan (o0 + )

Note : When o > ¢, then P = tan (0. — ¢).

Example 2. The mean diameter of a square threaded screw jack is 50 mm. The pitch of
the thread is 10 mm. The coefficient of friction is 0.15. What force must be applied at the end of a
0.7 m long lever, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 kN
and to lower it?

Solution. Given: d=50 mm=0.05m ;p=10mm ;u=tan ¢=0.15;/=0.7 m ; W =20 kN

=20x10°N
p 10
We know that tan o0 = — = =0.0637
nd wx50
Let P, = Force required at the end of the lever.

Force required to raise the load
We know that force required at the circumference of the screw
tan o + tan ¢ :|

P=Wtan(o + ¢) =W
an( (l)) |:1 — tan o.tan ¢
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—20% 103 0.0637 + 0.15 B4 N
1 -0.0637 x 0.15
Now the force required at the end of the lever may be found out by the relation,
P, x1=Pxd2
4314 % 0.
P =P><d _ 3 ><005=154N Ans.
21 2x0.7

Force required to lower the load
We know that the force required at the circumference of the screw;
tan ¢ — tan o :|

P=Wwt -o)=W
an (9 ) |:1 + tan ¢.tan o

0.15 - 0.0637
1+ 0.15%x0.0637
Now the force required at the end of the lever may be found out by the relation,
_Pxd 1710x0.05
20 2x07

:20><103|: }:17101\1

=61 N Ans.

Plxl:Pxé or B
2

10.20. Efficiency of a Screw Jack

The efficiency of a screw jack may be defined as the ratio between the ideal effort (i.e. the
effort required to move the load, neglecting friction) to the actual effort (i.e. the effort required to
move the load taking friction into account).

We Ideal effort £ W tan o tan o

-. Efficiency, n=——M ="~ = =
Y Actual effort P W tan (ou+¢) tan (o + @)

which shows that the efficiency of a screw jack, is independent of the load raised.

Example 3. The pitch of 50 mm mean diameter threaded screw of a screw jack is 12.5
mm. The coefficient of friction between the screw and the nut is 0.13. Determine the torque required
on the screw to raise a load of 25 kN, assuming the dad to rotate with the screw Determine the ratio
of the torque required to raise the load to the torque required to lower the load and also theféfiency
of the machine.

Solution. Given : d=50mm ;p=125mm;u=tanp=0.13 ; W =25kN=25x 103N

po_ 125 _40s
nd mnx50

and force required on the screw to raise the load,

We know that, tan oL =

P =Wtan(o + ¢) = W[tanq)—tana}

1 + tan ¢.tan o

0.08 + 0.13

=25%10° | ————
1-0.08x0.13

:| =5305 N
Torque required on the screw
We know that the torque required on the screw to raise the load,
T, =P xd2=5305x50/2=132 625 N-mm Ans.
Ratio of the torques required to raise and lower the load
We know that the force required on the screw to lower the load,

tan¢—tan(x:|

P=Wtan(¢p —a) =W
© ) |:1 + tan ¢.tan o

0.13 +0.08

=25x10°| —————
1+0.13%0.08

]:1237 N

and torque required to lower the load

T,=Pxd2=1237x 50/2=30 905 N-mm

*. Ratio of the torques required,

=T,/T, =132625/30925 = 4.3 Ans.



Efficiency of the machine, We know that the efficiency,

tan oo tan o(l — tano.tan ¢)  0.08(1- 0.08 x 0.13)

T tan(o+0)  tan oo+ tan ¢ 0.08 + 0.13
“'=0.377=37.7% Ans
w
10.22. Over Hauling and Self Locking Screws Fn
10.24. Friction of a V-thread
Let 2B = Angle of the V-thread, and /) B
B = Semi-angle of the V-thread. p
P
cos B
and frictional force, £ = MRy =1 X cos B =W Fig. 10.14. V-thread.
u

where cosP =My> known as virtual coefficient of friction.

10.25. Friction in Journal Bearing-Friction Circle

A journal bearing forms a turning pair as shown in Fig. 10.154). The fixed outer element of

a turning pair is called a bearing and that portion of the inner element ( i.e. shaft) which fits in the
bearing is called ajournal.  w w

Friction

Lubricant A
circle

(a) ()

Fig. 10.15. Friction in journal bearing.

When the bearing is not lubricated (or the journal is stationary), then there is a line contact
between the two elements as shown in Fig. 10.15 @).

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15
(b). The lubricant between the journal and bearing forms a thin layer which gives rise to a greasy
friction. Therefore, the reaction R does not act vertically upward, but acts at another point of pressureB.
In order that the rotation may be maintained, there must be a couple rotating the shaft.
Let ¢ = Angle between R (resultant of F'and R ) and R,
p = Coefficient of friction between the journal and bearing,
T = Frictional torque in N-m, and
r = Radius of the shaft in metres.

For uniform motion, the resultant force acting on the shaft must be zero and the resultant
turning moment on the shaft must be zero. In other words,

R=W,andT=W x OC=W x OB sin ¢ = W.rsin ¢
Since ¢ is very small, therefore substituting sin ¢ = tan ¢
T=Wrtano=p.Wr (. u=tan ¢)
If the shaft rotates with angular velocity o rad/s, then power wasted in friction,
P =T.0w=T x2nN/60 watts
where N = Speed of the shaft in t.p.m.

Notes : 1. Ifa circle is drawn with centreO and radius OC =r sin ¢, then this circle is called thefriction circle
of a bearing.

10.26. Friction of Pivot and Collar Bearing
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10.26. Friction of Pivot and Collar Bearing
The rotating shafts are frequently subjected to axial thrust. The bearing surfaces such as pivot
and collar bearings are used to take this axial thrust of the rotating shaft.

The bearing surfaces placed at the end of a shaft to take the axial thrust are known as
pivots.

Collar
L& Shaft |
Z M Z
|
(a) Flat pivot. (b) Conical pivot. (c) Truncated pivot. (d) Single flat (e) Multiple flat

collar. collar.

Fig. 10.16. Pivot and collar bearings.
Hence, in the study of friction of bearings, it is assumed that
1. The pressure is uniformly distributed throughout the bearing surface, and
2. The wear is uniform throughout the bearing surface.

10.27. Flat Pivot Bearing

When a vertical shaft rotates in a flat pivot bearing (known as
foot step bearing ), as shown in Fig. 10.17, the sliding friction will be

Shaft
along the surface of contact between the shaft and the bearing.

Let W =Load transmitted over the bearing surface,
Flat pivot

R =Radius of bearing surface, bearing

A
I

|

i’\

p =Intensity of pressure per unit area of bear-
ing surface between rubbing surfaces, and Fig. 10.17. Flat pivot or footstep

w =Coefficient of friction. bearing.
We will consider the following two cases :
1. Considering uniform pressure:
When the pressure is uniformly distributed over the bearing area, then
W
TR
Consider a ring of radius » and thickness dr of the bearing area.
. Area of bearing surface, A4 = 2nr.dr
Load transmitted to the ring,
W =pxA=px2nrdr ...(D)
Frictional resistance to sliding on the ring acting tangentially at radiusr,
F =WoW =Wp x 2n r.dr =21 W.p.r.dr
.. Frictional torque on the ring,
T =Fxr=2npuprdrxr=2mnuprdr (1)
Integrating this equation within the limits from 0 to R for the total frictional torque on the
pivot bearing.

R R
. Total frictional torque, T=_[ 2nppr *dr = 2mup I r? dr
0 0

3 R 2
:2nup[r_:| :2nupx—:—xnu.p.R3
3 1 33
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2 w ;3 2 w
= — — X R =— wW. PR IR =
3xnanR2X 3><u R ( 14 W)
When the shaft rotates at @ rad/s, then power lost in friction,
P =T.w=Tx 21 N/60 (. ©=21N/60)
2. Considering uniform wear

We have already discussed that the rate of wear depends upon the intensity of pressure (p) and
the velocity of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product
of intensity of pressure and the velocity of rubbing surfaces {.e. p.v..). Since the velocity of rubbing
surfaces increases with the distance (i.e. radius ) from the axis of the bearing, therefore for uniform
wear

pr =C(aconstant) or p=C/r
and the load transmitted to the ring,
W = p x2nr.dr ...[From equation (7)]

= 9 X 2nwr.dr = 2nC.dr
r

.. Total load transmitted to the bearing
R

W= 2mCdr=2nClIf =2rnCR or C= By
0

We know that frictional torque acting on the ring,

T =2nupr’ dr=2ﬂ:u><£><r2 dr ( ch)
r r
=2n u.Cr dr .70

-. Total frictional torque on the bearing,
R 51k R
T = j 2n w.Crdr =2npn.C [%} =2np.C ><7 = Tcu.C.R2
0 0

w , 1
=TUX—— XR° " =— XUWW.R
H 2R 2 H

10.30. Flat Collar Bearing

We have already discussed that collar bearings are used to take the axial thrust of the rotating
shafts. There may be a single collar or multiple collar bearings as shown in Fig. 10.20 ( «) and (b)
respectively. The collar bearings are also known as thrust bearings.

w

&/7/ Shaft
-
!<—r1 1 Collar

¥

|
|
;/!@

(a) Single collar bearing (b) Multiple collar bearing.
Fig. 10.20. Flat collar bearings.
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1. Considering uniform pressure

When the pressure is uniformly distributed over the bearing surface, then the intensity of
pressure,

w w

We have seen in Art. 10.25, that the frictional torque on the ring of radiug and thickness dr,
T = 2nu.p.r2.dr

Integrating this equation within the limits from r, to r, for the total frictional torque on the
collar.

*. Total frictional torque,

rl = Znu.p[(rl)3 B (r2)3:|
3

3

= r' 2T|:u.p.r2.dr =2mW.p |:%3:|

Substituting the value of p from equation (),

_ VoW - )3}
T=2 —_—| 1 2
e - (rz)z]{ 3

2 )y - (1)
=xuw| L —2
[(,,1)2 ~(1,)?

2. Considering unifrom wear

We have seen in Art. 10.25 that the load transmitted on the ring, considering uniform wear is,

W = p 2mrdr = < X 2nr.dr = 2nC.dr
r

*. Total load transmitted to the collar,

W =" 2nCar = 2nCIr} =20C (5 —1,)

We also know that frictional torque on the ring,
T =wdWr=ux2nCdrr =2nuCrdr

.. Total frictional torque on the bearing,
p

i , 1! ) 5
T= J 2ruC.r.dr = Znu.C[r_:| = znu_c[(’i) (r,) :|
2 2

-
P
)

=nuCl(r) - ()]

Substituting the value of C from equation (i7),

w 1
T :Ttuxm[(,,l)2 _ (,ﬂ2)2]25><u.W(r1 +r)



FRICTION:

when ever one block moves or tends to move tangentially with respect to the surface, on which it
rests, the interlocking property of the projecting particles opposes the motion. This opposing force, which
acts in the opposite direction of the movement of the upper block, is called the force of friction or simply

friction.
°

Types of Friction: In general, the friction is of the following two types :
1. Static friction. 1t is the friction, experienced by a body, when at rest.

2. Dynamic friction. 1t is the friction, experienced by a body, when in motion. The dynamic
friction is also called kinetic friction and is less than the static friction.
It is of the following three types :

(a) Sliding friction. 1t is the friction, experienced by a body , when it slides over another
body.

(b) Rolling friction. 1t is the friction, experienced between the surfaces which has balls or
rollers interposed between them.

(¢) Pivot friction. 1t is the friction, experienced by a body, due to the motion of rotation as
in case of foot step bearings.

The friction may further be classified as :
10.3. Friction Between Unlubricated Surfaces

The friction experienced between two dry and unlubricated surfaces in contact is known as
dry or solid friction.

10.4. Friction Between Lubricated Surfaces
When lubricant (i.e. oil or grease) is applied between two surfaces in contact, then the friction
may be classified into the following two types depending upon the thickness of layer of a lubricant.

1. Boundary friction (or greasy friction or non-viscous friction ). It is the friction,
experienced between the rubbing surfaces, when the surfaces have a very thin layer of lubri-
cant.

2. Fluid friction (or film friction or viscous friction). It is the friction, experienced between
the rubbing surfaces, when the surfaces have a thick layer of the lubrhicant.

10.5. Limiting Friction

The maximum value of frictional force, which comes into play, when a body just begins to
slide over the surface of the other body, is known as limiting force of friction or simply limiting friction.

10.6. Laws of Static Friction

Following are the laws of static friction :

1. The force of friction always acts in a direction, opposite to that in which the body tends to
move.

2. The magnitude of the force of friction is exactly equal to the force, which tends the body
to move.

3. The magnitude of the limiting friction (F') bears a constant ratio to the normal reaction
(R between the two surfaces. Mathematically

F/Ry = constant
4. The force of friction is independent of the area of contact, between the two surfaces.
5.The force of friction depends upon the roughness of the surfaces.
COEFFICIENT OF FRICTION: It is defined as the ratio of the limiting friction (F) to
the normal reaction (RN) between the two bodies.

w=F/RN
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FRICTION:
	when ever one block moves or tends to move tangentially with respect to the surface, on which it rests, the interlocking property of the projecting particles opposes the motion. This opposing force, which acts in the opposite direction of the movement of the upper block, is called the force of friction or simply friction.
Types of Friction: In general, the friction is of the following two types :
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4. The force of friction is independent of the area of contact, between the two surfaces.
5.The force of friction depends upon the roughness of the surfaces.
COEFFICIENT OF FRICTION: It is defined as the ratio of the limiting friction (F) to 
the normal reaction (RN) between the two bodies. 
                                          µ = F/RN
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ANGLE OF FRICTION:

It may be defined as the angle which the resultant reaction R makes

with the normal reaction RN.
tan @ = F/RN =pRN/RN =p
ANGLE OF REPOSE:

If the angle of inclination o of the plane to the horizontal
is such that the body begins to move down the plane, then the angle
a is called the angle of repose. A little consideration will show that
the body will begin to move down the plane when the angle of

inclination of the plane is equal to the angle of friction (i.e. a. = @).

10.14. Friction of a Body Lying on a Rough Inclined Plane

1. Considering the motion of the body up the plane
Let W = Weight of the body,
o = Angle of inclination of the plane to the horizontal,
¢ = Limiting angle of friction for the contact surfaces,
P = Effort applied in a given direction in order to cause the body to slide with
uniform velocity parallel to the plane, considering friction,
P, = Effort required to move the body up the plane neglecting friction,
0 = Angle which the line of action of P makes with the weight of the body 7,
= Coefficient of friction between the surfaces of the plane and the body

Ry

R = Resultant reaction.

= Normal reaction, and

When friction is taken into account, a frictional force/’= [1.R acts in the direction opposite
to the motion of the body, as shown in Fig. 10.8 (a). The resultant reaction R between the plane and
the body is inclined at an angle with the normal reactionR. The triangle of forces is shown in Fig.
10.8 (b). Now applying sine rule, B W

sin(0L + 0)  sin[6 — (0 + 0)]

(b) (o)
Fig. 10.8. Motion of the body up the plane, considering friction.

_ W sin (o + ¢) .
sin[6— (0t + 0)] (i)

Notes : 1. When the effort applied is horizontal, then 6 = 90°. In that case, the equations (7) and (i7) may be
written as
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ANGLE OF FRICTION: 
It may be defined as the angle which the resultant reaction R makes
with the normal reaction RN. 
tan φ = F/RN = µRN/RN = µ
ANGLE OF REPOSE:
	If the angle of inclination  α of the plane to the horizontal 
is such that the body begins to move down the plane, then the angle 
α is called the angle of repose. A little consideration will show that 
the body will begin to move down the plane when the angle of 
inclination of the plane is equal to the angle of friction (i.e. α = φ).
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_ Wsin(ou+0)  Wsin (o + 0)
sin[90° — (a0 + @)  cos (o + )
2. When the effort applied is parallel to the plane, then ® = 90° + .. In that case, the equations (/) and
(if) may be written as

=W tan (o0 + )

_ W sin(o + ¢) _ Wsin(o + ¢)
T sin[(90° + o) — (0L + )] cos O

__ W (sinco cos ¢ + cos o sin ¢)

=W (sin o + cos o.tan ¢)

cos ¢
=W (sin ot + L cos o) . u=tan 0)
2. Considering the motion of the body down the plane
R, R
*
A ¢ 180°—0 — (- ¢
0-(o—9)
180° — (0. — ) )
RY YW 4
(a—9) \«{I‘)
(0= 9) “

w
(b) (c)

Fig. 10.9. Motion of the body down the plane, considering friction.
When the friction is taken into account, the force of frictiod’= .R will act up the plane and
the resultant reaction R will make an angle ¢ with R towards its right as shown in Fig. 10.9 ). The
triangle of forces is shown in Fig. 10.9 (b). Now from sine rule,

P w
sin(ot— ¢)  sin[0 — (o — )]
or sin[0 — (ct — )] ..(iv)

10.15. Efficiency of Inclined Plane

The ratio of the effort required neglecting friction (i.e. P) to the effort required considering
friction (i.e. P) is known as efficiency of the inclined plane. Mathematically efficiency of the inclined
plane,

1. For the motion of the body up the plane

_ cot(o+ ¢) —cot 6
cot o0 — cot O

2. For the motion of the body down the plane
_ cota—cotB
- cot(o — ¢) —cot O
Example 1. An effort of 1500 N is required to just move a certain body up an inclined

plane of angle 12°, force acting parallel to the plane. If the angle of inclination is increased to 15 °,
then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.

Solution. Given : P, =1500N; o, =12°; o, = 15°; P, = 1720 N

Let W = Weight of the body in newtons, and pu = Coefficient of friction.
Ry, A,
1800 N 2o
Fy Fa
12° 15°
Yw Yw
(@) (b)

Fig. 10.10
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First of all, let us consider a body lying on a plane inclined at an angle of 12° with the
horizontal and subjected to an effort of 1500 N parallel to the plane as shown in Fig. 10.10 ().

Let RNl = Normal reaction, and
F, = Force of friction.

We know that for the motion of the body up the inclined plane, the efort applied parallel to
the plane (P)),
1500 =W (sin o, + W cos o) = W (sin 12° + . cos 12°) ()]

Now let us consider the body lying on a plane inclined at an angle of 15° with the horizontal
and subjected to an effort of 1720 N parallel to the plane as shown in Fig. 10.10 (D).

Let RNz = Normal reaction, and
F, = Force of friction.

We know that for the motion of the body up the inclined plane, the efort applied parallel to
the plane (P,),
1720 =W (sin oL, + WL cos 0,) = W (sin 15° + [ cos 15°) ...(i)
Coefficient of friction
Dividing equation (i7) by equation (i),
1720 W (sin 15° + u cos 15°)
1500 W (sin 12° T H cos 12°)
1720 sin 12°+ 1720 @ cos 12°= 1500 sin 15° + 1500 W cos 15°

W (1720 cos 12°— 1500 cos 15°) = 1500 sin 15° — 1720 sin 12°

_ 1500 sin 15° = 1720 sin 12° 1500 x 0.2588 — 1720 x 0.2079
" 1720 cos 12° — 1500 cos 15° 1720 x 0.9781 — 1500 x 0.9659

388.2-357.6 306

= = =0.131Ans.
1682.3 —1448.5 233.8

Weight of the body
Substituting the value of |l in equation (7),
1500 = W (sin 12°+ 0.131 cos 12°) = W (0.2079 + 0.131 x 0.9781) = 0.336 W
. W =1500/0.336 = 4464 N Ans.
10.16. Screw Friction

The screws, bolts, studs, nuts etc. are widely used in various machines and structures for
temporary fastenings. The screw threads are mainly of two types i.e. V-threads and squarethreads.
The V-threads are stronger and ofer more frictional resistance to motion than square threads.

The following terms are important for the study of screw :
1. Helix. It is the curve traced by a particle while moving along a screw thread.

2. Pitch. 1t is the distance from a point of a screw to a corresponding point on the next thread,
measured parallel to the axis of the screw.

3. Lead. 1t is the distance, a screw thread advances axially in one turn.

4. Depth of thread. 1t is the distance between the top and bottom surfaces of a thread (also
known as crest and root of a thread).

5. Single-threaded screw. If the lead of a screw is equal to its pitch, it is known as single
threaded screw.

6. Multi-threaded screw. If more than one thread is cut in one lead distance of a screw; it is
known as multi-threaded screw.

Lead = Pitch x Number of threads

7. Helix angle. 1t is the slope or inclination of the thread with the horizontal.
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Lead of screw

tan o =
Circumference of screw
=plnd ...(In single-threaded screw)
=n.p/nd ...(In multi-threaded screw)
where o = Helix angle,

p = Pitch of the screw,
d = Mean diameter of the screw, and
n = Number of threads in one lead.

10.17. Screw Jack

The screw jack is a device, for lifting heavy loads, by applying a comparatively smaller
effort at its handle. The principle, on which a screw jack works is similar to that of an inclined plane.

w
Head < !
/
P
{——— - w
! Lever
Y
R
«— Sq. threaded rod 117 Collar
I
«— Nut |
R,
Head —? R
/iC»‘_ Screw rod
LN
(a) Screw jack. (b) Thrust collar.
Fig. 10.11

10.18. Torque Required to Lift the Load by a Screw Jack

If one complete turn of a screw thread by imagined to be unwound, from the body of the
screw and developed, it will form an inclined plane as shown in Fig. 10.12 (@).

//‘T
p
o Y

le—— rd ——>

(a) Development of a screw. (b) Forces acting on the screw.
Fig. 10.12
Let p = Pitch of the screw,

d = Mean diameter of the screw,
o = Helix angle,

P = Effort applied at the circumference of the screw to lift the
load,

W = Load to be lifted, and

= Coefficient of friction, between the screw and nut = tan 0,
where ¢ is the friction angle.

From the geometry of the Fig. 10.12 (a), we find that
tana = p/md

Since the principle on which a screw jack works is similar to that of an inclined plane, there-
fore the force applied on the lever of a screw jack may be considered to be horizontal as shown in Fig.
10.12 (b).



Since the load is being lifted, therefore the force of friction (F'= [.R) will act downwards.
All the forces acting on the screw are shown in Fig. 10.12 ().

Resolving the forces along the plane,
Pcoso = Wsino+F=Wsino+WRy ..(d)
and resolving the forces perpendicular to the plane,
Ry = Psino+ W cos o ...(iD)

Substituting this value of R in equation (i),

Pcoso = Wsino+ p (Psino+ W cos o)
=Wsino+ WU Psino+ W W cos o
or Pcoso—pUPsino = Wsino+ LW cos o
or P(coso—sin o) = W (sin o+ L cos o)
P=Wxsmoc+ucosoc

cos 0L — L sin o
Substituting the value of U = tan ¢ in the above equation, we get

sin o.+tan ¢ cos o

P=Wx -
cos oL — tan ¢ sin O

Multiplying the numerator and denominator by cos ¢,
sin o cos ¢ + sin ¢ cos o _ W x sin (o + ¢)
cos 0. cos ¢ — sin o sin ¢ cos(a + 0)
=W tan(o + ¢)
... Torque required to overcome friction between the screw and nut,
T :Px%:Wtan(oH-q))%

P=Wx

When the axial load is taken up by a thrust collar or a flat surface, as shown in Fig. 1011(b),
so that the load does not rotate with the screw, then the torque required to overcome friction at the

collar.
’ R +R
T2 = lll W(%) = lll WR

where R, and R, = Outside and inside radii of the collar,
R = Mean radius of the collar, and

i, = Coefficient of friction for the collar.

