FINITE ELEMENT METHODS

Terminology
Prepared by Mr.Ch.Sekhar

Finite Element
Method

1. A finite element method (abbreviated as FEM) is a numerical
technique to obtain an approximate solution to a class of problems
governed by elliptic partial differential equations.

2. The finite element method is a numerical technique. In this method all
the complexities of the problems, like varying shape, boundary
conditions and loads are maintained as they are but solutions obtained are
approximate.
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FEM Packages

NASTRAN, ANSYS, and ABAQUS , LS-DYNA, DEFORM etc.

Stress

When a material is subjected to an external force, a resisting force
is set up within the component. The internal resistance force per
unit area acting on a material or intensity of the forces distributed
over a given section is called the stress at a point.

Strain

When a single force or a system force acts on a body, it undergoes
some deformation. This deformation per unit length is known as
strain. Mathematically strain may be defined as deformation per
unit length.

Tensile stress

If 6 > 0 the stress is tensile. i.e. The fibres of the component tend
to elongate due to the external force. A member subjected to an
external force tensile P and tensile stress distribution due to the
force.

Compressive
stress

If 6 < 0 the stress is compressive. i.e. The fibres of the component
tend to shorten due to the external force. A member subjected to an
external compressive force P and compressive stress distribution
due to the force.

Shear stress

When forces are transmitted from one part of a body to other, the
stresses developed in a plane parallel to the applied force are the
shear stress. Shear stress acts parallel to plane of interest.

Shear Strain

The distortion produced by shear stress on an element or
rectangular block is shown in the figure. The shear strain or ‘slide’
is expressed by angle ¢ and it can be defined as the change in the
right angle. It is measured in radians and is dimensionless in
nature.

Poisson’s Ratio

The ratio lateral strain to longitudinal strain produced by a single
stress is known as Poisson’s ratio. Symbol used for poisson’s ratio
is 1/ m.
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Lateral Strain

Lateral strain, also known as transverse strain, is defined as the
ratio of the change in diameter of a circular bar of a material due to
deformation in the longitudinal direction.




11 | Elasticity This is the property of a material to regain its original shape after
deformation when the external forces are removed.

12 | Plasticity When the stress in the material exceeds the elastic limit, the
material enters into plastic phase where the strain can no longer be
completely removed. Under plastic conditions materials ideally
deform without any increase in stress.

13 | Modulus of

Rigidity(G) For elastic materials it is found that shear stress is proportional to
the shear strain within elastic limit. The ratio is called modulus
rigidity. It is denoted by the symbol ‘G’ or ‘C’.
14 | Bulk modulus It is defined as the ratio of uniform stress intensity to the
(K) volumetric strain. It is denoted by the symbol K.

15 | Body force It is defined as distribution force per unit volume

16 | Traction force It is defined as force per unit area

17 | Stress And
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20 | Plane Stress Plane stress is defined to be a state of stress in which the normal
Conditions stress and the shear stresses directed Perpendicular to the plane are
assumed to be zero.
That is, the normal stress o,and the shear stresses 7,., and 7,
are assumed to be zero.
21 | Plane Strain Plane strain is defined to be a state of strain in which the strain
Conditions normal to the x-y plane e,and the shear strains yy,and yy,are
assumed to be zero.
22 | Variational In variational technique, the calculus of variation is used to obtain
Methods the integral form corresponding to the given differential equation.

This integral needs to be minimized to obtain the solution of the
problem. For structural mechanics problems, the integral form
turns out to be the expression for the total potential energy of the
structure.
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Weighted
Residual
Methods

In weighted residual technique, the integral form is constructed as
a weighted integral of the governing differential equation where
the weight functions are known and arbitrary except that they
satisfy certain boundary conditions. To reduce the continuity
requirement of the solution, this integral form is often modified
using the divergence theorem. This integral form is set to zero to
obtain the solution of the problem. For structural mechanics
problems, if the weight function is considered as the virtual
displacement, then the integral form becomes the expression of the
virtual work of the structure.
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Total Potential
Energy

The total potential energy of an elastic body , is defined as the sum
of total strain energy (U) and the work potential (WP) .