.. Total torque required to overcome friction (i.e. to rotate the screw),
d
T:ﬂ+Q:PxE+MWR

The nominal diameter of a screw thread is also known as outside diameter or major diameter.

The core diameter of a screw thread is also known as inner diameter or root diameter or minor diameter.

10.19. Torque Required to Lower the Load by a Screw Jack

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar
to that of an inclined plane. If one complete turn of a screw thread be imagined to be unwound from
the body of the screw and developed, it will form an inclined plane as shown in Fig. 10.13 @).

Let p = Pitch of the screw,
d = Mean diameter of the screw,
o = Helix angle,
P = Effort applied at the circumference of the screw to lower the

load,
W = Weight to be lowered, and

p = Coefficient of friction between the screw and nut = tan 0,
where ¢ is the friction angle.



(a) (b)
Fig. 10.13
From the geometry of the figure, we find that
tan o0 = p/nd

Since the load is being lowered, therefore the force of friction (F'= [.R) will act upwards.
All the forces acting on the screw are shown in Fig. 10.13 ().

Resolving the forces along the plane,

Pcoso = F-Wsino=WR— W sina ..(D)
and resolving the forces perpendicular to the plane,
Ry = W cos o.—Psina ...(#0)

Substituting this value of R in equation (i),
Pcosa = (W coso—Psino) — W sin o
= W.W cos o.— W.Psin o.— W sin o
or Pcoso+WPsino = WW coso.— W sina
or P(cos o+ psino) = W (L cos o— sin o)
(L cos o — sin o)
(cos o + W sin o)

P=Wx

Substituting the value of L = tan ¢ in the above equation, we get

Psz(tan(])cosoc—smoc)

(cos o + tan ¢ sin o)
Multiplying the numerator and denominator by cos¢,
(sin ¢ cos o0 — sin @ cos ¢) — W x sin(¢p — o)
(cos o cos ¢ + sin ¢ sin ) cos (¢ —a)
=W tan (¢ — o)

.. Torque required to overcome friction between the screw and nut,

P=Wx

d d
T=PxX—-—=Wtan (¢ — o) —
2 (¢ )2
Note : When o > ¢, then P = tan (0. — ¢).

Example 2. The mean diameter of a square threaded screw jack is 50 mm. The pitch of
the thread is 10 mm. The coefficient of friction is 0.15. What force must be applied at the end of a
0.7 m long lever, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 kN
and to lower it?
Solution. Given : d=50 mm=0.05m ;p=10mm ;u=tan ¢=0.15;/=0.7 m ; W =20 kN
=20x 103N

We know that tan o= 2 =10 _0.0637
nd wx50
Let P, = Force required at the end of the lever.

Force required to raise the load
We know that force required at the circumference of the screw

tan(x+tan¢:|

P=Wtan(o + ¢) =W
an( d)) |:1 — tan o.tan ¢



—20% 103 0.0637 + 0.15 B4 N
1 -0.0637 x 0.15
Now the force required at the end of the lever may be found out by the relation,
P, x1=Pxd2
4314 % 0.
P =P><d _ 3 ><005=154N Ans.
21 2x0.7

Force required to lower the load
We know that the force required at the circumference of the screw;
tan ¢ — tan o :|

P=Wwt -o)=W
an (9 ) |:1 + tan ¢.tan o

0.15 - 0.0637
1+ 0.15%x0.0637
Now the force required at the end of the lever may be found out by the relation,
_Pxd 1710x0.05
20 2x07

:20><103|: }:17101\1

=61 N Ans.

Plxl:Pxé or B
2

10.20. Efficiency of a Screw Jack

The efficiency of a screw jack may be defined as the ratio between the ideal effort (i.e. the
effort required to move the load, neglecting friction) to the actual effort (i.e. the effort required to
move the load taking friction into account).

We Ideal effort £ W tan o tan o

-. Efficiency, n=——M ="~ = =
Y Actual effort P W tan (ou+¢) tan (o + @)

which shows that the efficiency of a screw jack, is independent of the load raised.

Example 3. The pitch of 50 mm mean diameter threaded screw of a screw jack is 12.5
mm. The coefficient of friction between the screw and the nut is 0.13. Determine the torque required
on the screw to raise a load of 25 kN, assuming the dad to rotate with the screw Determine the ratio
of the torque required to raise the load to the torque required to lower the load and also theféfiency
of the machine.

Solution. Given : d=50mm ;p=125mm;u=tanp=0.13 ; W =25kN=25x 103N

po_ 125 _40s
nd mnx50

and force required on the screw to raise the load,

We know that, tan oL =

P =Wtan(o + ¢) = W[tanq)—tana}

1 + tan ¢.tan o

0.08 + 0.13

=25%10° | ————
1-0.08x0.13

:| =5305 N
Torque required on the screw
We know that the torque required on the screw to raise the load,
T, =P xd2=5305x50/2=132 625 N-mm Ans.
Ratio of the torques required to raise and lower the load
We know that the force required on the screw to lower the load,

tan¢—tan(x:|

P=Wtan(¢p —a) =W
© ) |:1 + tan ¢.tan o

0.13 +0.08

=25x10°| —————
1+0.13%0.08

]:1237 N

and torque required to lower the load

T,=Pxd2=1237x 50/2=30 905 N-mm

*. Ratio of the torques required,

=T,/T, =132625/30925 = 4.3 Ans.



Efficiency of the machine, We know that the efficiency,

tan oo tan o(l — tano.tan ¢)  0.08(1- 0.08 x 0.13)

T tan(o+0)  tan oo+ tan ¢ 0.08 + 0.13
“'=0.377=37.7% Ans
w
10.22. Over Hauling and Self Locking Screws Fn
10.24. Friction of a V-thread
Let 2B = Angle of the V-thread, and /) B
B = Semi-angle of the V-thread. p
P
cos B
and frictional force, £ = MRy =1 X cos B =W Fig. 10.14. V-thread.
u

where cosP =My> known as virtual coefficient of friction.

10.25. Friction in Journal Bearing-Friction Circle

A journal bearing forms a turning pair as shown in Fig. 10.154). The fixed outer element of

a turning pair is called a bearing and that portion of the inner element ( i.e. shaft) which fits in the
bearing is called ajournal.  w w

Friction

Lubricant A
circle

(a) ()

Fig. 10.15. Friction in journal bearing.

When the bearing is not lubricated (or the journal is stationary), then there is a line contact
between the two elements as shown in Fig. 10.15 @).

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15
(b). The lubricant between the journal and bearing forms a thin layer which gives rise to a greasy
friction. Therefore, the reaction R does not act vertically upward, but acts at another point of pressureB.
In order that the rotation may be maintained, there must be a couple rotating the shaft.
Let ¢ = Angle between R (resultant of F'and R ) and R,
p = Coefficient of friction between the journal and bearing,
T = Frictional torque in N-m, and
r = Radius of the shaft in metres.

For uniform motion, the resultant force acting on the shaft must be zero and the resultant
turning moment on the shaft must be zero. In other words,

R=W,andT=W x OC=W x OB sin ¢ = W.rsin ¢
Since ¢ is very small, therefore substituting sin ¢ = tan ¢
T=Wrtano=p.Wr (. u=tan ¢)
If the shaft rotates with angular velocity o rad/s, then power wasted in friction,
P =T.0w=T x2nN/60 watts
where N = Speed of the shaft in t.p.m.

Notes : 1. Ifa circle is drawn with centreO and radius OC =r sin ¢, then this circle is called thefriction circle
of a bearing.

10.26. Friction of Pivot and Collar Bearing
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10.26. Friction of Pivot and Collar Bearing
The rotating shafts are frequently subjected to axial thrust. The bearing surfaces such as pivot
and collar bearings are used to take this axial thrust of the rotating shaft.

The bearing surfaces placed at the end of a shaft to take the axial thrust are known as
pivots.

Collar
L& Shaft |
Z M Z
|
(a) Flat pivot. (b) Conical pivot. (c) Truncated pivot. (d) Single flat (e) Multiple flat

collar. collar.

Fig. 10.16. Pivot and collar bearings.
Hence, in the study of friction of bearings, it is assumed that
1. The pressure is uniformly distributed throughout the bearing surface, and
2. The wear is uniform throughout the bearing surface.

10.27. Flat Pivot Bearing

When a vertical shaft rotates in a flat pivot bearing (known as
foot step bearing ), as shown in Fig. 10.17, the sliding friction will be

Shaft
along the surface of contact between the shaft and the bearing.

Let W =Load transmitted over the bearing surface,
Flat pivot

R =Radius of bearing surface, bearing

A
I

|

i’\

p =Intensity of pressure per unit area of bear-
ing surface between rubbing surfaces, and Fig. 10.17. Flat pivot or footstep

w =Coefficient of friction. bearing.
We will consider the following two cases :
1. Considering uniform pressure:
When the pressure is uniformly distributed over the bearing area, then
W
TR
Consider a ring of radius » and thickness dr of the bearing area.
. Area of bearing surface, A4 = 2nr.dr
Load transmitted to the ring,
W =pxA=px2nrdr ...(D)
Frictional resistance to sliding on the ring acting tangentially at radiusr,
F =WoW =Wp x 2n r.dr =21 W.p.r.dr
.. Frictional torque on the ring,
T =Fxr=2npuprdrxr=2mnuprdr (1)
Integrating this equation within the limits from 0 to R for the total frictional torque on the
pivot bearing.

R R
. Total frictional torque, T=_[ 2nppr *dr = 2mup I r? dr
0 0

3 R 2
:2nup[r_:| :2nupx—:—xnu.p.R3
3 1 33
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When the shaft rotates at @ rad/s, then power lost in friction,
P =T.w=Tx 21 N/60 (. ©=21N/60)
2. Considering uniform wear

We have already discussed that the rate of wear depends upon the intensity of pressure (p) and
the velocity of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product
of intensity of pressure and the velocity of rubbing surfaces {.e. p.v..). Since the velocity of rubbing
surfaces increases with the distance (i.e. radius ) from the axis of the bearing, therefore for uniform
wear

pr =C(aconstant) or p=C/r
and the load transmitted to the ring,
W = p x2nr.dr ...[From equation (7)]

= 9 X 2nwr.dr = 2nC.dr
r

.. Total load transmitted to the bearing
R

W= 2mCdr=2nClIf =2rnCR or C= By
0

We know that frictional torque acting on the ring,

T =2nupr’ dr=2ﬂ:u><£><r2 dr ( ch)
r r
=2n u.Cr dr .70

-. Total frictional torque on the bearing,
R 51k R
T = j 2n w.Crdr =2npn.C [%} =2np.C ><7 = Tcu.C.R2
0 0

w , 1
=TUX—— XR° " =— XUWW.R
H 2R 2 H

10.30. Flat Collar Bearing

We have already discussed that collar bearings are used to take the axial thrust of the rotating
shafts. There may be a single collar or multiple collar bearings as shown in Fig. 10.20 ( «) and (b)
respectively. The collar bearings are also known as thrust bearings.

w

&/7/ Shaft
-
!<—r1 1 Collar

¥

|
|
;/!@

(a) Single collar bearing (b) Multiple collar bearing.
Fig. 10.20. Flat collar bearings.
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1. Considering uniform pressure

When the pressure is uniformly distributed over the bearing surface, then the intensity of
pressure,

w w

We have seen in Art. 10.25, that the frictional torque on the ring of radiug and thickness dr,
T = 2nu.p.r2.dr

Integrating this equation within the limits from r, to r, for the total frictional torque on the
collar.

*. Total frictional torque,

rl = Znu.p[(rl)3 B (r2)3:|
3

3

= r' 2T|:u.p.r2.dr =2mW.p |:%3:|

Substituting the value of p from equation (),

_ VoW - )3}
T=2 —_—| 1 2
e - (rz)z]{ 3

2 )y - (1)
=xuw| L —2
[(,,1)2 ~(1,)?

2. Considering unifrom wear

We have seen in Art. 10.25 that the load transmitted on the ring, considering uniform wear is,

W = p 2mrdr = < X 2nr.dr = 2nC.dr
r

*. Total load transmitted to the collar,

W =" 2nCar = 2nCIr} =20C (5 —1,)

We also know that frictional torque on the ring,
T =wdWr=ux2nCdrr =2nuCrdr

.. Total frictional torque on the bearing,
p

i , 1! ) 5
T= J 2ruC.r.dr = Znu.C[r_:| = znu_c[(’i) (r,) :|
2 2

-
P
)

=nuCl(r) - ()]

Substituting the value of C from equation (i7),

w 1
T :Ttuxm[(,,l)2 _ (,ﬂ2)2]25><u.W(r1 +r)



10.31. Friction Clutches

A friction clutch has its principal application in the transmission of power of shafts and
machines which must be started and stopped frequently.

In automobiles, friction clutch is used to connect the engine to the driven shaft. In
operating such a clutch, care should be taken so that the friction surfaces engage easily and gradually
brings the driven shaft up to proper speed.

The friction clutches of the following types are important from the subject point of view :
1. Disc or plate clutches (single disc or multiple disc clutch),
2. Cone clutches, and

3. Centrifugal clutches.
10.32. Single Disc or Plate Clutch

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both
sides are faced with a friction material (usually of Ferrodo).
It is mounted on the hub which is free to move axially along the splines of the driven shaft.
The pressure plate is mounted inside the clutch body which is bolted to the flywheel.
Both the pressure plate and the flywheel rotate with the enginecrankshaft or the driving shaft.
Clutch plate with
o friction lining

The pressure plate pushes the clutch ~ Flywheel

plate towards the flywheel by a set of strong

springs which are arranged radially inside the body.
The three levers (also known as release levers

or fingers) are carried on pivots suspended Crank

from the case of the body. These are shaft \

arranged in such a manner so that the pressure

plate moves away from the flywheel by the E

inward movement of a thrust bearing.

The bearing is mounted upon a forked

Pressure plate
Thrust

%/ bearing

shaft and moves forward when the clutch pedal -
is pressed.

I \¢
When the clutch pedal is pressed Driving ~/ T (e Driven shaft

down, its linkage forces the thrust shaft y

Release lever
(Withdrawl finger)

The levers are forced to turn on their suspended
pivot and the pressure plate moves away from the
flywheel by the knife edges, there by compressing
the clutch springs. This action removes the pressure
from the clutch plate and thus moves back from the
flywheel and the driven shaft becomes stationary. Fig. 10.21. Single disc or plate clutch.

On the other hand, when the foot is taken off from the clutch pedal, the thrust bearing moves
back by the levers. This allows the springs to extend and thus the pressure plate pushes the clutch
plate back towards the flywheel.

The axial pressure exerted by the spring provides a frictional force in the circumferential direction
when the relative motion between the driving and driven members tends to take place. If the torque due to
this frictional force exceeds the torque to be transmitted, then no slipping takes place and the power is
transmitted from the driving shaft to the driven shaft.

release bearing to move in towards the flywheel ]
and pressing the longer ends of the levers inward.



Now consider two friction surfaces, maintained in contact by an axial thrust/, as shown in
Fig. 10.22 (a).

Let T = Torque transmitted by the clutch,

p = Intensity of axial pressure with which the contact surfaces are held
together,

r, and r, = External and internal radii of friction faces, and
p = Coefficient of friction.
Consider an elementary ring of radius » and thickness dr as shown in Fig. 10.22 (b).
‘We know that area of contact surface or friction surface,
=2mnrdr
. Normal or axial force on the ring,
OW = Pressure x Area=p x 2 T r.dr
and the frictional force on the ring acting tangentially at radiusz,
F = WwoW =pwpx2nrdr
.. Frictional torque acting on the ring,
T=Fxr=upx2nrdrxr=2mxu prdr

Single disc
y/ or plate

I
e ¥

il

%ﬁon
surface
(a) (0)
Fig. 10.22. Forces on a single disc or plate clutch.
We shall now consider the following two cases :
1. When there is a uniform pressure, and
2. When there is a uniform wear.
1. Considering uniform pressure
When the pressure is uniformly distributed over the entire area of the friction face, then the
intensity of pressure,
_ w
PR — )] -
where W = Axial thrust with which the contact or friction surfaces are held together
We have discussed above that the frictional torque on the elementary ring of radius 7 and
thickness dr is
T =2nuprdr
Integrating this equation within the limits from r, to r, for the total frictional torque.
.. Total frictional torque acting on the friction surface or on the clutch,

7

rz 1 3 3
sz 2nu.p.r2.dr=2nup[§:| :2nup[(’ﬂl)_(’ﬂ2):|
3

-
i
)

Substituting the value of p from equation (i),



w " n) - ()

T=2mux

(1) - (1,)*] 3
3 3
3 ()" = ()
where R = Mean radius of friction surface

:2{@)3 —<r2>3}
36 -6,

2. Considering uniform wear

In Fig. 10.22, let p be the normal intensity of pressure at a distance 7 from the axis of the
clutch. Since the intensity of pressure varies inversely with the distance, therefore

p.r.=C(aconstant) or p=Clr ..(d)

and the normal force on the ring,
OW = p2nrdr = ¢ x2nCdr =2nC.dr
r

.. Total force acting on the friction surface,

W= [ 2rCdr=2rC[r]! =2rCG; - 1)

63

or e
2n(r, = 1)
We know that the frictional torque acting on the ring,
T =2npup ¥ dr = 2mu X ¢ X dr = 2nu.Cor.dr
r
_ (0 p=Clr)
. Total frictional torque on the friction surface,
i 2 i 2
T = j 2nn.Cr.dr = 2n|.t.C{r_:| = 2TI:|J..C|:(F1)
M 2

- (rzf}
2

[ = 7]

p) 7

_ 2 _ o \21= w
=nuC(R)" — () ]=nmux 20 - 1)

= % XWW(r, + 1) =UW.R

. .. r+r
where R = Mean radius of the friction surface = 1~ "2

10.33. Multiple Disc Clutch

A multiple disc clutch, as shown in Fig. 10.23, may be used when a lar ge torque is to be
transmitted. The inside discs (usually of steel) are fastened to the driven shaft to permit axial motion
(except for the last disc). The outside discs (usually of bronze) are held by bolts and are fastened to
the housing which is keyed to the driving shaft. The multiple disc clutches are extensively used in
motor cars, machine tools etc.

Let n, = Number of discs on the driving shaft, and
n, = Number of discs on the driven shaft.
. Number of pairs of contact surfaces,
n=n+n,—1

and total frictional torque acting on the friction surfaces or on the clutch,

T =nWW.R
where R = Mean radius of the friction surfaces
2| ) -3y
= E[W} ...(For uniform pressure)

o+
_1Th .
= ...(For uniform wear)

2
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Fig. 10.23. Multiple disc clutch.

Example 4. Determine the maximum, minimum and average pressure in plate clutch
when the axial force is 4 kN. The inside radius of the contact surface is 50 mm and the outside radius
is 100 mm. Assume uniform wear

Solution. Given : W =4 kN =4 x 103N;r2:50mm;r1 =100 mm
Maximum pressure
Let Dy = Maximum pressure.
Since the intensity of pressure is maximum at the inner radius ¢;,), therefore
Ppax X1 =C or C=50p, -
We know that the total force on the contact surface (#),
4x103=2nC(r,—r)=21x50p, (100-50)=15710p
Py = 4 % 10%/15 710 = 0.2546 N/mm? Ans.

max

Minimum pressure
Let D,y = Minimum pressure.
Since the intensity of pressure is minimum at the outer radius ¢,), therefore
Ppin X7y =C or C=100p .
We know that the total force on the contact surface (%),
4x10° =2 C(r,—r)=2nx100p, . (100—-50)=31420p
Poin = 4% 10%/31 420 =0.1273 N/mm?* Auns.

min

A verage pressure

We know that average pressure,

_ Total normal force on contact surface

@ Cross-sectional area of contact surfaces

w 4%10°

nl(5)* - (5)°]  w[(100)* - (50)*]
Example 5. 4 single plate clutch, with both sides effective, has outer and inner
diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the
contact surface is not to exceed 0.1 N/mnt. If the coefficient of friction is 0.3, determine the power
transmitted by a clutch at a speed 2500 r.p.m.

=0.17 N/mm® Ans.

Solution. Given : d; = 300 mm or r, = 150 mm ; d, = 200 mm or r, = 100 mm ; p = 0.1 N/mm? ;
w=0.3; N=2500 r.p.m. or ® = 21 x 2500/60 = 261.8 rad/s

Since the intensity of pressure (p) is maximum at the inner radius ¢,), therefore for uniform

wear,
pr, =C or C=0.1x100=10N/mm

We know that the axial thrust,
W=2nrC(r,—r)=2nx10(150-100)=3142 N

and mean radius of the friction surfaces for uniform wear,



v, + r.
P ' ) :150;100:125mm=0.125m

We know that torque transmitted,
T=npuW.R=2x0.3x3142 x0.125 =235.65 N-m
...(". n =2, for both sides of plate effective)

. Power transmitted by a clutch,
P=T.0w=235.65%261.8=61693 W=061.693 kW Ans.

10.34. Cone Clutch

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it
has been replaced completely by the disc clutch.

Driven
shaft

- _i" w

Driving shaft

Driver —~

Conical friction

surface b

Fig. 10.24. Cone clutch.

It consists of one pair of friction surface only . In a cone clutch, the driver is keyed to the
driving shaft by a sunk key and has an inside conical surface or face which exactly fits into the outside
conical surface of the driven. The driven member resting on the feather key in the driven shaft, may
be shifted along the shaft by a forked lever provided aB, in order to engage the clutch by bringing the
two conical surfaces in contact. Due to the frictional resistance set up at this contact surface, the
torque is transmitted from one shaft to another. In some cases, a spring is placed around the driven
shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains
the pressure between them, and the forked lever is used only for disengagement of the clutch. The
contact surfaces of the clutch may be metal to metal contact, but more often the driven member is
lined with some material like wood, leathercork or asbestos etc. The material of the clutch facesi(e.
contact surfaces) depends upon the allowable normal pressure and the coefficient of friction.

Consider a pair of friction surface as shown in Fig. 10.25 (a). Since the area of contact of a
pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone clutch may
be determined in the similar manner as discussed for conical pivot bearings in Art. 10.28.

Let p,, = Intensity of pressure with which the conical friction surfaces are held
together (i.e. normal pressure between contact surfaces),

r, and r, = Outer and inner radius of friction surfaces respectively.

. .. n+trn
R = Mean radius of the friction surface = '

o = Semi angle of the cone (also called face angle of the cone) or the
angle of the friction surface with the axis of the clutch,

1 = Coefficient of friction between contact surfaces, and

b = Width of the contact surfaces (also known as face width or clutch
face).



(b)

Fig. 10.25. Friction surfaces as a frustrum of a cone.

Consider a small ring of radiusr and thickness dr, as shown in Fig. 10.25 ¢). Let d/ is length
of ring of the friction surface, such that

dl = dr.cosec o
. Area of the ring,
A = 21 r.dl = 2nr.dr cosec o

1. Considering uniform pressure
We know that normal load acting on the ring,
OW, = Normal pressure x Area of ring =p_ * 2 1t .dr.cosec o
and the axial load acting on the ring,
W = Horizontal component of 8/, (i.e. in the direction of )
= O0W, xsino=p, * 21 r.dr. cosec o X sin oL =27 X p .r.dr

. Total axial load transmitted to the clutch or the axial spring force required,

W= f 2Tcpn.r.dr=2npn[r_2:| :2Tcpn[M:|
g 2 2
=np,[(7)? - ()?]
I A—
TE[(rl)z _ (r2)2] ()]

We know that frictional force on the ring acting tangentially at radiusr,

b,

F = WoW , =up,x2nrdr.coseca
*. Frictional torque acting on the ring,
T =F xr=pp, x2mxrdr cosec o.r=2T |Lp,.cosec ./ dr

Integrating this expression within the limits fromz, to r, for the total frictional torque on the
clutch.

- i 3
. Total frictional torque, 77 = J 2mpLp, cosec oL .dr = 2Tl p, .cosec (x|:r_:|
3

”
2
%)

mf—mﬁ}
3
Substituting the value of p, from equation (i), we get

mf—@f]
3

=21 p, cosec o [

w
T =2T U X ———— X cosec oc|:
n[(7)? = ()]

3_\3
= % X WW .cosec 0c|:(rl)(rz):| (i)

(n)* = ()’



2. Considering uniform wear
In Fig. 10.25, let p, be the normal intensity of pressure at a distance » from the axis of the
clutch. We know that, in case of uniform wear , the intensity of pressure varies inversely with the
distance.
p,.r = C(aconstant) or p =C/r
We know that the normal load acting on the ring,
dW, = Normal pressure x Area of ring = p * 2mr.dr cosec o
and the axial load acting on the ring ,
OW =08W xsina=p.2mrdr.cosec o .sino=p X2 r.dr

= ¢ X 2nrdr =2nC.dr (0 p,=C/r)
p

Total axial load transmitted to the clutch,

I

1
w=| 2nCdr=2nC[;]! =2nC(@; —1,)
2

oY

w ..
or C= ...(#i0)
27(r = 1y)
We know that frictional force acting on the ring,
F_ = WoW, =Wwp, x2mrxdrcosec o
and frictional torque acting on the ring,

T .=F xr=Wp, x2nrdr.cosec o xr

C
=UX—X 2772 drcosec o = 2npu.C cosec o X r dr
r

*. Total frictional torque acting on the clutch,
I

Ul >
7= j 27tp.C.cosec oLrdr = 2U.C.cosec (x[r_:|
2

7, ",
2

Substituting the value of C from equation (7), we have

2 2]
= 2np.C.cosec oc[(rl)_(rz)

2 2
T:2nuxLxcoseca M}

2Tt(r1 - rz) | 2
v, +r
= W cosec oc( L2 ]z W .R cosec o (iv)
ntn . ..
where R = 2 = Mean radius of friction surface

Since the normal force acting on the friction surface, W, = W/sin o, therefore the equation
(iv) may be written as

T =uW, R ()

The forces on a friction surface, for steady operation of the clutch and after the clutch is
engaged, is shown in Fig. 10.26.

Friction
surface

(a) For steady operation of the clutch (b) During engagement of the clutch.

Fig. 10.26. Forces on a friction surface.



ntn

7

\ — 1, =bsino; and R =

or r1+r2=2R

.. From equation, (i), normal pressure acting on the friction surface,

_ w _ w _ w
Pn = n[(rl)2 - (rz)z] B T + 1) — 1) " 2nRb.sina
or W =p,x2nRbsino=W, sino
where W, = Normal load acting on the friction surface =p, x 2t R.b

Now the equation (iv) may be written as,

T =u(p, X 2wRbsin a) R cosec o = 2nu.pn.R2b

Example 6. 4 conical friction clutch is used to transmit 90 kW at 1500 ip.m. The semi-
cone angle is 20° and the coefficient of friction is 0.2. If the mean diameter of the bearing surface is
375 mm and the intensity of normal pressure is not to exceed 0.25 N/m#y find the dimensions of the
conical bearing surface and the axial load required.

Solution. Given : P=90 kW =90 x 10> W ; N = 1500 r.p.m. or ® = 2 Tt x 1500/60 = 156
rad/s ; 0=20°; u=0.2;D=375mmor R =187.5mm;p, =025 N/mm?

Dimensions of the conical bearing surface
Let r, and r, = External and internal radii of the bearing surface respectively,
b = Width of the bearing surface in mm, and
T = Torque transmitted.
We know that power transmitted (P),
90 x 10° = T.w=Tx 156
T = 90 x 10156 =577 N-m = 577 x 103 N-mm
and the torque transmitted (7)),
577%x10° =2mup, R2.b=2mx 0.2 x0.25(187.5)> b =11 046 b
b =577 x 10%/11 046 = 52.2 mm Ans.
We know that 7 +r, = 2R =2 x187.5=375 mm ..(d)
and ¥ —r, = bsin o =52.2sin 20°= 18 mm ...(i)
From equations (7) and (ii),
r, = 196.5 mm, and 7, = 178.5 mm Ans.
Axial load required

Since in case of friction clutch, uniform wear is considered and the intensity of pressure is
maximum at the minimum contact surface radius (), therefore

p,7, = C(aconstant) or C=0.25 x 178.5 = 44.6 N/mm
We know that the axial load required, W = 2nC (r, — r,) = 27 % 44.6 (196.5 — 178.5) = 5045 N Ans

10.35. Centrifugal Clutch

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a
number of shoes on the inside of a rim of the pulleyas shown in Fig. 10.28.

c Ferrodo
over lining
DA
plate \; j m%‘%(
é Spider
Spider —\5 g

4
Driving &

shaft

77 M NN l
4‘ Driven

shaft

Spring

E

IMuR RN RRRRRRRRRRI

Fig. 10.28. Centrifugal clutch.



The outer surface of theshoes are covered with a friction material. These shoes, which can move
radially in guides, are heldagainst the boss (or spider) on the driving shaft by means of springs. The springs
exert a radially inward force which is assumed constant. The mass of the shoe, when revolving, causes it to
exert a radially outward force (.e. centrifugal force). The magnitude of this centrifugal force depends upon
the speed at which the shoe is revolving. A little consideration will show that when the centrifugal force is
less than the spring force, the shoe remains in the same position as when the driving shaft was stationary,
but when the centrifugal force is equal to the spring force, the shoe is just floating. When the centrifugal
force exceeds the spring force, the shoe moves outward and comes into contact with the driven member and
presses against it. The force with which the shoe presses against the driven member is the difference of the
centrifugal force and the spring force. The increase of speed causes the shoe to press harder and enables more
tor§ue to be transmitted.

In order to determine the mass and size of the shoes, the following procedure is adopted :
1. Mass of the shoes

Consider one shoe of a centrifugal clutch as shown in Fig. 10.29. A

Let m = Mass of each shoe,

n = Number of shoes,

r = Distance of centre of gravity of
the shoe from the centre of the
spider,

~
R/

R = Inside radius of the pulley rim,

N = Running speed of the pulley in !
o, W

o = Angular running speed of the

pulley in rad/s = 2nN/60 rad/s, Fig. 10.29. Forces on a shoe of
centrifugal clutch.

®, = Angular speed at which the
engagement begins to take place,
and

pu = Coefficient of friction between
the shoe and rim.

We know that the centrifugal force acting on each shoe at the running speed,
P.=m %
and the inward force on each shoe exerted by the spring at the speed at which engagement begins to
take place,
P =m ((Dl)z r
. The net outward radial force (i.e. centrifugal force) with which the shoe presses against
the rim at the running speed

=P -P
and the frictional force acting tangentially on each shoe,
F=u,-P)

.. Frictional torque acting on each shoe,
=FxR=p(P.-P)R
and total frictional torque transmitted, A
T=u(P.-P)Rxn=nkFER
From this expression, the mass of the shoes (n) may be evaluated.
2. Size of the shoes
Let ! = Contact length of the shoes,
b = Width of the shoes,



R = Contact radius of the shoes. It is same as the inside radius of the rim
of the pulley.

0 = Angle subtended by the shoes at the centre of the spider in radians.

p = Intensity of pressure exerted on the shoe. In order to ensure reason-
able life, the intensity of pressure may be taken as 0.1 N/mn?.

We know that 0=I/Rrad or [=0.R
.. Area of contact of the shoe,
A=1b
and the force with which the shoe presses against the rim
=Axp=ILbp

Since the force with which the shoe presses against the rim at the running speed is .~ P)),

therefore
Lbp =P, —P

From this expression, the width of shoe (b) may be obtained.

Example 7. 4 centrifugal clutch is to transmit 15 kW at 900 p.m. The shoes are four in
number. The speed at which the engagement begins is 3/4th of the running speed. The inside radius
of the pulley rim is 150 mm and the centre of gravity of the shoe lies at 120 mm from the centre of the
spider. The shoes are lined with Ferrodo for which the coefficient of friction may be taken as 0.25.

Determine : 1. Mass of the shoes, and 2. Size of the shoes, if angle subtended by the shoes at the
centre of the spider is 60° and the pressure exerted on the shoes is 0.1 N/mm’.

Solution. Given : P=15kW =15 x 10> W ; N = 900 r.p.m. or & = 25 x 900/60 = 94.26 rad/s ;
n=4;R=150mm=0.15m;r=120mm=0.12 m ; p = 0.25

Since the speed at which the engagement begins (i.e. ®,) is 3/4th of the running speed (i.e.
), therefore

o = 3 = 3 %X 94.26 =70.7 rad/s
4 4
Let T = Torque transmitted at the running speed.
We know that power transmitted (P),
15%x10° = T.o=Tx9426 or T=15x10%94.26=159 N-m
1. Mass of the shoes
Let m = Mass of the shoes in kg.
We know that the centrifugal force acting on each shoe,
P, =m.o*r=m (94.26)* x 0.12=1066 m N
and the inward force on each shoe exerted by the springi.e. the centrifugal force at the engagement
speed w,,
P =m(®)*r=m (70.77 x 0.12=600m N
.. Frictional force acting tangentially on each shoe,
F=uP,-P)=025(1066 m —600m)=116.5m N
We know that the torque transmitted (7"),
159 = nFR=4x1165m x0.15=70m or m=2.27kg Ans.
2. Size of the shoes
Let | = Contact length of shoes in mm,
b = Width of the shoes in mm,
0 = Angle subtended by the shoes at the centre of the spider in radians
= 60° =1/3 rad, and ...(Given)

p = Pressure exerted on the shoes in N/mm? = 0.1 N/mm? ...(Given)

We know that [ =6.R =§x 150 = 157.1 mm

and Lbp =P, —P =1066 m —600m =466 m
157.1 x b x 0.1 =466 x2.27=1058
or b = 1058/157.1 x 0.1 =67.3 mm Ans.

EXERCISES



UNIT-III BRAKES AND DYNAMOMETERS

19.1. Introduction

A brake is a device by means of which artificial frictional resistance is applied to a moving
machine member, in order to retard or stop the motion of a machine. The energy absorbed by brakes
is dissipated in the form of heat.

The capacity of a brake depends upon the following factors :

1. The unit pressure between the braking surfaces,

2. The coefficient of friction between the braking
surfaces,

3. The peripheral velocity of the brake drum,

4. The projected area of the friction surfaces, and

5. The ability of the brake to dissipate heat equivalent
to the energy being absorbed.

19.2. Materials for Brake Lining
The material used for the brake lining should have thefollowing characteristics :
1.1t should have high coefficient of friction with minimum fading. In other words, the coeffi-cient
of friction should remain constant with change in temperature.
2.1t should have low wear rate.
3.1t should have high heat resistance.
4.1t should have high heat dissipation capacity.
5.1t should have adequate mechanical strength.
6.1t should not be affected by moisture and oil.

Types of Brakes:

The brakes, according to the means used for transforming the energy by the braking elements,are classified as :
1. Hydraulic brakes e.g. pumps or hydrodynamic brakeand fluid agitator,

2. Electric brakes e.g. generators and eddy currentbrakes,

3. Mechanical brakes.

The mechanical brakes, according to the direction ofacting force, may be divided into the following two groups :

(a) Radial brakes: In these brakes, the force acting onthe brake drum is in radial direction.
The radial brakes may be sub-divided into external brakes and internal brakes.
According to the shape of the friction elements, these brakes may be block or shoe brakes and band brakes.

(b) Axial brakes: In these brakes, the force acting on the brake drum is in axial direction.

The axial brakes may be disc brakes and cone brakes.

19.4. Single Block or Shoe Brake

A single block or shoe brake is consists of a block or shoe which is pressed against the rim of a
revolving brake wheel drum. The block is made of a softer material thanthe rim of the wheel. This type
of a brake is commonly used on railway trains and tram cars.

The friction between the block and the wheel causes a tangential braking force to act on the wheel, which
retard the rotation of the wheel. The block is pressed against the wheel by a force applied to one endf a lever to
which the block is rigidly fixed as shown in Fig. 19.1. The other end of the leveris  pivoted on a fixed fulcrum O.
< / > I >

_ F P
P
O Rigidly ©
mounted (20 <7
block Wheel
(a) Clockwise rotation of brake wheel (b) Anticlockwise rotation of brake wheel.

Fig. 19.1. Single block brake. Line of action of tangential force passes through the fulcrum of the lever
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Let P = Force applied at the end of the lever,
R = Normal force pressing the brake block on the wheel,
r = Radius of the wheel,
20 = Angle of contact surface of the block,
p = Coefficient of friction, and
F, = Tangential braking force or the frictional force acting at the contact
surface of the block and the wheel.
If the angle of contact is less than 60°, then it may be assumed that the normal pressure between
the block and the wheel is uniform. In such cases, tangential braking forcen the wheel,
Fi=puRy (D)
and the braking torque, T =F.r=pR.r ... (i)

Let us now consider the following three cases :

Case 1. When the line of action of tangential braking force (F, ) passes through the fulcrum O

of the lever, and the brake wheel rotates clockwise as shown in Fig. 19.(a), then for equilibrium, taking
moments about the fulcrum O, we have

Ryxx=Pxl or Ry = Px1
x
.. Braking torque, Pl Pl
Ty =|.L.RN.r=|.L>@;><r=u
x x

It may be noted that when the brake wheel rotates anticlockwise as shown in Fig. 19.1 ( b),
then the braking torque is same, i.e.

w.Plr

Ty =WRy.r=

X

Case 2. When the line of action of the tangential braking forc¢F) ) passes through a distance
‘@’ below the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.2 ( ), then for
equilibrium, taking moments about the fulcrumO,

Pl
Ryxx+F,xa=Pl or Ry*Xx+pRyxa=Pl or Ry = Ttia
. plr
and braking torque, Ty =Ry 7 = wp
x+Na
a— X ——t ! l |
1
I
0 w
P P
Rigidly
mounted
block
(a) Clockwise rotation of brake wheel. (b) Anticlockwise rotation of brake wheel.

Fig. 19.2. Single block brake. Line of action of F} passes below the fulcrum.
When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 ), then for equilibrium,

Ryx=P.l+F.a=Pl+uRya -
Pl
or Ry (x—pa)=Pl or Ry= p—
and braking torque, Ty = WRy s = Ww.P.Lr
x—pa

Case 3. When the line of action of the tangential braking forc¢ /7, ) passes through a distance

‘@’ above the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.3 ( @), then for
equilibrium, taking moments about the fulcrum O, we have

Ryx=Pl+F,.a=Pl+puRa ... (@)

Pl

x—la

or Ry(x—pa)=Pl or Ry =



&
<

(a) Clockwise rotation of brake wheel. (b) Anticlockwise rotation of brake wheel.

Fig. 19.3. Single block brake. Line of action of F} passes above the fulerum.

W.P.Lr

and braking torque, T, = WR.r =

When the brake wheel rotates anticlockwise as shown in Fig. 19.3 §), then for equilibrium,

taking moments about the fulcrum O, we have

Pl

Ryxx+Fxa=Pl or R *x+pR xa=Pl or RN:x+|.1.a
d braking & TR e w.P.Lr
and braking torque, = LR 7= t+pa

19.5. Pivoted Block or Shoe Brake

We have discussed in the previous article that when the I
angle of contact is less than 60°, then it may be assumed that the |

normal pressure between the block and the wheel is uniform.
But when the angle of contact is greater than 60°, then the unit

. (0] P
pressure normal to the surface of contact is less at the ends than Pivoted
at the centre. This gives uniform wear of the brake lining in the bllc\)/gkeor shoe
direction of the applied force. The braking torque for a pivoted
block or shoe brake ( i.e. when2 @ > 60°) is given by Fig. 19.4. Pivoted block or shoe brake.

Ty =F xr=W.Ry.r
B b 4usin©

where W = Equivalent coefficient of friction = 01sm20° and

p = Actual coefficient of friction.

Example 1. 4 single block brake is shown in Fig. 19.5. |<—200—><— 25o—>|

The diameter of the drum is 250 mm and the angle of contact is

90°. If the operating force of 700 N is applied at the end of a lever ﬂ 1

and the coefficient of friction between the drum and the lining is 50 T,?) F,
0.35, determine the torque that may be transmitted by the block O + 20
brake. x_ 12

Solution. Given : d =250 mm or»= 125 mm ; 206 =90° . T .
All dimensions in mm.

=mn/2 rad; P=700 N ; p=0.35 Fig. 19.5
Since the angle of contact is greater than 60°, therefore

equivalent coefficient of friction,
,_ 4usin®  4x0.35xsin45°

©20+sin20  m/2+sin90°
Let R, = Normal force pressing the block to the brake drum, and

=0.385

F, = Tangential braking force = W.Ry
Taking moments about the fulcrum O, we have

F F
700(250 +200) + F, x50 = Ry X200 = —L x 200 = —L—x200 = 520 F,
n 0.385
or 520 F,— 50F, =700 x 450 or F, =700 x 450/470 = 670 N

We know that torque transmitted by the block brake,
Ty=F,xr=670 x 125 =8 3750 N-mm = 83.75N-m Ans.

700N



Bell crank
lever

19.6. Double Block or Shoe Brake
It consists of two brake blocks applied at the opposite ends of a
diameter of the wheel which eliminate or reduces the unbalanced

Fulcrum

force on the shaft. The brake is set by a spring which pulls the a )
upper ends of the brake arms together. When a force Pis applied to the i
bellcrank lever, the spring is compressed and the brake is released. Spring
In a double block brake, the braking action is doubled
by the use of two blocks and these blocks may be operated
practically by the same force which will operate one. In case of \Blorfk or
shoe

double block or shoe brake, the braking torque is given by
CTy=E TRy -
where F, and F, are the braking forces on the two blocks.

Example 2. 4 double shoe brake, as shown in Fig. 19.10,
is capable of absorbing a torque of 1400 N-m. The diameter of the s S T

brake drum is 350 mm and the angle of contact for each shoe is 100°.
If the coefficient of friction between the brake drum and lining is
0.4 ; find 1. the spring force necessary to set the brake ; and 2. the
width of the brake shoes, if the bearing pressure on the lining
material is not to exceed 0.3 N/mn?.

Solution. Given : Tj; = 1400 N-m = 1400 x 16° N-mm ;
d=350mm orr=175mm ;20 = 100° =100 xt/180=1.75 rad;

n=0.4;p,=0.3 N/mm?

77TTITTITTITT

1. Spring force necessary to set the brake

Let S = Spring force necessary to set the brake
Ry, and F;; = Normal reaction and the braking force on the right hand side shoe, and
Ry, and F,, = Corresponding values on the left hand side shoe.
Since the angle of contact is greater than 60°, therefore equivalent coefficient of friction,
‘e 4usin®  4x0.4xsin50°
20+sin20  1.75+sin100°
Taking moments about the fulcrum O, we have

=00.45

Sx450 = Ry, X200+ F;, (175 -40) = F4 <% 200+ F, X135 =579.4F, (Substltutlng Ry =
F, =S x450/579.4=0.776 S

Again taking moments about O,, we have

F,
Sx450+ F,,(175—40) = Ry, X200 = 0 ;25

4444 F,, — 135F —§x450 or 309.4 F,, =8x450
g n=8x450/309.4=1.454S
We know that torque capa01ty of the brake (),

1400 x 10° = Fy +Fy)r=(0.776 § + 1.454 §) 175 =390.25 §
S'=1400 x 10%/390.25 = 3587 N Ans.

x200=4444F, Substituting Ry, = F,,2 J
w

2. Width of the brake shoes
Let b = Width of the brake shoes in mm.
We know that projected bearing area for one shoe,

4, =b(2rsin0) = h(2x175sin 50°) = 268 » mm”

Normal force on the right hand side of the shoe,

p _Fu _0776xS _0.776x3587 _ oo
MW T 045 0.45

and normal force on the left hand side of the shoe,
F . .
Ry, :L}z: 1.454x S _ 1.454%x3587 11 590N
n 0.45 0.45
We see that the maximum normal force is on the left hand side of the shoe. Therefore we shall
find the width of the shoe for the maximum normal forcei.e. R,

We know that the bearing pressure on the lining material (p,),




11590 43.25

03=Fn 11590 _

4, 268b b
b=43.25/0.3 =144.2 mm Ans.

19.7. Simple Band Brake

A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with
friction material, which embraces a part of the circumference of the drum. A band brake, as shown in
Fig. 19.11, is called a simple band brake in which one end of the band is attached to a fixed pin or
fulcrum of the lever while the other end is attached to the lever at a distanced from the fulcrum.

When a force Pis applied to the lever atC, the lever turns about the fulcrum pinO and tightens
the band on the drum and hence the brakes are applied. The friction between the band and the drum
provides the braking force. The force P on the lever at C may be determined as discussed below :

Let T, = Tension in the tight side of the band,
T, = Tension in the slack side of the band,

0 = Angle of lap (or embrace) of the band on the drum,

p = Coefficient of friction between the band and the drum,
7 = Radius of the drum,

t = Thickness of the band, and

t
r, = Effective radius of the drum = 7+ 5

! l | =I|
|<— b —+ P P
C C
Brake drum
Shaft
(a) Clockwise rotation of drum. (b) Anticlockwise rotation of drum.
Fig. 19.11. Simple band brake.
We know that limiting ratio of the tensions is given by the relation,
T T;
il B eue or 2.3 log it By P u.e
n )
and braking force on the drum =7, - T,
. Braking torque on the drum,
Ty=(T,-Tyr ... (Neglecting thickness of band)
=T, -Tyr, ... (Considering thickness of band)

Now considering the equilibrium of the lever OBC. It may be noted that when the drum
rotates in the clockwise direction, as shown in Fig. 19.1 1 (a), the end of the band attached to the
fulcrum O will be slack with tensionT’, and end of the band attached taB will be tight with tensionT’,.
On the other hand, when the drum rotates in the anticlockwise direction, as shown in Fig. 19.11 (b),
the tensions in the band will reverse, i.e. the end of the band attached to the fulcrum O will be tight
with tension 7| and the end of the band attached to B will be slack with tension 7,. Now taking
moments about the fulcrum O, we have

PI=T,b ... (For clockwise rotation of the drum)
and PI=T,b ... (For anticlockwise rotation of the drum)
where I = Length of the lever from the fulcrum (OC), and

b = Perpendicular distance from O to the line of action of 7', or T,.



Example 3. The simple band brake, as shown in Fig. 19.12, is applied to a shaft carrying
a flywheel of mass 400 kg. The radius of gyration of the flywheel i. lS |“ 20 "‘o_—

450 mm and runs at 300 p.m. c
If the coefficient of friction is 0.2 and the brake drum Y | <7 l
. . T2
diameter is 240 mm, find : A 100N
1. the torque applied due to a hand load of 100 N, 900 1.80°
2. the number of turns of the wheel before it is brought to \_i_/ -
rest, and 0 /
3. the time required to bring it to rest, from the moment of
the application of the brake.
— 240 —>

All dimensions in mm.

Solution. Given: m =400 kg ; k =450 mm =0.45m ; Fig. 19.12

N =300r.p.m. or =27tx300/60 =31.42rad/s,;, p=0.2;
d=240mm=0.24morr=0.12m
1. Torque applied due to hand load

First of all, let us find the tensions in the tight and slack sides of the band i.e. 7| and T,
respectively.

From the geometry of the Fig. 19.12, angle of lap of the band on the drum,

0=360°—150°=210°= 210x%:3.666rad

We know that T
2.3log 71 =W1.0=0.2%x3.666 =0.7332
2
T,
log| 1 |= %7332 43188 or =2.08 .0
7, 2.3 T
... (Taking antilog of 0.3188)
Taking moments about the fulcrum O,
T, x 120 =100 x 300 = 30 000 or T,=30000/120 =250 N
T,=2.08T,=2.08 x250=520N ... [From equation ()]

We know that torque applied,
Tg=(T,-T,)r= (520-250)0.12 = 32.4 N-m Ans.
2. Number of turns of the wheel before it is brought to rest
Let n = Number of turns of the wheel before it is brought to rest.
We know that kinetic energy of rotation of the drum

1 1 1
=X Lo’ = 5% mk* .o = 5% 400(0.45)* (31.42)* = 40 000 N-m
This energy is used to overcome the work done due to the braking torque ('g).

40 000 =Ty x 21tn =32.4 x 2nn =203.6 n

or n=40000/203.6 =196.5 Ans.
3. Time required to bring the wheel to rest

We know that the time required to bring the wheel to rest
=n/N=196.5/300=0.655 min=39.3 s Ans

19.8. Differential Band Brake

In a differential band brake, as shown in Fig. 19.14, the ends of the band are joined at4 and
B toalever40C pivoted on a fixed pin or fulcrumO. It may be noted that for the band to tighten, the
length OA4 must be greater than the lengthOB. p P
| / >




The braking torque on the drum may be obtained in the similar way as discussed in simple band brake.
Now considering the equilibrium of the lever4 OC. It may be noted that when the drum rotates in the
clockwise direction, as shown in Fig. 19.14 ( a), the end of the band attached to A4 will be slack with
tension7’, and end of the band attached to B will be tight with tension 7'. On the other hand, when the
drum rotates in the anticlockwise direction, as shown in Fig. 19.14 §), the end of the band attached to
A will be tight with tension 7', and end of the band attached to B will be slack with tension 7,. Now
taking moments about the fulcrum O, we have

Pl +T,.b=T,a ... (For clockwise rotation of the drum )
or Pl=T,a—-T,.b ()
and Pl+T,b=T,a .. (For anticlockwise rotation of the drum )
or Pl=T.a-T,b ... (iD)

We have discussed in block brakes (Art. 19.4), that when the frictional force helps to apply
the brake, it is said to be self enemgizing brake. In case of differential band brake, we see from equa-
tions (7) and (ii) that the moment 7',.b and T',.b helps in applying the brake (because it adds to the
moment P./ ) for the clockwise and anticlockwise rotation of the drum respectively

We have also discussed that when the force P is negative or zero, then brake is self locking.
Thus for differential band brake and for clockwise rotation of the drum, the condition for self locking
is

TzaSTib or Tz/T]Sb/Cl
and for anticlockwise rotation of the drum, the condition for self locking is
TiaSsz or T’]/ngb/a

Example 4. In a winch, the rope supports a load W and is wound round a barrel 450 mm
diameter. A differential band brake acts on a drum 800 mm diameter which is keyed to the same shaft
as the barrel. The two ends of the bands are attached to pins on opposite sides of the fulcrum of the
brake lever and at distances of 25 mm and 100 mm from the fulcrum. The angle of lap of the brake
band is 250° and the coefficient of friction is 0.25. What is the maximum load W which can be
supported by the brake when a force of 750 N is applied to the lever at a distance of 3000 mm from
the fulcrum ?

Solution. Given : D =450 mm or R =225 mm ; d = 800 mm or »=400 mm ; OB =25 mm ;
04 =100mm; @ =250°=250x 1/180 =4.364 rad ; | 750N
w=025;P=750N; /= 0C = 3000 mm T, 2N s

Since OA4 is greater than OB, therefore the B
operating force (P = 750 N) will act downwards.

3000

First of all, let us consider that the drum rotates
in clockwise direction.

We know that when the drum rotates in clock-
wise direction, the end of band attached to A4 will be
slack with tension 7', and the end of the band attached : o
to B will be tight with tensionT’;, as shown in Fig. 19.15. All dlm?nsmns m mm.

Now let us find out the values of tensions7’, and T',. We Fig. 19.15
know that T
2.3log| — [=w6=0.25x4.364 =1.091
b)
log ﬁ 2@2 0.4743 or
T 2.3
T1=298 T2... (i)
Now taking moments about the fulcrum O, 750 x 3000 + T1 x 25 =T2 x 100
or 7, x 100 —2.98 T, x 25 = 2250 x 10 v (0 T,=2.98T,)
25.57T, =2250 x 103 or T,=2250 x 103/25.5=88 x 10° N
and T, =2.98T,=2098 x 88 x 10°=262 x 10° N
We know that braking torque,
Ty =(T,-T,)r
= (262 x 103 - 88 x 10%) 400 = 69.6 x 10° N-mm ()]
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and the torque due to load 7 newtons,
Ty =W.R=W x225=225W N-mm ... (i)
Since the braking torque must be equal to the torque due to load” newtons, therefore from
equations (7) and (i7),
W =69.6 x 105/225 =309 x 103> N =309 kN T,
Now let us consider that the drum rotates in
anticlockwise direction. We know that when the drum rotates
in anticlockwise direction, the end of the band attached tof
will be tight with tension 7', and end of the band attached to
B will be slack with tension 7', as shown in Fig. 19.16. The
ratio of tensions 7', and 7', will be same as calculated above,
ie.

[P . .
All dimensions in mm.

; =298 or T, =2.98 7, Fig. 19.16
Now taking moments about the fulcrum O,
750 x 3000 + T, x 25 =T, x 100
or2.98 T, x 100 — T, x 25 =2250 x 103 e (0 Ty =298T),)
273T,=2250 x10° or  T,=2250x 103273 =8242N

and T,=298T,=2.98 x 8242 =24 561 N

Braking torque, Ty = (T, *x T,)r

=(24 561 — 8242)400 = 6.53 x 10° N-mm ...(i0)

From equations (i7) and (iii),
W =6.53 x 109225 =29 x 10> N =29 kN

From above, we see that the maximum load /) that can be supported by the brake is 309 kN,
when the drum rotates in clockwise direction. Ans.

Example 5. 4 differential band brake, as shown in Fig. 19.17, has an angle of contact of
225°. The band has a compressed woven lining and bears against a cast iron drum of 350 mm
diameter. The brake is to sustain a torque of50 N-m and the coeficient of friction between the band
and the drum is 0.3. Find :1. The necessary force (P) for the clockwise and anticlockwise rotation of
the drum; and 2. The value of ‘OA’ for the brake to be self locking, when the drum rotates clockwise.

Solution. Given: 9= 225°=225x n/180=3.93rad; d=350mm or r=175mm;
T=350 N-m =350 x 10> N-mm
1. Necessary force (P) for the clockwise and anticlockwise rotation of the drum

When the drum rotates in the clockwise direction, the end of the band attached to 4 will be
slack with tension 7', and the end of the band attached toB will be tight with tensionT',, as shown in
Fig. 19.18. First of alll, let us find the values of tensions7’, and 7.

500 >
A
4{35 — |P 500 >
v, P
%2 l l

20 [B o}

All dimensions in mm.
Fig. 19.17 Fig. 19.18

We know that 2 3log % ): uo=03x3.93=1.179
2

log ﬂ :w:05126 or
.| 23



Ui
L)
and braking torque (775),
350 x 10°= (T, — T))r=(T, - T, 175
T,—T,=350%10%175=2000 N
From equations (7) and (if), we find that
T,=2887N;and 7, =887 N
Now taking moments about the fulcrum O, we have
Px500=T,x150— T, x 35=887 x 150 — 2887 x 35 =32 x10°
P=32x 103500 = 64 N Ans.

When the drum rotates in the anticlockwise

— =3.255 ... (Taking antilog of 0.5126) ...

®

.. (i)

direction, the end of the band attached to A will be tight
with tension 7', and end of the band attached to B will

be slack with tension7’,, as shown in Fig. 19.19. 'Bking
moments about the fulcrum O, we have
Px500=T,x150-T, x 35
= 2887 x 150 — 887 x 35
=402 x 10
P =402 x 10%/500 = 804 N Ans.

2. Value of ‘OA’ for the brake to be self locking, when
the drum rotates clockwise
The clockwise rotation of the drum is shown in Fig 19.18.
For clockwise rotation of the drum, we know that
Px500=T,x0A4~-T,*xOB
For the brake to be self locking, P must be equal to zero. Therefore

T,xO0A=T,x0B ® le— 750 —>]

Taking moments about O,
200 x 750 + T, x 30 =T, x 120
12 7,-3T,=15000 ()]

T,xOB  2887x35
= 387 =114 mm Ans.

We know that 04 =

T2
5 _(l+ptan® s
T, I-utan®
1+0.25tan7.5°\*  (1+025%0.1317 * —tm—>
| 1-0.25tan7.5° | 1-.025%0.1317 All dimensions in mm

Fig. 19.23
= (1068} =2.512 . . .(ii) ®

From equations (¢) and (if),
T,=8440 N, and 7, = 3360 N
We know that maximum braking torque,
Ty =(T} -T,)r =(8440-3360)0.5=2540 N-m Ans.
2. Angular retardation of the drum
Let o = Angular retardation of the drum.

We know that braking torque (7} ),
2540 = [.o. = mk>.0. = 2000(0.5)% o = 500 0t
o = 2540/500 = 5.08 rad/s*> Ans.

19.10. Internal Expanding Brake




3. Time taken by the system to come to rest
Let ¢t = Required time.

Since the system is to come to rest from the rated speed of 360 tp.m., therefore

Initial angular speed, o; =2nx360/60=37.7 rad/s

and final angular speed, w, =0

We know that W, =0y — 0.1 ... (— ve sign due to retardation )
t=0y/00=37.7/5.08 =7.42 s Ans.

19.10. Internal Expanding Brake

An internal expanding brake consists of two shoes S, and S, as shown in Fig. 19.24. The
outer surface of the shoes are lined with some friction material (usually with Ferodo) to increase the
coefficient of friction and to prevent wearing away of the metal. Each shoe is pivoted at one end about
a fixed fulerum O, and O, and made to contact a cam at the other end. When the cam rotates, the
shoes are pushed outwards against the rim of the drum. The friction between the shoes and the drum
produces the braking torque and hence reduces the speed of the drum. The shoes are normally held in
off position by a spring as shown in Fig. 19.24. The drum encloses the entire mechanism to keep out
dust and moisture. This type of brake is commonly used in motor cars and light trucks.

)
@ Spring

Brake lining

Leading of B
primary shoe Trailing or
secondary shoe

We shall now consider the forces acting on such a brake, when the drum rotates in the
anticlockwise direction as shown in Fig. It may be noted that for the anticlockwise direction,
the left hand shoe is known aseading or primary shoe while the right hand shoe is known agrailing
or secondary shoe.
Let 7= Internal radius of the wheel rim,
b =Width of the brake lining,
p, = Maximum intensity of normal pressure,
Py = Normal pressure,
F, =Force exerted by the cam on the leading shoe, and
F, = Force exerted by the cam on the trailing shoe.
Consider a small element of the brake lining A4C subtending an angle 30 at the centre. Let OA
makes an angle 6 with OO, as shown in Fig. 19.25. It is assumed that the pressure distribution on
the shoe is nearly uniform, however the friction lining wears out more at the free end. Since the
shoe turns about O, therefore the rate of wear of the shoe lining at 4 will be proportional to the

radial displacement of that point.
The rate of wear of the shoe lining varies directly as the perpendicular distance from O, to O4, i.e. O,B.

From the geometry of the figure,
0,B= 00, sing
and normal pressure at A,
NS sin@ or Py =P sin 0
Normal force acting on the element,

ORy =Normal pressure x Area of the element

— py (br30) = p, sinO(b.r.36)



and braking or friction force on the element,
OF =WUXORy =.p, sin 0(b.r.56)
-, Braking torque due to the element about O,
8T, = OF xr = |1.p, sin 0(b.r.80)r = 1. p,b 1> (sin 6.50)

and total braking torque about O for whole of one shoe,

0,
Ty =upbr’ J.sinede =u pbr? [—cosG]:l2
6

= uplbr2 (cosB; —cos6,)
Moment of normal force 6Ry; of the element about the fulcrum O,,
OM = OR X O;B =0R (0O, sin 6)

= p;sin0(b.r.80) (00, sin0) = p, sin? 0(b.r.80)00;

. Total moment of normal forces about the fulcrum O,,

92 92
My = J.pl sin? 8(b.r-80)00, = p, br-00; J'sinze d0
0 0
6,
br00, [ L(1=cos26)d6 .+ sin20 =1 (1—-cos20
= pbr. IJ.E( —0s20) | sin —5( —c0s20)
91
. 0,
-1y broo [e— sin 29]
2 2
1
_ % p, br00, [ez _sin26, o, sin 2261 ]

%pl br.O0, [(92 -0+ % (sin26; —sin 292):|

Moment of frictional force §F about the fulcrum O,,
My = 8F X AB = OF (r — OO, cos 0) w. ("0 AB=r—00, cos Q)
= p, sin6(b.7.86) (r — OO, cos 6)
= W.p;b.r(rsin®— 00, sin B cos )66

. oo, .
= Wppbr (” sin6 - Tl sin 260 JSG ... (- 2sin6cos 6 =sin26)
Total moment of frictional force about the fulcrum O,,
% 00
M, = uplbr".(rsinﬁ— 5 L sinZGJdG
e1
r 0
00, 2
=upbr —rcosG+Tlc0529:|
L 0,

00 00
= Wupbr|-rcos6, +71005262 +7rcos6 —TICOSZGI:I

= W pbr|r(cosd; —cos6,) +% (cos 20, —cos26; ):l

Now for leading shoe, taking moments about the fulcrumO,,
Fyx1=M,—M,
and for trailing shoe, taking moments about the fulcrumO,,
Fyx 1 =M+ M,
Note : If M > My, then the brake becomes self locking.



Example 6. The arrangement of an internal expanding friction brake, in which the
brake shoe is pivoted at ‘C’ is shown in Fig. 19.26. The distance ‘CO’ is 75 mm, O being the cente
of the drum. The internal radius of the brake drum is
100 mm. The friction lining extends over an ae AB, such
that the angle AOC is 135° and angle BOC is 45°. The
brake is applied by means of a fore at Q, perpendicular
to the line CQ, the distance CQ being 150 mm.

The local rate of wear on the lining may be taken as
proportional to the normal pressure on an element at an
angle of 0~ with OC and may be taken as equal to
p, sin 0, where p, is the maximum intensity of normal
pressure.

The coefficient of friction may be taken as 0.4 and
the braking torque requiredis 21 N-m. Calculate the fore
O required to operate the brake whenl. The drum rotates
clockwise, and 2. The drum rotates anticlockwise.

——
All dimensions in mm
Fig. 19.26

Solution. Given : OC =75 mm ; » =100 mm ;
0, =135°=135x ¢ /180=2.356rad; O, =45°=45x x/180=0.786rad; /=150 mm;
ML =04;T;=21N-m=21x10*N-mm
1. Force ‘Q’ required to operate the brake when drum rotates clockwise

We know that total braking torque due to shoe (1} ),
21x10° = .p, br? (cos®; —cos0,)

=04xp ><b(100)2 (cos45°—co0s135°) =5656 p, b

. prb=21x10% /5656 =3.7
Total moment of normal forces about the fulcrum C,

My = %pl .b.r.OC[(Gz -0+ % (sin20; —sin 2(—)2):|

1 i .
= ~X3.7x100x 75[(2.356— 0.786)+ — (sin 90° —sin 2700)}

=13875(1.57 + 1) =35 660 N-mm
and total moment of friction force about the fulcrum C,

Mg =Ww.pbr |:r(cos 0; —cos0y) +%4C (cos20, —cos 26, )]

=0.4 x3.7 %100 [100 (cos 45°—c0s135°)+§(eos 270°—cos90°):|

=148 x 1414 :50 930 N-mm

Taking moments about the fulcrum C, we have

0 x 150 = M + M = 35 660 + 20 930 = 56 590
o 0=56590/150=377 N Ans.

2. Force ‘Q’ required to operate the brake when drum rotates anticlockwise

Taking moments about the fulcrum C, we have

0 x 150 = M — M = 35 660 — 20 930 = 14 730
0 =14730/150=98.2 N Ans.

19.11. Braking of a Vehicle

In a four wheeled moving vehicle, the brakes may be applied to
1. the rear wheels only,

2. the front wheels only, and

3. all the four wheels.



Example 7. A car moving on a level r oad at a speed 50 km/h has a wheel base 2.8
metres, distance of C.G. from ground level 600 mm, and the distance of C.G. fr om rear wheels 1.2
metres. Find the distance travelled by the car before coming to rest when brakes are applied,

1. to the rear wheels, 2. to the front wheels, and 3. to all the four wheels.

The coefficient of friction between the tyres and the road may be taken as 0.6.

Solution. Given: u=50km/h =13.89m/s; L=2.8 m ;=600 mm=0.6 m x=12m;u=0.6
Let s = Distance travelled by the car before coming to rest.

1. When brakes are applied to the rear wheels
Since the vehicle moves on a level road, therefore retardation of the car,

o= w.g(L—x) _ 0.6x9.81(2.8—1.2) — 908 m/s>
L+Wh 2.84+0.6%x0.6
We know that for uniform retardation,
_u? _(13.89)° CamaA
20 2x298 CoTmAms

2. When brakes are applied to the front wheels
Since the vehicle moves on a level road, therefore retardation of the car,

o= Hgx _ 0.6x9.18x1.2 =920 m/s2
L—-pwh 2.8-0.6x0.6
We know that for uniform retardation,
—ﬁ ——(13'89)2 =3326mA
2a 2x29 CoeomAans

3. When the brakes are applied to all the four wheels
Since the vehicle moves on a level road, therefore retardation of the cag

a=gp=9.81x0.6=5.886m/s>
We know that for uniform retardation,
_u _ (13.89)°

=20 25886 =164 m Ans.

19.12. Dynamometer

A dynamometer is a brake but in addition it has a device to measure the frictional resistance.
Knowing the frictional resistance, we may ol.)tain the torque transmitted and hence the power of the
engine.

19.13. Types of Dynamometers

Following are the two types of dynamometers, used for measuring the brake power of an engine.
1. Absorption dynamometers, and
2. Transmission dynamometers.
In the absorption dynamometers, the entire energy or power produced by the engine is absorbed by the
friction resistances of the brake and is transformed into heat, during the process of measurement. But in
the transmission dynamometers, the energy is not wasted in friction but is used for doing work.

19.14. Classification of Absorption Dynamometers

The following two types of absorption dynamometers are important from the subject point of view :
1. Prony brake dynamometer, and 2. Rope brake dynamometer.

19.15. Prony Brake Dynamometer

A simplest form of an absorption type dynamometer is a prony brake dynamometens shown
in Fig. 19.31. It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine
whose power is required to be measured. The blocks are clamped by means of two bolts and nuts, as
shown in Fig. 19.31. A helical spring is provided between the nut and the upper block to adjust the
pressure on the pulley to control its speed. The upper block has a long lever attached to it and carries
aweight W at its outer end. A counter weight is placed at the other end of the lever which balances the
brake when unloaded. Two stops S, S are provided to limit the motion of the lever



| S

| %« Spring ‘ S
] []

[ Lever

'
T S
A
Counter —
F

weight w >— Blocks W
/rv
Pulley—T"

C J
Fig. 19.31. Prony brake dynamometer.

When the brake is to be put in operation, the long end of the lever is loaded with suitable
weights 7 and the nuts are tightened until the engine shaft runs at a constant speed and the lever is in
horgzontal position. Under these conditions, the moment due to the weight /¥ must balance the mo-
ment of the frictional resistance between the blocks and the pulley

Let W = Weight at the outer end of the lever in newtons,
L = Horizontal distance of the weight ' from the centre of the pulley in metres,
F = Frictional resistance between the blocks and the pulley in newtons,

R = Radius of the pulley in metres, and N = Speed of the shaft in r.p.m.
We know that the moment of the frictional resistance or torque on the shaft,
T'=WL=FRN-m
Work done in one revolution= T orque x Angle turned in radians = 7'X27t N-m
Work done per minute = 7'X21t N N-m
We know that brake power of the engine,

Work done per min.  T'X2rnN _ W.LxX2n N w
60 60
19.16. Rope Brake Dynamometer

It is another form of absorption type dynamometer which is most commonly used for measur-
ing the brake power of the engine. It consists of one, two or more ropes wound around the flywheel or
rim of a pulley fixed rigidly to the shaft of an engine. The upper end of the ropes is attached to a spring
balance while the lower end of the ropes is kept in position by applying a dead weight as shown in Fig.
19.32. In order to prevent the slipping of the rope over the flywheel, wooden blocks are placed at
intervals around the circumference of the flywheel.

In the operation of the brake, the engine is made to run at a constant speed. The frictional
torque, due to the rope, must be equal to the torque being transmitted by the engine.

Let W = Dead load in newtons,
S = Spring balance reading in newtons,

atts

B.P.=

/ Spring balance

D = Diameter of the wheel in metres, Wooden
d = diameter of rope in metres, and blocks \ «Rope
N = Speed of the engine shaft in tp.m. P Wooden block
. Net load on the brake [ Ropes
=(W-5N
We know that distance mgved in one revolution
— D+ d)m Section of wheel rim

Work done per revolution
=W -S)n(D+d)N-m
and work done per minute )
Cooling l
=W -S)n(D+d) N N-m Wat_eL — g .
Fig. 19.32. Rope brake dynamometer. Dead weight
Brake power of the engine,

Work done per min _ (W =S) n(D+d)N w
60 60
Ifthe diameter of the rope €) is neglected, then brake

power of the engine,

atts

B.P=

atts

BP.= w W
60



UNIT-IV BALANCING OF ROTATING MASSES

The process of providing the second mass in order to counteract the effect of the centrifugal force of

the first mass, is called balancing of rotating masses.

21.3. Balancing of a Single Rotating Mass By a Single Mass Rotating in
the Same Plane

Consider a disturbing mass m, attached to a shaft rotating at  rad/s as shown in Fig. 21.1.
Let r, be the radius of rotation of the mass m,

We know that the centrifugal force exerted by the mass m, on the shaft,

FC]=m1-(,02-r1 (i)
This centrifugal force acts radially outwards and thus produces bending moment on the
shaft.
Disturbing
m
! . 7P* mass
m
(O]
A "
- -Axis of rotation
I /
I 2 12
//Balancing mass
m — - mp
Fig. 21.1. Balancing of a single rotating mass by a single mass rotating in the same plane.
Let r, = Radius of rotation of the balancing mass m,

Centrifugal force due to mass m,,
2 ..
Fcz:mz(l) 'r2 ...(ll)
Equating equations (7) and (i),
2 2 —
m.o R =my-@ -r Or M1y =m, T

Discuss how a single revolving mass is balanced by two masses revolving

in different planes ? *

21.4. Balancing of a Single Rotating Mass By Two Masses Rotating in
Different Planes
Two balancing masses are placed in two different planes, parallel to the plane of rotation of
the disturbing mass, in such a way that they satisfy the following two conditions of equilibrium.

1. The net dynamic force acting on the shaft is equal to zero. This requires that the line of
action of three centrifugal forces must be the same. In other words, the centre of the
masses of the system must lie on the axis of rotation. This is the condition for Static
balancing.

2. The net couple due to the dynamic forces acting on the shaft is equal to zero. In other
words, the algebraic sum of the moments about any point in the plane must be zero.

The conditions (1) and (2) together give dynamic balancing.

1. When the plane of the disturbing mass lies in between the planes of the two balancing
masses
Consider a disturbing mass m lying in a plane A4 to be balanced by two rotating masses m,
and m, lying in two different planes L and M as shown in Fig. 21.2. Let r, r, and r, be the radii of
rotation of the masses in planes 4, L and M respectively.
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We know that the centrifugal force exerted by the mass m in the plane 4,
Fe = m-a-r
Similarly, the centrifugal force exerted by the mass m in the plane L,
Fop=m; -0 -1
and, the centrifugal force exerted by the mass m, in the plane A,
Foy=my -0 1y

Since the net force acting on the shaft must be equal to zero, therefore the centrifugal force

on the disturbing mass must be equal to the sum of the centrifugal forces on the balancing masses,
therefore

FC FCl FCZ
M-r=m 1 +my-r .0

Now in order to find the magnitude of balancing force in the plane L (or the dynamic force

at the bearing Q of a shaft), take moments about P which is the point of intersection of the plane M
and the axis of rotation. Therefore

Fox1=F-x1,

my-r-l=m-r-l, (1))

Similarly, in order to find the balancing force in plane M (or the dynamic force at the

bearing P of a shaft), take moments about Q which is the point of intersection of the plane L and
the axis of rotation. Therefore

Foo X1 = Fe X1,

my-ry-l=m-r-1, ... (@)
°

2. When the plane of the disturbing mass lies on one end of the planes of the balancing

masses

]
A I L M
]




In this case, the mass m lies in the plane 4 and the balancing masses lie in the planes L and
M, the following conditions must be satisfied in order
to balance the system, i.e.

FotFey =1l
m-r+m,-r, =m.n RN (1Y)
Now, to find the balancing force in the plane L (or the dynamic force at the bearing Q of a
shaft), take moments about P which is the point of intersection of the plane M and the axis of
rotation. Therefore
Foy X1 =F-x1,
. (v

my-r-l=m-r-l,
. .. [Same as equation (i7)]

Similarly, to find the balancing force in the plane M (or the dynamic force at the bearing P
of a shaft), take moments about Q which is the point of intersection of the plane L and the axis of
rotation. Therefore

Feox1=F. x|,
my-ry-l=m-r-l
21.5. Balancing of Several Masses Rotating in the Same Plane

Example 1. Four masses m ;, m,, m; and m , are 200 kg, 300 kg, 240 kg and 260 kg
respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m r espectively
and the angles between successive masses are 45°, 75° and 135°. Find the position and magnitude
of the balance mass r equired, if its radius of v otation is 0.2 m.

Solution. Given : m, =200 kg ; m, =300 kg ; m; =240 kg ; m, =260 kg ; r, =0.2m ;
r2=0.1511.1;r3=0.25m;r4=0.3m; 0, =0°; 0, =45°; 0; =45°+75°=120°; O, =45°+75°
+135°=255°;r=02m

Let m = Balancing mass, and
0 = The angle which the balancing mass makes with m,.

Since the magnitude of centrifugal forces are proportional to the product of
each mass and its radius, therefore

my -1, =200 0.2 =40 kg-m
m, -, =300 x0.15 = 45kg-m
my -1, = 240X 0.25 = 60 kg-m
my -r, =260 0.3 =78 kg-m

1. Analytical method m

XH =m, -1 cosO, +m, -r, cos0, +msy-r; cos0; +my, -1, cosO,
=40c0s0°+45co0s45°+60 cos120° + 78 cos255°
=40+31.8—-30-20.2 =21.6 kg-m

Now resolving vertically,
XV =m; -1 sin® +m, -1, sin0, +my -1, sin0; +my, -7, 5in 6,
=40sin0°+45sin45°+ 60 sin120° + 78 sin 255°
=0+4+31.8+52-75.3=8.5kg-m



Resultant, sz CH) +E&7) =f/ (21.6) +(8.5) =23.2kg-m
We know that
m-r=R=232 or m=232/r=232/02=116kg Ans.

and tan®’ =XV /XH =8.5/21.6=0.3935 or © =21.48°

Since @’ is the angle of the resultant R from the horizontal mass of 200 kg, therefore the

angle of the balancing mass from the horizontal mass of 200 kg
0 =180°+21.48°=201.48° Ans.

2. Graphical method

1. First of all, draw the space diagram showing the positions of all the given masses as
shown in Fig 21.6 (a).

2. Since the centrifugal force of each mass is proportional to the product of the mass and
radius, therefore

my.r; =200 x0.2= 40 kg-m & m,.r, =300 x 0.15 =45 kg-m

Resultant d
force
200 kg
c
Resultant
force
a4 b
(a) Space diagram. (b) Vector diagram
Fig. 21.6

4. The balancing force is equal to the resultant force, but opposite in direction as shown in

Fig. 21.6 (a). Since the balancing force is proportional to m.r, therefore

m % 0.2 =vector ea =23 kg-m or m =23/0.2= 115 kg Ans.

By measurement we also find that the angle of inclination of the balancing mass ( m) from

the horizontal mass of 200 kg

0 =201° Ans.

21.6. Balancing of Several Masses Rotating in Different Planes

Example 2. 4 shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg,

400 kg and 200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes
measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks measured
anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing masses ar e to be placed
in planes X and Y. The distance between the planes A and X is 100 mm, between X and Y is 400
mm and between Y and D is 200 mm. If the balancing masses r evolve at a radius of 100 mm, find
their magnitudes and angular positions .

Solution. Given : m, =200 kg ; my =300 kg ; m. =400 kg ; mp =200 kg ; r, =80 mm
=0.08m ; 7y =70 mm =0.07 m; .= 60 mm = 0.06 m ; r;; =80 mm = 0.08 m ; r = r, = 100 mm
=0.Im

Let my, = Balancing mass placed in plane X, and

m,, = Balancing mass placed in plane Y.

The position of planes and angular position of the masses (assuming the mass A as
horizontal) are shown in Fig. 21.8 ( @) and (&) respectively.

Assume the plane X as the reference plane (R.P.). The distances of the planes to the right of
plane X are taken as + ve while the distances of the planes to the left of plane X are taken as — ve.



Table 21.2

Plane Mass (m) Radius (r) Cent.force = y* | Distance from | Couple ~
kg m (m.r) kg-m Plane x(1) m (m.r.l) kg-m2
(1) 2) 3) ) ) (6)
A 200 0.08 16 - 0.1 - 1.6
X(R.P.) my 0.1 0.1 my 0 0
B 300 0.07 21 0.2 4.2
C 400 0.06 24 0.3 7.2
Y my 0.1 0.1 m, 0.4 0.04 my,
D 200 0.08 16 0.6 9.6

1. First of all, draw the couple polygon from the data given in Table 21.2 (column 6) as

shown in Fig. 21.8 ( ¢) to some suitable scale. The vector d” o’ represents the balanced

couple. Since the balanced couple is proportional to 0.04 m,, therefore by measurement,

0.04my =vectord’ o’ =7.3 kg-m*>  or my,=182.5kg Ans.

-ve RP tve

<—+—>

®® OO ©

—{ 100 |« 400 >|«—200—>
«—— 300 —]
400 > | X" v
« 500
« 700 : my 2
200 kg

All dimensions in mm.

(a) Position of planes.
c

(b) Angular position of masses.

(c¢) Couple polygon.

(d) Force polygon.

Fig. 21.8

By measurement, the angular position of m,, is 8y =12° in the clockwise
direction from mass m, (i.e. 200 kg ). Ans.

2. Now draw the force polygon from the data given in Table 21.2 (column 4) as shown in
Fig. 21.8 (d). The vector eo represents the balanced force. Since the balanced force is
proportional to 0.1 m,, therefore by measurement,

0.1my =vector eo=355kg-m  or my =355 kg Ans.
By measurement, the angular position of m, is 8y =145° in the clockwise

direction from mass m, (i.e. 200 kg ). Ans.

Table 21.3



Example 3. 4, B, C and D ar e four masses carried by a r otating shaft at radii 100,
125, 200 and 150 mm r espectively. The planes in which the masses r evolve are spaced 600 mm
apart and the mass of B, C and D ar e 10 kg, 5 kg, and 4 kg r espectively.

Find the required mass A and the r elative angular settings of the four masses so that the
shaft shall be in complete balance.

Solution. Given: 7, =100mm=0.1m; 7, =125mm=0.125m; r,=200mm=0.2m;
rp=150mm=0.15m; my=10kg; m.=5kg; my=4kg

The position of planes is shown in Fig. 21.10 ( a). Assuming the plane of mass A as the
reference plane (R.P.), the data may be tabulated as below :

Table 21.4
Plane Mass (m) Radius (v)| Cent. Force - g | Distance from | Couple - o
kg m (m.r)kg-m plane A ()m (m.r.l) kg—m2
) 2) 3) “) ) (6)
A(R.P) my 0.1 0.1 m, 0 0
B 10 0.125 1.25 0.6 0.75
© 5 0.2 1 1.2 1.2
D 4 0.15 0.6 1.8 1.08

Drawing the couple polygon from the data given in Table 21.4 (column 6). Assume the position
of mass B in the horizontal direction. By measurement, we find that the angular setting of mass C

from mass B in the anticlockwise direction, i.e.
£ BOC =240° Ans.
and angular setting of mass D from mass B in the anticlockwise direction, i.e £ BOD = 100° Ans.

Draw the force polygon to some suitable scale, as shown in Fig. 21.10 ( d).

Since the closing side of the force polygon (vector do) is proportional to 0.1 m ,, therefore
by measurement,
0.1m,=0.7 kg-m? or m, =7kg Ans.

Now draw OA4 in Fig. 21.10 (b), parallel to vector do. By measurement, we find that the
angular setting of mass 4 from mass B in the anticlockwise direction, i.e.

Z BOA =155° Ans.

R.P. + ve

® ©

| <600 —>]«— 600—>«—600—>|

All dimensions in mm

(a) Position of planes. (b) Angular position of masses.
o
0 v ! ,25 b
1o 0.1 my™
1.08 d 1.08
0.6



Explain about primary and secondary unbalanced forces of rotating masses ?

22.1. Introduction

BALANCING OF RECIPROCATING MASSES:

The resultant of all the forces acting on the body of the engine due to inertia forces only is known as
unbalanced force or shaking force.

A

iy |

Fig. 22.1. Reciprocating engine mechanism.

Let F, = Force required to accelerate the
reciprocating parts,
F, = Inertia force due to reciprocating parts,
F,, = Force on the sides of the cylinder walls or normal force acting on
the cross-head guides, and
Fy = Force acting on the crankshaft bearing or main bearing.

22.2. Primary and Secondary Unbalanced Forces of Reciprocating Masses
Consider a reciprocating engine mechanism as shown in Fig. 22.1.
Let m = Mass of the reciprocating parts,
[ = Length of the connecting rod PC,
r = Radius of the crank OC,
0 = Angle of inclination of the crank with the line of stroke PO,
w = Angular speed of the crank,
n = Ratio of length of the connecting rod to the crank radius= [/ r.
The acceleration of the reciprocating parts is approximately given by the expression,
,£0s2600

n
O Inertia force due to reciprocating parts or force required to accelerate the reciprocating

ag = OF B%OSG

parts,
c0s200]

OJ
F, = Fy =Mass x acceleration = [0’ IEB:OS B+
n

The horizontal component of the force exerted
on the crank shaft bearing ( i.e. Figy) is equal and opposite to inertia force ( £)). This force is an
unbalanced one and is denoted by F7,.

O Unbalanced force,

2
Fy =m o IED059+00529D:m.(,3 Flcos 0 +m III%);DXCOS—O =F +F
B: n H n P N

The expression (m[& Hcos6) is known as primary unbalanced force and

O s cos260]
H” A x i is called secondary unbalanced force.
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22.4. Partial Balancing of Locomotives

The locomotives, usually, have two cylinders with cranks placed at right angles to each
other in order to have uniformity in turning moment diagram. The two cylinder locomotives may
be classified as :

1. Inside cylinder locomotives ; and 2. Outside cylinder locomotives.

In the inside cylinder locomotives, the two cylinders are placed in between the planes of
two driving wheels as shown in Fig. 22.3 (a) ; whereas in the outside cylinder locomotives, the two
cylinders are placed outside the driving wheels, one on each side of the driving wheel, as shown in
Fig. 22.3 (b). The locomotives may be

(a) Single or uncoupled locomotives ; and (b) Coupled locomotives.

_\Driving wheels—"_ L | \/ ||
Driving wheels

(a) Inside cylinder locgmotives. (b) Outside cylinder locomotives.
Fig. 22.3

22.5. Effect of Partial Balancing of Reciprocating Parts of Two Cylinder
Locomotives

22.6. Variation of Tractive Force

The resultant unbalanced force due to the two cylinders, along the line of stroke, is known
as tractive force.
0 As per definition, the tractive force,
F; = Resultant unbalanced force
along the line of stroke

= (1—=¢)m.u’ . cos B
+ (1= ¢)m. . cos(90° +
= (I1-¢)m.a¥ r(cos B —sin B

Thus, the tractive force is maximum or minimum when @ = 135° or 315°.
[0 Maximum and minimum value of the tractive force or the variation in tractive force

o =+(1-¢)m.oF r(cos135°=sin1359 = £/2 (1 =) m. 3 .r
22.7. Swaying Couple

The unbalanced forces along the line of stroke for the two cylinders constitute a couple
about the centre line YY between the cylinders as shown in Fig. 22.5.

This couple has swaying effect about a vertical axis, and tends to sway the engine alternately
in clockwise and anticlockwise directions. Hence the couple is known as swaying couple.

Let a = Distance between the centre lines of the two cylinders.
O Swaying couple

= (1 —c)m.(,oz.rcos Gxg



X“_ c)m ® rcos 0

- y
—(1 —c)m.ooz.r cos(90°+9 4 Lingof stroke a T
2 for cylinder 1 2
B — y% a
a i Li f stroke for
— 1_ . 7 X— + Y Ine of S a
(1-c)m o 5 (cos B+sin 9 / eylinder 2 %

[ (1-c)m ® rcos (90°+ 0)
Thus, the swaying couple is maximum or minimum when 6 =45° or 225°.

0 Maximum and minimum value of the swaying couple

= x(1 —c)m.(,oz.r x; (cos45°+sin459 = _-I-—a2 1 —)m. S.r

7
22.8. Hammer Blow

The maximum magnitude of the unbalanced force along the
perpendicular to the line of stroke is known as hammer blow.

O Hammer blow = B. w>.b

Example 4. An inside cylinder locomotive has its cylinder centre lines 0.7 m apart and
has a stroke of 0.6 m. The r otating masses per cylinder are equivalent to 150 kg at the crank pin,
and the reciprocating masses per cylinder to 180 kg. The wheel centr e lines are 1.5 m apart. The
cranks are at right angles. The whole of the r otating and 2/3 of the r eciprocating masses are to
be balanced by masses placed at a radius of 0.6 m. Find the magnitude and dir ection of the
balancing masses. Find the fluctuation in rail pr essure under one wheel, variation of tractive
effort and the magnitude of swaying couple at a crank speed of 300 r .p.m.

Solution. Given : ¢ =0.7m; [y =1[.=06morry = r, =03 m; m; =150 kg;

m, =180kg;c =2/3; r, = rp =0.6m; N =300r .p.m. or

W =2711>300/60 = 31.42 rad/s
The equivalent mass of the rotating parts to be balanced per cylinder at the crank pin,

2
3% 180=270kg

Magnitude and direction of the balancing masses

m:mB:mC:ml-i-c.mi:lSO-i-

Let m, and mp = Magnitude of the balancing masses

6, and 8 = Angular position of the balancing masses m, and m, from the first crank B.
The magnitude and direction of the balancing masses may be determined graphically as
discussed below :
1. First of all, draw the space diagram to show the positions of the planes of the wheels and
the cylinders, as shown in Fig. 22.7 ( a). Since the cranks of the cylinders are at right
angles, therefore assuming the position of crank of the cylinder B in the horizontal direc-
tion, draw OC and OB at right angles to each other as shown in Fig. 22.7 (' b).

2. Tabulate the data as given in the following table. Assume the plane of wheel A4 as the
reference plane.
Table 22.1
Plane mass. Radius Cent. force + w’ Distance from | Couple + w’
(m) kg (r)m (m.r) kg-m plane A (Dm (m.r.l) kg—mz
) 2) 3 “) ) (6)
A (R.P) m, 0.6 0.6 m, 0 0
B 270 0.3 81 0.4 324
€ 270 0.3 81 1.1 89.1
D mp 0.6 0.6my, 1.5 0.9 mp

3. Now, draw the couple polygon from the data given in T able 22.1 (column 6), to some

suitable scale, as shown in Fig 22.7 (' ¢). The closing side c¢'o" represents the balancing
couple and it is proportional to 0.9 m,. Therefore, by measurement,
0.9 m,, = vector c'o’ = 94.5 kg-m? or mp =105 kg Ans.
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(c) Couple polygon. ( d) Force polygon.
Fig. 22.7

4. To determine the angular position of the balancing mass D, draw OD in Fig. 22.7 ( b)
parallel to vector ¢'o’ . By measurement,

Bp =250° Ans.

5. In order to find the balancing mass A, draw the force polygon from the data given in
Table 22.1 (column 4), to some suitable scale, as shown in Fig. 22.7 ( d), The vector do
represents the balancing force and it is proportional to 0.6 m ,. Therefore by measurement,

0.6 m, = vector do =63 kg-mor m, =105 kg Ans.

6. To determine the angular position of the balancing mass 4, draw OA in Fig. 22.7 ( b)

parallel to vector do. By measurement,

8, =200° Ans.

Fluctuation in rail pressure

We know that each balancing mass = 105 kg
Balancing mass for rotating masses,

D= " x105 =19 4105 =583 ke
m 270

and balancing mass for reciprocating masses,

c.m
B=""2

x105 :z x@ x105 =46.6 kg
m 3 270

This balancing mass of 46.6 kg for reciprocating masses gives rise to the centrifugal force.
0 Fluctuation in rail pressure or hammer blow

= Botb =46.6 (31.42)20.6 =27 602 N. Ans. (e b= =)

Variation of tractive ef fort
We know that maximum variation of tractive ef fort

— +2(1-c)my.F r = j/i@ —%@80(31.42)20.3N



=+ 25127 N Ans. (e r=rg=r0)

Swaying couple
We know that maximum swaying couple

o7ﬁ 20
_ a9 X 1y G :—35 x180(31.42)20.3 N-m

N 2

=8797 N-m Ans.

v 3333

w= =
D/2 1.8/2
‘We know that hammer blow

= +B.c b =33(37)20.675 ==30.494 N Ans.

=37rad/s

.( B=mg,and b=ry=rg)

22.10. Balancing of Primary Forces of Multi-cylinder In-line Engines
The multi-cylinder engines with the cylinder centre lines in the same plane and on the same
side of the centre line of the crankshaft, are known as In-line engines. The following two conditions
must be satisfied in order to give the primary balance of the reciprocating parts of a multi-cylinder
engine :
1. The algebraic sum of the primary forces must be equal to zero. In other words, the pri-
mary force polygon must *close ; and
2. The algebraic sum of the couples about any point in the plane of the primary forces must
be equal to zero. In other words, the primary couple polygon must close.

22.11. Balancing of Secondary Forces of Multi-cylinder In-line Engines
When the connecting rod is not too long ( i.e. when the obliquity of the connecting rod is
considered), then the secondary disturbing force due to the reciprocating mass arises.

The secondary force,

cos28
FS =mw’.r x

Example 5. 4 four cylinder vertica7 engine has cranks 150 mm long. The planes of
rotation of the first, second and fourth cranks are 400 mm, 200 mm and 200 mm r espectively from
the third crank and their r eciprocating masses are 50 kg, 60 kg and 50 kg r espectively. Find the
mass of the r eciprocating parts for the thir d cylinder and the r elative angular positions of the
cranks in order that the engine may be in complete primary balance.

Solution. Given r, =7, = r; =7, =150mm=0.15m; m =50kg; m, =60kg;
m, =50 kg

The position of planes is shown in Fig. 22.17 ( a). Assuming the plane of third cylinder as
the reference plane, the data may be tabulated as given in T able 22.8.

Table 22.8
Plane Mass Radius Cent. force + (,02 Distance from | Couple + (,02
(m) kg (r) m (m.r) kg-m plane 3() m (m.r.l) kg-m’
) 2) 3) “) ) (6)
1 50 0.15 7.5 - 04 -3
2 60 0.15 9 -0.2 - 1.8
3(R.P) m, 0.15 0.15m, 0 0
4 50 0.15 7.5 0.2 1.5

First of all, the angular position of cranks 2 and 4 are obtained by drawing the couple
polygon from the data given in T able 22.8 (column 6). Assume the position of crank 1 in the
horizontal direction as shown in Fig 22.17 ( b), The couple polygon, as shown in Fig. 22.17 ( ¢), is
drawn as discussed below:

1. Draw vector o' in the horizontal direction (i.e. parallel to O1) and equal to — 3 kg-m 2,
to some suitable scale.

2. From point o' and ', draw vectors o'p' and 'p' equal to— 1.8 kg-m Zand 1.5 kg-rn2
respectively. These vectors intersect at b'.
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Fig. 22.17

3. Now in Fig. 22.17 (b), draw O2 parallel to vector ¢'p' and O4 parallel to vector 4'p’ .
By measurement, we find that the angular position of crank 2 from crank 1 in the
anticlockwise direction is

8, =160° Ans.
and the angular position of crank 4 from crank 1 in the anticlockwise direction is
0,=26° Ans.

In order to find the mass of the third cylinder ( ;) and its angular position, draw the force
polygon, to some suitable scale, as shown in Fig. 22.17 ( d), from the data given in T able 22.8
(column 4). Since the closing side of the force polygon (vector  co) is proportional to 0.15 m;,
therefore by measurement,

0.15m; =9kg-m or m;=060kg Ans.

Now draw O3 in Fig 22.17 (b), parallel to vector co. By measurement,
we find that theangular position of crank 3 from crank 1 in the anticlockwise
direction is 03 = 227° Ans.

22.13. Balancing of V-engines

Consider a symmetrical two cylinder V-engine as shown in Fig. 22.33, The common crank
OC is driven by two connecting rods PC and QC. The lines of stroke OP and OQ are inclined to
the vertical OY, at an angle o as shown in Fig 22.33.

Let m = Mass of reciprocating parts per cylinder ,
[ = Length of connecting rod,
r = Radius of crank,
n = Ratio of length of connecting rod to crank radius= [/ r
0 = Inclination of crank to the vertical at any instant,

w = Angular velocity of crank.

@ a @
P
Line of stroke
Fry C Line of stroke
Fs 0 Fe
[0} FS1
o
X' X
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We know that inertia force due to reciprocating parts of cylinder 1, along the line of stroke
cos2(a—-6)0

= m.ot - E}OS(G -9 +—E
n

and the inertia force due to reciprocating parts of cylinder 2, along the line of stroke

=mur E:OS(O( -0 +COSZ((X +90
n

°
The balancing of V-engines is only considered for primary and secondary forces * as
discussed below :
Considering primary forces
We know that primary force acting along the line of stroke of cylinder 1,
Fpy =m.o¥ rcos(a—6)
0 Component of F;,, along the vertical line OY,
- ()

= [, cosO = mw'r.cos(a— 6)cos O
and component of F;,, along the horizontal line OX
= Fp, sina = mw? rcos(a —6)sin o (7))
Similarly, primary force acting along the line of stroke of cylinder 2,

Fpy =m.o¥ rcos(a +6)

0 Component of [, along the vertical line OY

= Fpycos 0 = m.uy'.rcos(a +6)cos o
and component of F;,, along the horizontal line OX'
= Fp, sin0 = m. rcos(a +6)sin a (1))
Total component of primary force along the vertical line OY

Fpy = () + (i) =m.o¥ rcos a[cos(a—6) +cos(a+6)]

. (iii)

— m.w’.rcos ax2 cos acos O
. [ cos(a—0)+cos(a+8) =2cos acos 0]

2m.w> rcos® o.cos O

and total component of primary force along the horizontal line OX
Foy = (if) — (iv) = m.o.rsin afcos( o —6) —cos(a + 6)]

— m.o¥.rsin ax2sin asin O
[ cos(a—0)—cos(a+ 6) =2sin asin 0]

= 2m.w’.rsin’ a.sin B

O Resultant primary force,

Fp = (Fpy )’ +(Fpy )”

= 2mw’ .r\/(cos2 a.cos 9)2 +(sin2 0O.sin 6)2
Notes : The following results, derived from equation (v), depending upon the value of o may be noted :
a=30°

. (v

1. When 20 =60° or

Fp = 2m.atr \/(cosz 30°cos 9)2 +(sin2 30 %in 62



F |2 Ol go b _m x W’ .7\9cos” O +sin’ O ;
2m.uy.r HZCOS -Ezsm =3 rN9cos sin ...(vi)
2. When 20=90° or a=45°

= 2m.002.r\/ (cos2 45°cos @2 +(sin2 45 Sin 62

_ o 0ol @ )
_2m.(.02.r\/B£cos G)H -'stmﬁ =m. B.r ... (vii)

3. When 20 =120° or o =60°,

= 2m.o’ .r\/ (cos2 60 °cos @2 +(sin2 60 %in 62

= 2mutr H D3 2—ﬂxo\)2 29+9sin’ 0
= W HZCOS -E4sm =3 N cos sin ... (viii)

Considering secondary forces

We know that secondary force acting along the line of stroke of cylinder 1,

Fyy = mod o x052@ 70

0 Component of F, along the Ve’;tical line OY
=Fg cosa = mor.r Xw Xcos ... (ix)
and component of F, along the horizontal line OX !
:FSISin(X:m.Q)z.r xw xsin O N E5)
Similarly, secondary force acting along the linenof stroke of cylinder 2,
Ry = mohr >((:052(0( +0)
n

0 Component of F, along the vertical line OY

2(a+
=Fgpcosa = mot r XM Xcos o .o ()
n
and component of F, along the horizontal line Ox'
cos2(a+0)

= Fy, sin @ = m.o’ r % xsin Y )
n

Total component of secondary force along the vertical line OY,

Fgy = (ix) + (xi) = xaf.rcos afcos2(o - 6) +cos2( o + 0]
n

m 2m
— st rcos ax2c0s20c0s20 = —= x . cos 0.cos 20cos 20
n n

and total component of secondary force along the horizontal line OX,

Fgy = () — (xii) =" x o rsin afcos2(a—6) —cos2(a+0]
n

= xF.rsin 0x2sin2 osin20
n

2m . . .
=27 x ¥ .rsin 0sin20a.sin 20
n

0 Resultant secondary force,

Fg :./(Fsv)2 +(FSH)2

= 2_m X ooz.r\/(cos aLcos 2 0.cos 260)? +(sin o.sin 20.sin 26)?
n

. . (xiii)



UNIT-V
MECHANICAL VIBRATIONS

When elastic bodies such as a spring, a beam and ashaft are displaced from the equilibrium position
3}/ the application of external forces, and then released, they execute a vibratory motion.
1. Period of vibration or time period . 1t is the time interval after which the motion is
repeated itself.
2. Cycle. 1t is the motion completed during one time period.

3. Frequency. It is the number of cycles described in one second. In S.I. units, the
frequency is expressed in hertz (Hz)

23.3. Types of Vibratory Motion

The following types of vibratory motion are important from the subject point of view :
1. Free or natural vibrations. When no external force acts on the body , after giving it an
initial displacement, then the body is said to be under firee or natural vibrations.

2. Forced vibrations. When the body vibrates under the influence of external force, then
the body is said to be under forced vibrations.

3. Damped vibrations. When there is a reduction in amplitude over every cycle of vibration,
the motion is said to be damped vibration.

23.4. Types of Free Vibrations

The following three types of free vibrations are important from the subject point of view :
1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsional vibrations.

Consider a weightless constraint (spring or shaft) whose one end is fixed and the other end
carrying a heavy disc, as shown in Fig. 23.1.

/

Shaft

B =Mean position ; 4 and C = Extreme positions.
(a) Longitudinal vibrations. (b) Transverse vibrations. (¢) Torsional vibrations.
Fig. 23.1. Types of free vibrations.

1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel to the
axis of the shaft, as%hown in Fig. 23.1 (a), then the vibrations are known as longitudinal vibrations.

2. Transverse vibrations. When the particles of the shaft or disc move approximately
perpendicular to the axis of the shaft, as shown in Fig. 23.1 (' b), then the vibrations are known as
transverse vibrations. In this case, the shaft is straight and bent alternately and bending stresses are
induced in the shaft.

3. Torsional vibrations™. When the particles of the shaft or disc move in a circle about the
axis of the shaft, as shown in Fig. 23.1 ( ¢), then the vibrations are known as torsional vibrations.

23.5. Natural Frequency of Free Longitudinal Vibrations
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23.5. Natural Frequency of Free Longitudinal Vibrations
The natural frequency of the free longitudinal vibrations may be determined by the following three methods :

1. Equilibrium Method
Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as shown in

Fig. 23.2 (a).

Let s = Stiffness of the constraint. It is the force required to produce unit displacement

in the direction of vibration. It is usually expressed in N/m.
m= Mass of the body suspended from the constraint in kg,
° W = Weight of the body in newtons = m.g,
d = Static deflection of the spring in metres due to weight W newtons, and

x = Displacement given to the body by the external force, in metres.

(c)
g_ 3t ZIw=ss
Unstrained §
position } ) s+ X) -
X
W=mg Sk
w
2
mdx
at

Fig. 23.2. Natural frequency of free longitudinal vibrations.
In the equilibrium position, as shown in Fig. 23.2 ( b), the gravitational pull W = m.g, is

balanced by a force of spring, such that W =s.3.
Since the mass is now displaced from its equilibrium position by a distance x, as shown in

Fig. 23.2 (¢), and is then released, therefore after time ¢,
Restoring force =W—-s(0+x)=W-5.0-5.x
=5.0-50—5.x=—5X (e W=s8) L)
.. (Taking upward force as negative)

Accelerating force = Mass X Acceleration

and
d*x » .
= mxd—z. .. (Taking downward force as positive) .. . (i)
t
Equating equations (7) and (i7), the equation of motion of the body of mass m after time ¢ is
d’x 2
m><—2=—s.x or mx——+s5.x=0
dt dt
2
4 S =0 )
de? m

We know that the fundamental equation of simple harmonic motion is

d2

2
— t0".x=0 (1
7 @)
Comparing equations (iii) and (iv), we have
s
w= J—
m

. . 2n
Time period, tp = o =2n .



1 1 1 .. _
and natural frequency, f, =—= —\/E = —\/g o (v omg=s8)
t 2e\m 2w\ &

p

Taking the value of g as 9.81 m/s? and & in metres,

_ 1 [981 04985
2\ & Jé

Note : The value of static deflection @ may be found out from the given conditions of the problem. For
longitudinal vibrations, it may be obtained by the relation,

I

5o
E.A
where 0 = Static deflection i.e. extension or compression of the constraint,
W = Load attached to the free end of constraint,
/ = Length of the constraint,
E =Young’s modulus for the constraint, and
A = Cross-sectional area of the constraint.
2. Energy method
In the case of vibrations, the datum position is the mean or equilibrium position at
which the potential energy of the body or the system is zero. In the free vibrations, no energy is
transferred to the system or from the system. Therefore the summation of kinetic ener gy and
potential energy must be a constant quantity which is same at all the times.

In other words,
d
—(K.E+PE)=0
dt

We know that kinetic energy,

2
° K.E. = 1—><m d_x
2 dt
and potential energy, PE.= (O +2S'x )x = %x s.x°

... (. PE. =Mean force x Displacement )

2
i le(@) +l><s.x2 =0

dt| 2 dt 2
1 dx d*x 1 dx
—XMX2X —X——+—XsX2xX—=0
2 dt gt 2 dt
2 d*x s
or m><—2+s.x:O or —+—xx=0 ... (Same as before)
dt dt m

The time period and the natural frequency may be obtained as discussed in the previous
method.

3. Rayleigh’s method

In this method, the maximum kinetic energy at the mean position is equal to the maximum

potential energy (or strain energy) at the extreme position. Assuming the motion executed by the
vibration to be simple harmonic, then

x = Xsinws ()]

where x = Displacement of the body from the mean position after time ¢
seconds, and

X =Maximum displacement from mean position to extreme position.
Now, differentiating equation (i), we have



dx

— = XX cosm.t
dt
Since at the mean position, ¢ = 0, therefore maximum velocity at the mean position,
dx
yv=—=0X
dt
Maximum kinetic ener gy at mean position
1 2 1 2 2
==—Xmy" ==xXmw X N (/]
> > @)
and maximum potential energy at the extreme position
0+s.X 1 2
= X =—xs.X ... (i)
2 2

Equating equations (i7) and (iii),

1 1
—xmw’.X> ==xs.X?> or ot =2 ,and = s
2 2 m m

. . ° 2r N
Time period, t,= o 2n . ... (Same as before)

and natural frequency,  f, 1_e_179s
tp 2 2m\m
23.6. Natural Frequency of Free Transverse Vibrations

Consider a shaft of negligible mass, whose one

. .. (Same as before)

-
end is fixed and the other end carries a body of weight 2 g g g s IV S
W, as shown in Fig. 23.3. Z N 15
. - Mean position
Let s = Stiffness of shaft, - 'S)'( vy
& = Static deflection due to N - -T - IX
weight of the body, Posma o T T
X = Displacement of body from - I -
mean position after time t. Px
m=—
m = Mass of body = W/g df
As discussed in the previous article, Fig. 23.3. Natural frequency of free
Restoring force = — SX @) transverse vibrations.
and accelerating force d?x .
=mx—- ... (@)
dt
Equating equations (7) and (if), the equation of motion becomes
d?x d%x
mx—— =—-SX or m><—2+sx=0
dt? dt
2
d X+Sxx:0 ... (Same as before )
dt?  m

Hence, the time period and the natural frequency of the transverse vibrations are same as
that of longitudinal vibrations. Therefore

m
Time period, ty= 2Tt\/:

S
1 1 |s 1
and natural frequency, f,=—=— /_ - 18
tp, 2nVYm 2n\39

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection
curve of a cantilever beam loaded at the end. The static deflection of a cantilever beam loaded at the free end is
V\A 3
§=——
3El



Example 1. 4 cantilever shaft 50 mm diameter and 300 mm long has a disc of mass
100 kg at its firee end. The Young's modulus for the shaft material is 200 GN/m . Determine the
frequency of longitudinal and transverse vibrations of the shaft.

Solution. Given: d =50 mm=0.05m; [=300mm=0.03m; m =100kg;
E =200 GN/m? =200 x10° N/m*
We know that cross-sectional area of the shaft,

4 :gxdz =g(o.05)2 =1.96x10 > m>

and moment of inertia of the shaft,

1=" gt = 6—’:(0.05)4 ~0.3x10 0 m*

Frequency of longitudinal vibration
We know that static deflection of the shaft,

6:W_.l: 100><2.81><0.3 g —0751%10~° m
AE  1.96x107x200x10
(e W=m.g)
. Frequency of longitudinal vibration,
0.4985 0.4985
In = = =575 Hz Ans.
V& Jogsix107
Frequency of transverse vibration
We know that static deflection of the shaft,
3 3
5= wir 100x9.81x(0.3) —0.147x107 m

C3EL 3%200x10° x0.3x107°

Frequency of transverse vibration,

0.4985 0.4985 "
n= = = Hz Ans.
Vo Jo1a7x1073

23.7. Effect of Inertia of the Constraint in Longitudinal and Transverse

AAALAAALY —_

Vibrations 4
In deriving the expressions for natural frequency of i(
longitudinal and transverse vibrations, we have neglected the inertia !
of the constraint i.e. shaft. We shall now discuss the ef fect of the L ox
inertia of the constraint, as below :
1. Longitudinal vibration =3
Consider the constraint whose one end is fixed and other end
is free as shown in Fig. 23.4. v
Let [ = Length of the constraint, Fig. 23.4. Effect of inertia

. of the constraint in
m, = Total anass of the constraint longitudinal vibrations.
When the mass of the constraint m and the mass

of the disc m at the end is given, then natural frequency of vibration,

1 s
T "
m+—<
3 v
A
2. Transverse vibration
N
Consider a constraint whose one end is fixed and the other N
end is free as shown in Fig. 23.5. J 2 m
| Je x>l l«d8x
s ~N
=5 53 ; /
21 m+ mc (2%



23.13. Frequency of Free Damped Vibrations (Viscous Damping)
In vibrating systems, the effect of friction is referred to as damping. The damping provided
by fluid resistance is known as viscous damping. /

The resistance to the motion of the body is _
provided partly by the medium in which the vibration Spring ﬁ
takes place and partly by the internal friction, and in
some cases partly by a dash pot or other external
damping device.

Consider a vibrating system, as shown in

Fig. 23.17, in which a mass is suspended from one tmet o.M ‘__i
end of the spiral spring and the other end of which l ox
is fixed. A damper is provided between the mass m ?
and the rigid support. .
Let m = Mass suspended from the spring, Fig. 23.17. Fr\e,?sr Zrtlico};;)f free damped

s = Stiffness of the spring,

x = Displacement of the mass from the mean position at time ¢,

& = Static deflection of the spring = m.g/s, and

¢ = Damping coefficient or the damping force per unit velocity .

Since in viscous damping, it is assumed that the frictional resistance to the motion of the body
is directly proportional to the speed of the movement, therefore

Damping force or frictional force on the mass acting in opposite direction to the motion of the mass

X
=CcX—

dt

Accelerating force on the mass, acting along the motion of the mass

and spring force on the mass, acting in opposite direction to the motion of the mass, = s.x
Therefore the equation of motion becomes

d’x ( dx J
MmX——-=— cX—+5.X
dt dt

...(Negative sign indicates that the force opposes the motion)
d’x ¢ _dx s
or —t—X—+—xx=0
dt m dt m

This is a dif ferential equation of the second order . Assuming a solution of the form
x = " where k is a constant to be determined.

The two roots of the equation are
c c b s
2m 2m m

2
c c s
and ky=——=\l — | ——
2 2m (Zm ] m
The most general solution of the dif ferential equation with its right hand side equal to
zero has only complementary function and it is given by

x= Clek” +GC, e R (7))

where C, and C, are two arbitrary constants which are to be determined from the initial conditions
of the motion of the mass.



1. When the roots are real (overdamping)

2

c s

If (2—] > —, then the roots &, and k, are real but negative. This is a case of overdamping
m m

or large damping and the mass moves slowly to the equilibrium position. This motion is known as
aperiodic. When the roots are real, the most general solution of the dif ferential equation is

x= Cleklt + Czekzt
2
c c N
-+ ==
|: 2m (ZmJ m}
=Cle +C,e

2. When the roots are complex conjugate (underdamping)

2
s c . . .
If ~ > (—] , then the radical ( i.e. the term under the square root) becomes negative.
m m

The two roots &, and k, are then known as complex conjugate. This is a most practical case of
damping and it is known as wunderdamping or small damping. The two roots are

2
PRy o S
2m m \ 2m

2
c s c
ky=——i | —| —
and 2 2m m ( MJ
x=Ade " coswy.t oo (i)
2
N c 2 2 c
here Wy === =4 - cand a=—
v d m (ij (@,)" ~a 2m

We see from equation (vi), that the motion of the mass is simple harmonic whose circular

damped frequency is @, and the amplitude is 4e”* which diminishes exponentially with time as

shown in Fig. 23.18. Though the mass eventually returns to its equilibrium position because of its
inertia, yet it overshoots and the oscillations may take some considerable time to diec away .

«— tp—><—tp4>‘

\Y
N Exponential decreasing curve
Ry
N
X2\ STt — e .
i /;3\ Mean position

Fig. 23.18. Underdamping or small damping.

le—— < —»l

——Displacement—>

We know that the periodic time of vibration,
_2m 2n 2n

t =
7wy P c V2 \/(mn)z _ g2
)




3. When the roots are equal (critical damping)

2
If LJ =2, then the radical becomes zero and the two roots k, and k, are equal.
m

2m

This is a case of critical damping. In other words, the critical damping is said to occur when
frequency of damped vibration (f)) is zero (i.e. motion is aperiodic). This type of damping is
also avoided because the mass moves back rapidly to its equilibrium position, in
the shortest possible time.

For critical damping, equation (i/) may be
written as ¢,

_ om _ -t _
Ry (C1 +C2)e (C1 +C2)e I: m m

Thus the motion is again aperiodic. The critical damping coef ficient (c,) may be obtained

by substituting ¢, for ¢ in the condition for critical damping, i.e.

2
Lo | 25 or ¢, :2m\/E:2m><a)n
2m m m

The critical damping coef ficient is the amount of damping required for a system to be
critically damped.

23.14. Damping Factor or Damping Ratio

The ratio of the actual damping coef ficient (c) to the critical damping coef ficient (c,) is
known as damping factor or damping ratio. Mathematically,

Damping factor S . (e =2nm,)
c. 2mw,
23.15. Logarithmic Decrement
It is defined as the natural logarithm of the amplitude reduction factor . The amplitude

reduction factor is the ratio of any two successive amplitudes on the same side of the mean position.
If x, and x, are successive values of the amplitude on the same side of the mean position,

as shown in Fig. 23.18, then amplitude reduction factor ,

X Ae™™ S
=T = = constant
X2 e a(t+t,)

where , is the period of forced oscillation or the time difference between two consecutive amplitudes.
As per definition, logarithmic decrement,

d=log (ﬁ J =loge”

X2
or 5= log (le ab —ax 2n ax2n
= el — = .p= —_——
X Wy W
2nX ¢

Ve =¢

In general, amplitude reduction factor,

X _Xp X3 _ X _ at,
S === = =€ ° =constant
Xy X3 X4 Xn+1

Logarithmic decrement,

5:10ge( n J:a.tp: Znxec

Xn+l ’(60)2—(32




Example 2. The following data are given for a vibratory system with viscous damp-
ing:

Mass = 2.5 kg ; spring constant = 3 N/mm and the amplitude decr  eases to 0.25 of the
initial value after five consecutive cycles.

Determine the damping coefficient of the damper in the system.
Solution. Given: m =2.5kg; s =3 N/mm = 3000 N/m; x,=0.25 x,

We know that natural circular frequency of vibration,

s 3000
W, =,[—=,/——— =34.64 rad/s
m 2.5

Let ¢ = Damping coefficient of the damper in N/m/s,

x, = Initial amplitude, and

x, = Final amplitude after five consecutive cycles = 0.25 x, ...(Given)
We know that

X _Xo_X3_X4 _ X

noW o ox % %

or — = —X—=X—X—X
X6 Xy X3 X4 X5 Xg

‘We know that

log [ﬁ)—ax 2n
. — X
X2 ¢(wn)2_a2

21
or 02776 = —4X2T

J(34.64)2 —a? V1200 4>

log,(1.32) =ax

Squaring both sides,

39.54°
0.077 = o0 E or  924-0.0774>=39.54"
—da

o a2=2335 or a=153
We know that a=c/2m or c=ax2m= 153x2x25=765N/m/s Ans.

Example 3. The measurements on a mechanical vibrating system show that it has a
mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness
5.4 N/mm. If the vibrating system have a dashpot attached which exerts a for ce of 40 N when the
mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2. damping factor, 3. logarithmic
decrement, and 4. ratio of two consecutive amplitudes.

Solution. Given : m =8 kg ; s = 5.4 N/mm = 5400 N/m
Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore
Damping coefficient (actual),

® ¢ =40 N/m/s

1. Critical damping coefficient

We know that critical damping coefficient,

/ [5400
¢, =2m.o, =2mx 2 —2x8 s 416 N/m/s Ans.
m



2. Damping factor
We know that damping factor = L= j— =0.096 Ans.
¢

3. Logarithmic decrement

We know that logarithmic decrement,
21x 40

5 2nce _ 0.6 A
- - = U. ns.
Jeo?=c* (416)> —(40)?

4. Ratio of two consecutive amplitudes
Let x, and x, ., = Magnitude of two consecutive amplitudes,
We know that logarithmic decrement,

6=1oge{ n } or 21— 8= (27)"° =182 Ans

Xn+1 Xn+1

Example 4. The mass of a single degree damped vibrating system is 7.5 kg and makes
24 free oscillations in 14 seconds when disturbed fr om its equilibrium position. The amplitude of
vibration reduces to 0.25 of its initial value after five oscillations. Determine : 1. stiffness of the
spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to
critical damping.

Solution. Given : m =7.5 kg

Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations,

f,=2414=1.17
and w, =2nX f, =2nx1.7=10.7 rad/s
1. Stiffness of the spring
Let s = Stiffness of the spring in N/m.

We know that (», Y =s/m or 5= (w, Y2 m=(10.7)>7.5 =860 N/m Ans.

2. Logarithmic decrement
Let x, = Initial amplitude,
X, = Final amplitude after five oscillations = 0.25 x, ... (Given)

5
X; X; X X X, X. X; X X X X X
1: 1x Zx 3x 4x 5= 1 [_1:_2:_3:_4:_5}
x6 xZ .X:3 X4 x5 ‘x6 xz Xy X3 X4 X5 X6

1/5 1/5
R N T I =3 =132
Xy X6 0.25)(71

We know that logarithmic decrement,

X

o= loge(
X2

J= log,1.32 =0.28 Ans.
3. Damping factor
Let ¢ = Damping coefficient for the actual system, and

¢, = Damping coefficient for the critical damped system.

We know that logarithmic decrement ( §),

ax2m ax2m

028 = =
\/(mn Y —d? \/(10.7)2 e




a?x39.5

0.0784 = m ... (Squaring both sides)
8.977-0.0784 a*=3954> or  a*=0227 or a=0476
We know that a=c/2m or c=ax2m=0.476x2x75=72N/m/s Ans.
and ¢, =2m.w, =2x7.5x10.7 =160.5 N/m/s Ans.

Damping factor = c/c, =7.2/160.5 = 0.045 Ans.

23.16. Frequency of Under Damped Forced Vibrations

Consider a system consisting of spring, mass and
damper as shown in Fig. 23.19. Let the system is acted
upon by an external periodic ( i.e. simple harmonic)

disturbing force, Spring
F, =Fcoswt
where F = Static force, and Mean position
o= Angular velocity of s.X c = X
¢ T Y . Position after r--l..--. d_t_T_ - _¢
the periodic disturbing time f . _-_1{7_-_ —_—
force.
| | o mdx
When the system is constrained to move in vertical df
guides, it has only one degree of freedom. Let at sometime Fig. 23.19. Frequency of under
t, the mass is displaced downwards through a distance x damped forced vibrations.

from its mean position.
Using the symbols as discussed in the previous article, the equation of motion may be

written as d%x dx
mX——=—cX——s.x+ Fcoswt
dr? dt
2
X dx .
or, MmX——+cX—+s.x=Fcosmt @)
® dt dt

This equation of motion may be solved either by differential equation method or by graphi-
cal method as discussed below :

1. Differential equation method

The equation (i) is a differential equation of the second degree whose right hand side is
some function in ¢ The solution of such type of dif ferential equation consists of two parts ; one
part is the complementary function and the second is particular integral. Therefore the solution
may be written as

X=X, tx,
where x, = Complementary function, and
x, = Particular integral.
The complete solution of the dif ferential equation (7) becomes
X=x tx,
F

\/c2 o+ (s— "o )2

In actual practice, the value of the complementary function x, at any time # is much smaller
as compared to particular integral x,. Therefore, the displacement x, at any time ¢, is given by the
particular integral x, only.

=C.e " cos(wy.t—0)+ xcos(mt — )

F

X cos (.t —0) ... (Vii)
2w+ (s— m.(x)z)2
Maximum displacement or the amplitude of forced vibration,
F
X =

max RN (%11
o’ +(s—m.u)2)2 (viii)

Notes : 1. The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takesplace



23.17. Magnification Factor or Dynamic Magnifier

It is the ratio of maximum displacement of the forced vibration (x ,, ) to the deflection
due to the static force F(x,). We have proved in the previous article that the maximum displace-
ment or the amplitude of forced vibration,

xO
Xmax = 2
. e o’
2 2
s (,)
11
10
2|2
g- g- 180°
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Fig. 23.21. Relationship between magnification factor and phase angle for dif ferent values of ®/®, .
Magnification factor or dynamic magnifier ,

1
p = tmax _ e ()

2 5 2
2c.0 O]
+| 1- 3
[ C..M, J (mn )
Example 5. 4 mass of 10 kg is suspended fr om one end of a helical spring, the other
end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude
to decrease to one-tenth of the initial value in four complete oscillations. If a periodic for — ce of

150 cos 50 t N is applied at the mass in the vertical dir  ection, find the amplitude of the for ced
vibrations. What is its value of r esonance ?

X

Solution. Given: m=10kg; s =10 N/mm=10x 10 > N/m; x5= .

Since the periodic force, F, = F'cosat =150cos50¢, therefore
Static force, F=150N
and angular velocity of the periodic disturbing force,
o= 50rad/s



We know that angular speed or natural circular frequency of free vibrations,

10x10°
, = 5= x =31.6 rad/s
° m 10

Amplitude of the forced vibrations
Since the amplitude decreases to 1/10th of the initial value in four complete oscillations,
therefore, the ratio of initial amplitude ( x,) to the final amplitude after four complete oscillations

(x5) is given by

4
X X X X X, X
Xo_x X X Xy X
X5 Xy X3 Xgq X5 Xy

1/4 1/4
SolA) | & —(10)"* =1.78 ]
Xs x /10 e 10

X2

We know that

log (xl J—ax 21
L |max—t
.X2 '(O\)n )2 _az
21 ax2m
log,1.78 =aX———or o 0.576= ————
J(31.6)2 a2 V1000 - a>

Squaring both sides and rearranging,
398324°=332 or a*=8335 or a=2887

We know that a=cl2m or c=ax2m=2887x2x10=57.74 N/m/s

and deflection of the system produced by the static force F,
x,=F/s =150/10 x 10* = 0.015m

We know that amplitude of the forced vibrations,

xmax: 2
0’ o’
> T 1= 2
s (o,)
0.015 _ 0015
ﬂz J0.083+2.25

(57.74)%(50)% . 1_( 50
(10x10%)? 31.6

0,015
1.53

=9.8x10™> m=9.8 mm Ans.

Amplitude of forced vibrations at resonance
We know that amplitude of forced vibrations at resonance,

s 10x10°
=xg X—— =0.015Xx—=0.0822 1, =
Xmax = X0 co, 57 54%31.6 m=82.2 mm Ans.

Example 6. 4 body of mass 20 kg is suspended fr om a spring which deflects 15 mm
under this load. Calculate the frequency of free vibrations and verify that a viscous damping force
amounting to approximately 1000 N at a speed of 1 m/s is just-sufficient to make the motion
aperiodic.If when damped to this extent, the body is subjected to a disturbing for ce with a maximum
value of 125 N making 8 cycles/s, find the amplitude of the ultimate motion
Solution . Given: m =20kg; § =15mm=0.015m; ¢=1000N/m/s; F=125N;

f=28cycles/s

Frequency of free vibrations
We know that frequency of free vibrations,



S B =l 28 orme A
"“om\s  2nVoors e AR
The critical damping to make the motion aperiodic is such that damped frequency is zero,
2
B
(Zm) m
.. _ m.g
cz,fi><4m2 = f4sm = f4><%><m ( S—T)
m )
= [ax 22981, 00 1023 N/ms
0.015

This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore a
viscous damping force amounting to approximately 1000 N at a speed of 1 m/s is just sufficient to
make the motion aperiodic. Ans.

ie.

Amplitude of ultimate motion
We know that angular speed of forced vibration,
0=2nX [ =21x8=50.3 rad/s
and stiffness of the spring, s=mg/ & =20%x981 /0.015=13.1 x 10*> N/m
Amplitude of ultimate motion i.e. maximum amplitude of forced vibration,
F
X, =

max
\/cz o +(s—mw’)?

- 125
\/(1023)2(50.3)2 +[13.1x10° —=20(50.3)* ?

J2600x10° +1406x10°  63.7x10° ~ 1:96x 107 m
=196 mm Ans.

Example 7. A machine part of mass 2 kg vibrates in a viscous medium. Determine the
damping coefficient when a harmonic exciting for ce of 25 N r esults in a r esonant amplitude of
12.5 mm with a period of 0.2 second. If the system is excited by a harmonic for  ce of frequency
4 Hz what will be the per centage increase in the amplitude of vibration when damper is r emoved
as compared with that with damping .

Solution . Given: m =2kg; F =25N;Resonant x, =12.5mm=0.0125m;
tp=0.2s;f=4Hz

Damping coefficient
Let ¢ = Damping coefficient in N/m/s.
We know that natural circular frequency of the exicting force,
®, =2n/t, =21/0.2 =31.42 rad/s

We also know that the maximum amplitude of vibration at resonance ( x

25 0.79

co, ox3142 ¢

max )’

0.0125= or ¢ = 63.7 N/m/s Ans.

Percentage increase in amplitude

Since the system is excited by a harmonic force of frequency ( /) = 4 Hz, therefore corre-
sponding circular frequency

0=2nX f =2nx4=25.14 rad/s

We know that maximum amplitude of vibration with damping,



F 25

X = =

"R +(s—mad)? \/(63.7)2(25.14)2 +[2(31.42)% —=2(25.14)%?

.. [ (wn)2=s/m or s=m(wn)2:|

~ 25 25
V2.56x100+0.5x100 1749

and the maximum amplitude of vibration when damper is removed,

F 25 25
= - = =00352m
m[(wn) —o ] 2[(31.42)% —(25.14)2] 710

=35.2 mm
Percentage increase in amplitude
_352-143

14.3
23.18. Vibration Isolation and Transmissibility

A little consideration will show that when an
unbalanced machine is installed on the foundation, it produces Machine
vibration in the foundation. In order to prevent these vibrations Damper
or to minimise the transmission of forces to the foundation, _
the machines are mounted on springs and dampers or on some Spring %
vibration isolating material, as shown in Fig. 23.22. The
arrangement is assumed to have one degree of freedom, i.e. it
can move up and down only.

=0.0143 m=14.3 mm

Xmax =

=146 or 146% Ans.

I F cos ot

Spring

Foundation

It may be noted that when a periodic (  i.e. simple Fig. 23.22. Vibration isolation.

° . . . . . .
harmonic) disturbing force F cos w¢ is applied to a machine

of mass m supported by a spring of stiffness s, then the force is transmitted by means of the spring
and the damper or dashpot to the fixed support or foundation.

The ratio of the force transmitted ( /7;) to the force applied ( F) is known as the isolation
factor or transmissibility ratio of the spring support.

‘We have discussed above that the force transmitted to the foundation consists of the fol-
lowing two forces :

1. Spring force or elastic force which is equal to s. x__, and

max’

2. Damping force which is equal to c.®.x,, .

Since these two forces are perpendicular to one another , as shown in Fig.23.23, therefore

the force transmitted, Sx
max

Fr = \/(s.xmax )2 +(C.0.X,,40 )2

= xmax\lsz +02-0)2 COX max F,

Transmissibility ratio,

2 2 2
e Fig. 23.23
F

e=__
F

When the damper is not provided, then ¢ =0, and

1

SZW ()



Example 8. The mass of an electric motor is 120 kg and it runs at 1500 r  .p.m. The
armature mass is 35 kg and its C.G. lies 0.5 mm fr om the axis of rotation. The motor is mounted
on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed
force. Assume that the mass of the motor is equally distributed among the five springs.

Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the base at the
operating speed, and 3. natural frequency of the system.

Solution. Given m, =120kg ; m, =35kg; r =0.5mm=5x10 “m; oe=1/11;
N =1500 rp.m. or ®=27w x 1500/ 60 =157.1 rad/s ;

1. Stiffness of each spring

Let s = Combined stiffness of the spring in N-m, and

®, = Natural circular frequency of vibration of the machine in

rad/s.

We know that transmissibility ratio (€),

1o (@) (@)

(o) | o -@)° 570" =)’

('0}’[
or (157.1% —=(0,)> =11(w,)> or (w,)> =2057 or , =45.35 rad/s

We know that ®, =+/s/m

s =my(,)> =120x2057 = 246 840 N/m

Since these are five springs, therefore stif fness of each spring
=246840 /5=49 368 N/m Ans.
2. Dynamic force transmitted to the base at the operating speed (i.e. 1500 r.p.m. or 157.1 rad/s)

We know that maximum unbalanced force on the motor due to armature mass,
F=m o r=35157.1)*5x10"* =432 N
Dynamic force transmitted to the base,

1
Fr=¢F = ﬁX432 =39.27 N Ans.

3. Natural frequency of the system

We have calculated above that the natural frequency of the system,

, =45.35 rad/s Ans.



UNIT-VI

TRANSVERSE AND TORSIONAL VIBRATIONS

23.8. Natural Frequency of Free Transverse Vibrations Due to a Point
Load Acting Over aSimply Supported Shaft W

If § is the static deflection due to load W, then the

natural frequency of the free transverse vibration is

1 [g 04985

Hz

Fig. 23.6. Simply supported beam
with a point load.

Table 23.1. Values of static deflection (8) for the various types of beams
and under various load conditions.

S.No. Type of beam Deflection (&)
. . : wi®
1. Cantilever beam with a point load W at the 6= 3E] (at the free end)
free end.
w
by
Y
2
Y [ s
. . . wi*
2. Cantilever beam with a uniformly 6= REl (at the free end)
distributed load of w per unit length.
y [W/ unit length
DO Y Y Y Y Y Y Y YN
/
4« I
2,2
3. Simply supported beam with an eccentric = 3EI (at the point load)
point load .
f
A A
l«— a «— b —>
|< / >
. . . wi’
4. Simply supported beam with a central point 6= 18E] (at the centre)
load W. w
l— 1/2 —»Iq— 2 —
I l 1
- : ) . . 5wt
5. Simply supported beam with a uniformly 8= mx T {at the cenire)
distnbuted load of w per unit length
w/unit length
S R e R
JI e
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S.No. Type of beam | Deflection (&) |

W'l
6. Fixed beam with an eccentric point load b= anJ‘ (af the point load)
W AEI]
A | ;
q E
T —re—— b ——»X
[+ i +
7. Fixed beam with a central point load . a= 19;‘1‘%; {at the centre)
W W

| |

- 2 —le—— 2 —
i i |

S

ALY

g4
8 Fized beam with a uniformly distributed BT {at the centre)
load of w per unit length ’
wi unit length
/ 3
; WYY WY“‘;FYW’Y"IQ
Z N
A : N

Example 1. 4 shaft of length 0.75 m, supported freely at the ends, is carrying a body of
mass 90 kg at 0.25 m fr om one end. Find the natural fr equency of transverse vibration. Assume
E =200 GN/m” and shaft diameter = 50 mm.

Solution. Given: /=0.75m; m =90 kg ; a = AC=0.25m ; E = 200 GN/m* = 200 x 10’
N/m’; d = 50 mm = 0.05 m

. - 90kg

The shaft is shown in Fig. 23.7. l

C

We know that moment of inertia of the shaft, B

1="xa* =2 0.05%m?
64

64 1—0,25m—>|<—0.5m _—

«— 0.75m —

=0.307x10"%m*
and static deflection at the load point ( i.e. at point C),

_Wa'h?  90x9.81(0.25)%(0.5)

C3EIl 3%200x10°x0.307x1076%0.75

=0.1x107° m

We know that natural frequency of transverse vibration, ...(b=BC=0.5m)

_0.4985 0.4985

In = = =49.85Hz Ans.
N NI

23.9. Natural Frequency of Free Transverse Vibrations Due to Uniformly
Distributed Load Acting Over a Simply Supported Shaft

Consider a shaft 4B carrying a uniformly distributed load of w per unit length as shown in
Fig. 23.9.
Let y, = Static deflection at the middle of the shaft,
a,= Amplitude of vibration at the middle of the shaft, and
w, = Uniformly distributed load per unit static deflection at the
middle of the shaft = w/y,.
|<— X —>| l«—0dx w/ unit length
A

T Mean position
n -~

-
-

~,
T\\\ ar - Extreme

Static deflection curve _T— - positions

/
Fig. 23.|9. Simply supported shaft carrying a uniformly distributeld load.



Now, consider a small section of the shaft at a distance x from 4 and length §x.
Let y = Static deflection at a distance x from 4, and
a = Amplitude of its vibration.
Work done on this small section

1 I w 1 a
=—XW.q.0xXa ==X—Xa.0xXa==—XwXx—Xaxodx
2 N 2 N
Since the maximum potential energy at the extreme position is equal to the amount of work
done to move the beam from the mean position to one of its extreme positions, therefore
Maximum potential energy at the extreme position

l
1
=J—xwXﬂXa.dx (l)
0 2 yl DEEEEY

Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection
curve of a beam, therefore

a a
A-Z =Constant, C  or “_canda=yC
oy N
Substituting these values in equation (i), we have maximum potential energy at the extreme

position

I /
. :J;%xwaXy.C.dx:%XW.CzJ;y.dx (D))

Since the maximum velocity at the mean position is w.q; , where wis the circular frequency

of vibration, therefore
Maximum kinetic energy at the mean position

/ /
1 .dx
_J_XW_(O)_a)z _—lxo)zxczj Vz-dx (|||)
0 5 5 ) Ce

.. .(Substituting a = y.C)
We know that the maximum potential energy at the extreme position is equal to the maximum
kinetic energy at the mean position, therefore equating equations (ii) and (iii),

I 1
l><w><C2J‘y.abc=l><(st)2><C2J‘yz.dx
2 0 28 0

/
gjy-dx
(02=10 or (1Y)
Jyz.dx
0

When the shaft is a simply supported, then the static deflection at a distance x from 4 is

w 4 3,13
= =2lx +1
Ve THE A W)
where w = Uniformly distributed load unit length,

E = Young’s modulus for the material of the shaft, and
I = Moment of inertia of the shaft.

Now integrating the above equation (v) within the limits from 0 to [,

1

i
ope oo W . P
j.] dx__?ilﬂiu 2+ x)dx =

wil”

120E.I

v V)




1 1 2
jyzdx=j i xt =20 +Px) | dx
0 24 EI

0
W 31 I B
—576E2 12 _630 .. (vin)
Substituting the value in equation (iv) from equations (vi) and (vii), we get circular frequency
due to uniformly distributed load,

wl® 576 EXI* X630
0= |g X
120EI w?*x31/°

_ 24E1X@ _ 2 Elg
Wz 155g _wl4 I

Natural frequency due to uniformly distributed load,

EIg I EIg )
Jn 2n 21: ... (X

We know that the static deflection of a s1mp1y supported shaft due to uniformly distributed
load of w per unit length, is

swi’ El 5

= or =
- ST 384 E] wi* 38438
Equation (ix) may be written as

5S¢ _05615
3848 f

23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at
Both Ends Carrying a Uniformly Distributed Load

T _ 2
Jn = E .. (Substituting, g =9.81 m/s*)

w/unit length

Consider a shaft 4B fixed at both ends 7 c ¥
Y YYY YT

and carrying a uniformly distributed load of w A B
per unit length as shown in Fig. 23.10. ;.‘ X i / v

We know that the static deflection at a wl %’
distance x from 4 is given by 2 Fig. 23.10. Shaft fixed at both ends

y= G+ -2 ) ) carrying a uniformly distributed load.
* 24 EI

Integrating the above equatlon W1th1n limits from 0 to /, S S
* wo wl

- _ = X— =
Iydx‘zwlj(x +Px7 =2 dy = 30 T 00 81
0

Now integrating y* within the limits from 0to /,

2 .0
AP =20 de =) 2 I—
_[y (24E[) j( ) (24}5’ 630

[

g J- ydx
We know that . 0 _ S04Elg
; 5 wi*
jj'_ dx
0
Since the static deflection of a shaft fixed at both ends and carrying a uniformly distnbuted
load 1s 4
B wl
IB4ET
0.571
and natural frequency, chiici =3.573 Elg 051k 4y

wit wit



23.11.Natural Frequency of Free Transverse Vibrations For a Shaft
Subjected to a Number of Point Loads

Consider a shaft AB of negligible mass loaded with

point loads W, , W,, W, and W, etc. in newtons, as shown w, W, W, Ww,
in Fig. 23.11. Let m, m,, m; and m, etc. be the corre- l l l l
sponding masses in kg. The natural frequency of such a A B
shaft may be found out by the following two methods : 4 T’ ) ) )4/ \
1 Y Y- 4

1. Energy (or Rayleigh’s) method ’ )

Lety,, ,, ¥5, ¥, etc. be total deflection under loads
W, Wy, W, and W, etc. as shown in Fig. 23.1 1. Fig. 23.11. Shaft carrying a

We know that maximum potential energy number of point loads.

1 1 1 1 1
==Xmy.g Y, T —XMy.g.Vy +—Mmy. 8.V +—Xmy.g.YV, +..... =—
2 1-8N 2 2-8-V2 2 3-8-Y3 2 4-8-V4 2Zm.g.y

and maximum kinetic energy

1 1 1 1

=—Xm ((nyl)2 +—xm, ((1).y2)2 +—Xm; ((uy3)2 +=xmy ((uy4)2 +oe
2 2 2 2

Loy 2 2 2 2

—EX(’J [m1 )™ +my (y,y) +m3()’3) +my(yy) +:|

1
= EX o’Z m.y2 ... (where @ = Circular frequency of vibration)
Equating the maximum kinetic energy to the maximum potential energy, we have

1 5 5 1
—XO Xmy =—Xm.g.
5 Yy 5 8.y

Xm.g. Xm.
o <IMEY_gTmy o [gZm)
zm.y zm.y zm.y

Natural frequency of transverse vibration,

o 1 |gZmy
fn o T 5o 2
2n 2w\ Zm.y

2. Dunkerley's method

The natural frequency of transverse vibration for a shaft carrying a number of point loads
and uniformly distributed load is obtained from Dunkerley’ s empirical formula. According to this

11 N 1 N 1 - 1
. S Gt Ut ) ()
where /, = Natural frequency of transverse vibration of the shaft

carrying point loads and uniformly distributed load.
1> Jn2> fuz,etc. = Natural frequency of transverse vibration of each point load.

s = Natural frequency of transverse vibration of the uniformly
distributed load (or due to the mass of the shaft).

Now, consider a shaft 4B loaded as shown in Fig. 23.12.
Wi Wo Ws

Wwwmngth

A B

/ >
Fig. 23.12. Shaft carrying a number of point loads and a uniformly distributed load.




Let 8;,0,,03, etc. = Static deflection due to the load W, W,, W, etc. when
considered separately.

&g = Static deflection due to the uniformly distributed load or due
to the mass of the shaft.
We know that natural frequency of transverse vibration due to load W,

_0.4985

G
Similarly, natural frequency of transverse vibration due to load .,
0.4985

=, M

and, natural frequency of transverse vibration due to load 7,
_ 0.4985 Hy

fn -
3 / 5,
Also natural frequency of transverse vibration

due to uniformly distributed load or weight of the shaft,
0.5615

fns -
NEN

Therefore, according to Dunkerley’ s empirical
formula, the natural frequency of the whole system,

Hz

Hz

LS S S SR
) ) () (fs) (fus)?
3, 3, 8, 8
+

= + +...t
(0.4985)*  (0.4985)*  (0.4985)° (0.5615)*

1 )
= —2[81 +8, +6, +....+—S]
(0.4985) 1.27
0.4985
or fn = S Hz
& +8, +8; +.t
el 1.27
Example 1. 4 shaft 50 mm diameter and 3 metr es long is simply supported at the ends

and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m fr om the left support.
The Young's modulus for shaft material is 200 GN/m °. Find the frequency of transverse vibration.

Solution. Given: d =50mm=005m; [=3m, W, =1000N; W, =1500N
W, =750 N; E =200 GN/m* =200 x 10’ N/m”

The shaft carrying the loads is shown in Fig. 23.13
We know that moment of inertia of the shaft,

=" xa* =T 0.05)* =0307x10 "5 m*
64 64

and the static deflection due to a point load W,

2,2
Wa“b
o —
3EI
1000 N 1500 N 750N
lo bo e
Al | B
A
<—1m—>| T
<t 2m P
< 25m >
< 3m >

Fig. 23.13



Static deflection due to a load of 1000 N,

2,72
. 5, = 10090><1 x2 . ~724%107 m
3x200x10” x0.307x107° x3
Similarly, static deflection due to a load of 1500 N, ... (Here a=1m,and b=2m)
212
15005271 ~10.86x107 m

> 3%200%10° x0.307x107 x3
...(Here a=2m,and b =1m)

and static deflection due to a load of 750 N,
2 2
750(2.5)7 (0.5) 5 12%10° m

7 3%200x10° x0.307 %107 3
...(Here a=2.5m,and b =0.5m)

We know that frequency of transverse vibration,

0.4985 0.4985
N e 3 3 3
\/ | 702 +03 \/7.24><10 +10.86X107° +2.12x10
04085
0.1422 > T A

23.12. Critical or Whirling Speed of a Shaft
The speed at which the shaft runs so that the additional deflection of the shaft fr om

the axis of rotation becomes infinite, is known as critical or whirling speed.

Critical or whirling speed,

o)c=o)n=\ﬁ=\/g Hz ( 5="5
m 5 s

If N, is the critical or whirling speed inr .p.s., then

2N, =\/§ or N, :2i % = 0.49885 r.p.s.
T

& = Static deflection of the shaft in metres.

where
Hence the critical or whirling speed is the same as the natural frequency of transverse

vibration but its unit will be r evolutions per second.

;K—Rotor
| i
1
! Shaft axis /_ ]
| KGR
\V v |0 \V4 Yoo
K] A [T
}_G Shaftaxis § C.-:. Axis of rotation
! I
_|_
Fe

(a) When shaft is stationary . (b) When shaft is rotating.
Fig. 2



Example 2. 4 shaft 1.5 m long, supported in flexible bearings at the ends carries two
wheels each of 50 kg mass. One wheel is situated at the centr e of the shaft and the other at a
distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm
and internal diameter 40 mm. The density of the shaft material is 7700 kg/m * and its modulus of
elasticity is 200 GN/m”. Find the lowest whirling speed of the shaft, taking into account the mass
of the shaft.

Solution. / = 1.5m; m =m, =50kg ; 50kg  50kg

=75 mm=0.075m: dy =40 mm=004m: - jogrsm io 1%5.'%4?1-6— it longth
p =7700 kg/m® ; E =200 GN/m? =200 x 10 ° c

N/m? A | B
0.75m —
The shaft is shown in Fig. 23.16. e

We know that moment of inertia of the shaft,

— 15m—

= T 4— 4 —1 4_ 4| _ 6.4
I—a[(aﬁ) (dy) ]—64[(0.075) (0.04)* | =1.4x10°m

Since the density of shaft material is 7700 kg/m 3, therefore mass of the shaft per metre
length,
mg = Area X length x density

I
- Z[(0.075)2 —(0.04)2]1><7700 — 2434 kg/m

We know that the static deflection due to a load W

_ Wa’b* _ m.ga2b2

3EIl 3EI
Static deflection due to a mass of 50 kg at C,

_mga®h®  50x9.81(0.75)%(0.75)
3El 3%x200x10° x1.4x107° x1.5
...(Here a =b=0.75m)

=123x10 °m

_ mga®h?* | 50%9.81(0.375)%(1.125)
3EIl 3x200x10° x1.4x107° x1.5

...(Here a =0.375m,and b =1.125m)
° Similarly, static deflection due to a mass of 50 kg at D

1 =70x10%m

We know that static deflection due to uniformly distributed load or mass of the shaft,

5 wt s y 24.34%9.81(1.5)*

=_ X___=____
384 EI 384 200x10°x1.4x107°
... (Substituting, w = mg % g)

8¢ =56x10°m

We know that frequency of transverse vibration,

o 04985 —- 0.4985 1z
\/51+52 +5 170x107 +123x10¢ 4 2210
1.27 1.27
=324 Hz

Since the whirling speed of shaft ( N_) inr.p.s. is equal to the frequency of transverse
vibration in Hz, therefore

N,=324r.ps. =324 x60=19441 .p.m. Ans.



TORSIONAL VIBRATIONS

24.1. Introduction

The particles of a shaft or disc move in a circle about the axis of a shaft, then the vibrations are known as
torsional vibrations.

24.2. Natural Frequency of Free Torsional
Vibrations

Consider a shaft of negligible mass whose one end is fixed and the other end carrying a disc as
shown in Fig. 24.1.

Let 0 = Angular displacement of the shaft from mean position after time ¢ in radians,
m = Mass of disc in kg, o

I = Mass moment of inertia of disc in kg-m*> = m.i%,

k = Radius of gyration in metres, ///////

q = Torsional stiffness of the shaft in N-m. I

Restoring force =q0 ()

. d*e .
and accelerating force =IxX——ro .. (1) !
- 3
Equating equations (i) and (ii), the equation of I
motion is 2 i
de 29 — 40 -- ‘ - - Mean position
dt

5 | Position after
d-o : time (t)

or 4 9%0=0 . (iii)
a? 1 Fig 24.1. Natural frequency of

The fundamental equation of the simple harmonic motion is ~ free torsional vibrations.

d*e
724'0)2.)(:0 (|V)
dt

Comparing equations (iii) and (iv),

. . 2 [
T ime period, ty= R P £
q

1 1
and natural frequency , Jn = 4

1y 2\ /1

24.4. Free Torsional Vibrations of a Single Rotor System
We have already discussed that for a shaft fixed at

7 o
one end and carrying a rotor at the free end as shown in Fig. Z
24 .4, the natural frequency of torsional vibration, A B
Je——— | ———>
1 |g 1 |CJ Z
I A7 o 7 @)
2 N7 2 INg : :

cJ
7 /
where C = Modulus of rigidity for shaft material,

J = Polar moment of inertia of shaft
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24.5. Free Torsional Vibrations of a Two Rotor System

Consider a two rotor system as shown in Fig. 24.5. It

consists of a shaft with two rotors at its ends. In this system, QA BO

the torsional vibrations occur only when the two rotors 4 and < / =

B move in opposite directions i.e. if A moves in anticlockwise

direction then B moves in clockwise direction at the same

instant and vice versa. It may be noted that the two rotors must O O

have the same frequency. : :
We see from Fig. 24.5 that the node lies at point N. i — '~:"\a/|

This point can be safely assumed as a fixed end and the shaft p|__________ T ’ Q2

may be considered as two separate shafts N P and N Q each i : N Iy —>

fixed to one of its ends and carrying rotors at the free ends.
Let I = Length of shaft,
[, = Length of part NP i.e. distance
of node from rotor A4,
Iy = Length of part NQ, i.e. distance
of node from rotor B,
1, = Mass moment of inertia of rotor 4,
I; = Mass moment of inertia of rotor B,
d = Diameter of shaft,
J = Polar moment of inertia of shaft, and
C = Modulus of rigidity for shaft material.
Natural frequency of torsional vibration for rotor 4,

1 cJ
Jun 3 NN
and natural frequency of torsional vibration for rotor B,
1 CcJ
Ju 3 Iy Iy
Since Jfon =/, therefore
L C.J L cJ
Ip

We also know that

11, I

Node

Fig 24.5. Free torsional vibra-
tions of a two rotor system.

- (@)

()

... (i)

(V)



From equations (iii) and (iv), we may find the value of /, and /; and hence the position of
node. Substituting the values of /, or /; in equation (i) or (ii), the natural frequency of torsional
vibration for a two rotor system may be evaluated.

Note : The line LNM in Fig.24.5 is known as elastic line for the shaft.

24.6. Free Torsional Vibrations of a Three Rotor System

Consider a three rotor system as shown is Fig. 24.6 (a). It consists of a shaft and three
rotors A, B and C. The rotors 4 and C are attached to the ends of a shaft, whereas the rotor B is
attached in between 4 and C. The torsional vibrations may occur in two ways, that is with either
one node or two nodes. In each case, the two rotors rotate in one direction and the third rotor
rotates in opposite direction with the same frequency. Let the rotors 4 and C of the system, as
shown in Fig. 24.6 (a), rotate in the same direction and the rotor B in opposite direction. Let the
nodal points or nodes of such a system lies at N, and N, as shown in Fig. 24.6 (). As discussed in
Art. 24.5, the shaft may be assumed as a fixed end at the nodes.

(b)
— [, T l=1 I l,— 1 | I —»
Fig. 24.6. Free torsional vibrations of a three rotor system.
Let [, = Distance between rotors 4 and B,

[, = Distance between rotors B and C,
l, = Distance of node N, from rotor 4,
I = Distance of node N, from rotor C,

1, = Mass moment of inertia of rotor 4,
I, = Mass moment of inertia of rotor B,

I = Mass moment of inertia of rotor C,

d = Diameter of shaft,

J = Polar moment of inertia of shaft, and

C = Modulus of rigidity for shaft material.
Natural frequency of torsional vibrations for rotor A,

1 [CJ
Jna PRWA . 0)




Natural frequency of torsional vibrations for rotor B,
/ I |cJ 1 1
* _— | .
Jug 5 Is L I b I .. @)
and natural frequency of torsional vibrations for rotor C,

1 [CJ B
Jnc 2 I 1o ... (i)
Since f,, = f,5 = /,c, therefore equating equations (i) and (i1i)
— 1, =1.1
Loy 2 Ve Aere
, lele )
I
Now equating equations (i7) and (iii),
Lfes v 1 (e
2 Iy L Iy L I 2 Nl A
or —

24.7. Torsionally Equivalent Shaft

In the previous articles, we have assumed that the shaft is of uniform diameter. But in
actual practice, the shaft may have variable diameter for different lengths. Such a shaft may,
theoretically, be replaced by an equivalent shaft of umiform diameter.

Consider a shaft of varying diameters as shown in Fig. 24.8 (a). Let this shaft is replaced
by an equivalent shaft of uniform diameter o and length { as shown in Fig 24.8 (). These two shafts
must have the same total angle of twist when equal opposing torques T are applied at their opposite
ends.



Let d,, d, and d, = Diameters for the lengths /,, /, and /; respectively,
1, 2 and 3 = Angle of twist for the lengths /,, /, and ; respectively,
= Total angle of twist, and
Ji,J, and J3 = Polar moment of inertia for the shafts of diameters d,, d, and

d, respectively.

o’ ) 3’ s

| x ! y

d1 d2 d3 d= d1

T ¥ A <t A / =
I e—,—e— 1,

—>
O O O O
(a) Shaft of varying diameters. (b) Torsionally equivalent shaft.

Fig 24.8

Since the total angle of twist of the shaft is equal to the sum of the angle of twists of
different lengths, therefore

1 2 3
o Tl T4 Tl Tk
CJ CJ, CJy, CJi
I L, I, &
A RAA
! A I A

2 32(1) 32(2) 32(3)

1 I I
at @t @)t dy)?

In actual calculations, it is assumed that the diameter d of the equivalent shaft is equal to
one of the diameter of the actual shaft. Let us assume that d = d.

l ; I I
@t @yt (@) @)
4 4
or l 11 12 d—l 13 d—l
d, d;

This expression gives the length / of an equivalent shaft.

Example 24.3. 4 steel shaft 1.5 m long is 95 mm in diameter for the first 0.6 m of its
length, 60 mm in diameter for the next 0.5 m of the length and 50 mm in diameter for the remaining
0.4 m of its length. The shaft carries two flywheels at two ends, the first having a mass of 900 kg
and 0.85 m radius of gyration located at the 95 mm diameter end and the second having a mass of
700 kg and 0.55 m radius of gyration located at the other end. Determine the location of the node
and the natural frequency of free torsional vibration of the system. The modulus of rigidity of shaft
material may be taken as 80 GN/m’.



Solution. Given : L=1.5m ;d, =95 mm=0.095m;/, =0.6 m ; d, = 60 mm = 0.06 m ;
5,=05m;d;=50mm=0.05m;/,=04m;m, =900kg;k, =0.85m;my="700kg;k;=0.55m
; C=80 GN/m” = 80 x 10° N/m’

The actual shaft is shown in Fig. 24.9 (a). First of all, let us find the length of the equivalent
shaft, assuming its diameter as d; = 95 mm as shown in Fig 24.9 (b).

(@)
I
!
r95 mm :
(b) 1 ;
(©)
Fig. 24.9
We know that length of the equivalent shaft,
4 4 4 4
I ) L I8 4 0.6 0.5 0.095 0.4 0.095
dy dy 0.06 0.05

=0.6+314+521=895m
Location of the node

Suppose the node of the equivalent shaft lies at N as shown in Fig. 24.9 (¢).
Let [, = Distance of the node from flywheel 4, and
Iy = Distance of the node from flywheel 5.
We know that mass moment of inertia of flywheel A4,
Iy my(kpy)* 900(0.85° 650 kg-m’
and mass moment of inertia of flywheel B,

Iy mg(kg)* 700(0.55% 212 kg-m’

We know that lAIA lB’IB or lA IBﬁ M 0.326 lB
I 650
Also, Iy g I 895m or 03260l g 895 or [;=675m

and [,=895-675=22m



Hence the node lies at 2.2 m from flywheel 4 or 6.75 m from flywheel B on the equivalent

shaft.
O Position of node on the original shaft from flywheel 4
4 4
d, 0.06
L Uy L) —= 06 (22 06) —— =
R UNIY 4, ( ) 0.095 0.855 m Ans.

Natural frequency of free torsional vibrations
We know that polar moment of inertia of the equivalent shaft,

J —(d)* —(0.095* 8 10 °m*
32(1) 32( )

Natural frequency of free torsional vibrations,

fn an or an

1 [CJ L\/so 10° 8 10 ©
22 650

2 A\, 2

=3.37 Hz Ans.

Example 24.4. A steel shaft ABCD 1.5 m long has flywheel at its ends A and D. The mass
of the flywheel A is 600 kg and has a radius of gyration of 0.6 m. The mass of the flywheel D is
800 kg and has a radius of gyration of 0.9 m. The connecting shaft has a diameter of 50 mm for
the portion AB which is 0.4 m long ; and has a diameter of 60 mm for the portion BC which is
0.5 m long ; and has a diameter of d mm for the portion CD which is 0.6 m long. Determine :

1. the diameter ‘d’ of the portion CD so that the node of the torsional vibration of the
system will be at the centre of the length BC ; and 2. the natural frequency of the torsional vibrations.

The modulus of rigidity for the shaft material is 80 GN/m’.

Solution. Given : L =1.5m ; m, = 600 kg ; k, = 0.6 m ; m = 800 kg ; ky = 0.9 m ;
d=50mm=005m;/,=04m;d,=60mm=006m;/,=05m;d,=d;[;=06m;
C = 80 GN/m? = 80 x10° N/m?



The actual shaft is shown is Fig. 24.10 (). First of all, let us find the length of the equivalent
shaft, assuming its diameter as d; = 50 mm, as shown in Fig. 24.10 (b).

@) O
B N C D
A o )
50 mm 60 mm d;=d
(@) + v y
4—0.4m——0.5m—>|<— 06m —»
O O
OA , ODp
IN
50 mm :
b) | 5

(©)
Fig. 24.10
We know that length of the equivalent shaft,
4 4 4 4
I L b L I Lt 04 05 0.05 0.6 0.05
d, dy 0.06 d
.. . [Substituting d; = d]
6 6
04 024 3.75 10 0.64 3.75 10 o
a* d*

1. Diameter ‘d’ of the shaft CD

Suppose the node of the equivalent shaft
lies at N as shown in Fig. 24.10 (c¢).

Let [, = Distance of the node from
flywheel 4, and

I, = Distance of the node from
flywheel D.

We know that mass moment of inertia of
flywheel 4,

Iy mp(ky)?* 600(0.6)% =216 kg-m’

and mass moment of inertia of flywheel D,

Ip  mp(kp)*  800(0.9)% = 648 kg-m’



We know that

or

Ip 648 3

Since the node lies in the centre of the length BC in an original system, therefore its
equivalent length from rotor 4,

Ip

4

Lo 2 gy 93005 e
2 d, 2 0.06
Iy ZA 0.52 =0.173 m
3 3
We know that I=1,+1
6
or 0.64 % 0.52 0.173 ... [From equation (7)]
d
6
w 0.52 0.173 0.64 0.053
d
6
4 375 107 5505 196
0.053
or d=0.0917m =91.7 mm Ans.

2. Natural frequency of torsional vibrations
We know that polar moment of inertia of the equivalent shaft,
J =)t —(0.05" 0614 10 °m*
5 (@) 32( )
Natural frequency of torsional vibration,

fn an or an

2 Iy 2

1 | CJ 1\/80 10° 0.614 10 ©
0.52 216 Hz = 3.33 Hz Ans.



24.8. Free Torsional Vibrations of a Geared System

Consider a geared system as shown in Fig. 24.16 (a). It consists of a driving shaft C which
carries a rotor 4. It drives a driven shaft D which carries a rotor B, through a pinion £ and a gear
wheel F. This system may be replaced by an equivalent system of continuous shaft carrying a rotor
A at one end and rotor B at the other end, as shown in Fig. 24.16 (b). It is assumed that

1. the gear teeth are rigid and are always in contact,
2. there is no backlash in the gearing, and
3. the inertia of the shafts and gears is negligible.
Let d, and d, = Diameter of the shafts C and D,
[, and [, = Length of the shafts C and D,
1, and I; = Mass moment of inertia of the rotors 4 and B,

A and g = Angular speed of the rotors 4 and B,

Speed of pinion E A
Speed of wheel F' B

G Gearratio

. ( Speeds of £ and F will be same as that of rotors 4 and B)

d = Diameter of the equivalent shaft,
[ = Length of the equivalent shaft, and

Ig = Mass moment of inertia of the equivalent rotor g .



B

(®)

(©)

Fig. 24.16
The following two conditions must be satisfied by an equivalent system :
1. The kinetic energy of the equivalent system must be equal to the kinetic energy of the
original system.
2. The strain energy of the equivalent system must be equal to the strain energy of the
original system.
In order to satisfy the condition (1) for a given load,
K.E. of section /; + K.E. of section /;

= K.E. of section /, + K. E. of section /,
K.E. of section /; = K.E. of section /,

1 > 1 2
o 7 BB 5 IsCe)or rg( A g (5 a)
P
Iy Iy £ 2 G A ... 0
G B

In order to satisfy the condition (2) for a given shaft diameter,
Strain energy of /, and /, = Strain energy of /, and /,
Strain energy of /; = Strain energy of /,

1 ) .
Tg, 3 5 Tz 2 Or T2 ; ...(ll')

1
or 5



where T, and T, = Torque on the sections /, and /;, and

> and 3 = Angle of twist on sections /, and /,.
Assuming that the power transmitted in the sections /; and /, is same, therefore

T 1
5. . or 3> B (7))
3- A 2 B T2 N G
Combining equations (if) and (iii),
Lo, 1 ;
E _3 E .o (@)
We know that torsional stiffness,
T ocs
/
where J = Polar moment of inertia of the shaft.
For section [, ] % .(v)
3k
and For section /, , L Ch ... ()
2 b
Dividing equation (v) by equation (vi),
5 2 J_3 IL or 5 M
L 3 L J T Jy ol
or 15 G b [From equation (iv)]
G J 4
J .
I =3 G? I ... (viD)
Jo
Assuming the diameter of the equivalent shaft as that of shaft Ci.e. d = d,, therefore
o=@t and L )
32 32
4
SBd
S dy
Now the equation (vii) may be written as
d 4
L G*l, —- ... (viii)
dy

Thus the single shaft is equivalent to the original geared system, if the mass
moment of inertia of the rotor B satisfies the equation (/) and the additional length of the equiva-
lent shaft /, satisfies the equation (viii).

Length of the equivalent shaft,

4
_ e 4 :
I=1+ L=1+Gl d, R (23]
Now, the natural frequency of the torsional vibration of a geared system (which have been
reduced to two rotor system) may be determined as discussed below :



Let the node of the equivalent system lies at NV as shown in Fig. 24.16 (¢), then the natural
frequency of torsional vibration of rotor A4,

1 [CJT
Jua PRTWA

and natural frequency of the torsional vibra-

tion of rotor B ,

1 [cu

an

lB -IB
We know that for  fuB

1 | CJ 1 cJ

2 Niada 2 \ig .0y
- (x)
In Iy ! (i)

From these two equations (x) and (xi), the value of /, and /5 may be obtained and hence

the natural frequency of the torsional vibrations is evaluated.

Note : When the inertia of the gearing is taken into consideration, then an additional rotor [shown dotted in
Fig. 24.16 (b)] must be introduced to the equivalent system at a distance /, from the rotor 4. This rotor will

Iy
have a mass moment of inertia /£ [E ? , where [, and I are the moments of inertia of the pinion and

wheel respectively. The system then becomes a three rotor system and the frequency of such a system may be
obtained as discussed in the previous article.

Example 24.8. A motor drives a centrifugal pump through gearing, the pump speed being
one- third that of the motor. The shaft from the motor to the pinion is 60 mm diameter and 300 mm
long. The moment of inertia of the motor is 400 kg-m>. The impeller shaft is 100 mm diameter and
600 mm long. The moment of inertia of the impeller is 1500 kg-m’. Neglecting inertia of the gears
and the shaft, determine the frequency of torsional vibration of the system. The modulus of rigidity
of the shaft material is 80 GN/m’.

Solution. Given : G = N,/Ng =3 ; d; = 60 mm = 0.06 m ; /, = 300 mm = 0.3 m ;
I, = 400 kg-m?; @*> =100 mm = 0.1 m ; /, = 600 mm = 0.6 m ; [, = 1500 kg-m? ;
C =80 GN/m? = 80 x 10° N/m’

The original and the equivalent system, neglecting the inertia of the gears, is shown in Fig.
24.17 (a) and (b) respectively. First of all, let us find the mass moment of inertia of the equivalent
rotor B and the additional length of the equivalent shaft, assuming its diameter as ¢, = 60 mm.

We know that mass moment of the equivalent rotor B ,

Iz Iz/G* 1500/3%* 166.7 kg-m?
and additional length of the equivalent shaft,

¢ 0.06 *

3206 ﬁ 0.7m 700 mm

d
L G*l d—l

2



Total length of the equivalent shaft,
[ & Iz 300 700 1000 mm Im
Let the node of the equivalent system lies at N, as shown in Fig. 24.17 (c). We know that

Indy Ig.Ig o In 400 (I [x)166.7 ... ( Ig 1 1y
o 0294m 294 mm

We know that polar moment of inertia of the equivalent shaft,

J —(d)* —(0.06* 127 10 °m*
32(1) 32( )

Pinion
AO ¥
1o e
— 60 mm
(= Q"
(a) O =) lPump shaft
-+ T1-100mm - - — - —|-

Gear/g F O
wheel T

(c)

Fig. 24.17

Frequency of torsional vibration,

1 [CJ 1\/80 10° 127 10 ©

I 5 N 0.294 400

= 4.7 Hz Ans.

Example 24.9. An electric motor is to drive a centrifuge, running at four times the motor
speed through a spur gear and pinion. The steel shaft from the motor to the gear wheel is 54 mm
diameter and L metre long ; the shaft from the pinion to the centrifuge is 45 mm diameter and
400 mm long. The masses and radii of gyration of motor and centrifuge are respectively 37.5 kg,
100 mm ; 30 kg and 140 mm.



Neglecting the inertia effect of the gears, find the value of L if the gears are to be at the
node for torsional oscillation of the system and hence determine the frequency of torsional
oscillation. Assume modulus of rigidity for material of shaft as 84 GN/m’.

Solution. Given: G=N,/N;=1/4=0.25;d, =54 mm =0.054 m ; /, =L m; d, =45 mm
=0.045m ; /, = 400 mm = 04 m ; m, = 375 kg ; k, = 100 mm = 0.1 m ; my = 30 kg ;
ky = 140 mm = 0.14 m; C = 84 GN/m’ = 84 x 10” N/m’

Value of L

We know that mass moment of inertia of the motor,

Iy my(kpy)* 37.50.1)* 0.375kg-m?
and mass moment of inertia of the centrifuge,
Iy mg(k)* 30(0.14)*  0.588 kg-m?

The original and the equivalent system, neglecting the inertia effect of the gears, is shown
in Fig. 24.18 (a) and (b) respectively.

First of all, let us find the mass moment of inertia of the equivalent rotor B and the

additional length of the equivalent shaft, keeping the diameter of the equivalent shaft as d, = 54
mm.

We know that mass moment of inertia of the equivalent rotor B ,
Iy Ig/G* 0.588/(0.25)% 9.4kg-m?
and additional length of equivalent shaft,

4
4

2

0.054 *

L G*l (0.25)%0.4 ooas  00s18m

Since the node N for torsional oscillation of the system lies at the gears, as shown in Fig.
24.18 (c), therefore

I L, and [z [3 0.0518m



We know that Indy g g
L x0.375=0.0518 x 94 =0.487 or L=1.3 m Ans.

5/\7 I 4-’-—400 mm—»‘

.«—— Motor l E

Gear wheel

C
(a) 54 mm
B
O T 45imm O(_ Centrifuge
Pinion
O
Oa Q
! e
54 mm !
ORI B
O :
% ,
© ST N
P —

Fig. 24.18

Frequency of torsional oscillations
We know that polar moment of inertia of the equivalent shaft,

J —(@d)* —(0.059)* 0.835 10 °m*
32(1) 32( )

Frequency of torsional oscillations,

I

1 [cg 1 [84 10° 0.835 10°
i = 60.4 Hz Ans.

2\l 1, 2 1.3 0375
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