[I=U+ WP
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Principle Of
Minimum
Potential Energy

For conservative systems, of all the kinematically admissible
displacement fields, those corresponding to equilibrium extremize
the total potential energy. If the extremum condition is a minimum,
the equilibrium state is stable.

26 | Discretization of | The process of Dividing the domain into discrete elements is called
Domain discretization
27 | Interpolation The shape function or interpolate function is the function which
functions interpolates the solution between the discrete values obtained at the
mesh nodes
28 | Convergence
Requirements 1.Completeness 2.compatibility
29 | Boundary The values of variables prescribed on the boundaries of the region
conditions are called as boundary conditions.
30 | Geometric which are imposed on the primary variable like displacements
(Essential or
Dirichlet)
Boundary
conditions
31 | Force (Natural) | Natural or force boundary conditions which are imposed on the
Boundary secondary variable like forces and tractions.
conditions
32 | Stiffness Matrix | stiffness matrix contains the geometric and material behaviour
information that indicates the resistance of the element to
deformation when subjected to loading.
33 | Global The coordinate system used to define the points in the entire
coordinate Structure is called “Global coordinates system.” Generally
system Cartesian coordinates system is used as “Global coordinates

system.”




34 | Local coordinate | For the convenience of deriving element properties For each
system element a separate coordinate system is used, called “Local
coordinate system.”
35 | Constant Strain | If the field variables such as strains and heat flux will be linear
Triangle and constant throughout an element then it is called “Constant
Strain Triangle.”
36 | Higher order | if the interpolation polynomial is of order two or more, the element
element Is known as a higher order element.
37 | Isoparametric In an element, if the number of nodes used for defining the
Element Geometry is same as the number of nodes used for defining the
displacement, then it is called “Isoparametric Element.”
38 | Superparametric | In an element, if the number of nodes used for defining the
Element Geometry is more as the number of nodes used for defining the
displacement, then it is called “Superparametric Element.”
39 | Lumped mass Total mass of the element is assumed equally distributed at all the
matrix nodes of the element in each of the translational degrees of
freedom. Lumped mass is not used for rotational degrees of
freedom. Off-diagonal elements of this matrix are all zero.
40 | Consistent mass | 1.The mass of each element is equally distributed at all the nodes

matrix

of that Element

2. Mass, being a scalar quantity, has same effect along the three
translational degrees of freedom (u, v and w) and is not shared

3. Mass, being a scalar quantity, is not influenced by the local or
global coordinate system. Hence, no transformation matrix is used
for converting mass matrix from element (or local) coordinate
system to structural (or global) coordinate system.
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Learning Objectives

At the end of this topic, you will be able to:

-
.’

» Know the finite element methods and its applications

-
’0

Derive stress and equilibrium relations

-

-
e

Explain strain displacement and stress strain relations

.’

Understand the concepts of plane stress and plane strain conditions

>



Outcomes

By the end of this topic, you will be able to:
% Discuss the finite element methods and its applications
% Illustrate stress and equilibrium relations
% Understand strain displacement and stress strain relations

% Explain the concepts of plane stress and plane strain conditions



Finite Element Methods

% The finite element method has become a powerful tool for the numerical solution of a
wide range of engineering problems

% With the advances in computer technology and CAD systems, complex problems can be
modeled with relative ease. Several alternative configurations can be tested on a
computer before the first prototype is built

% In this method of analysis, a complex region defining a continuum is discretized into
simple geometric shapes called finite elements.

+ The basic idea in the finite element method is to find the solution of a complicated
problem by replacing it by a simpler one. Since the actual problem is replaced by a
simpler one in finding the solution, we will be able to find only an approximate solution
rather than the exact solution.

+ The material properties and- the governing relationships are considered over these

elements and expressed in terms of unknown values at element corners.



Example of Finite Element Method

» An assembly process, duly considering the loading and constraints, results in a set of

equations. Solution of these equations gives us the approximate behavior of the

continuum.

(a) Milling machine structure



structures to walls, bridges, and pre stressed stability of structures periodic loads

concrete structures

Aircraft Structures:

™~

» Static analysis of aircraft wings, Natural frequencies, Response of aircraft
structures to fuselages, fins, rockets, flutter, and stability of random loads;
dynamic response spacecraft, and missile structures aircraft, rocket, of aircraft and

spacecraft to spacecraft, and missile periodic loads structures

Heat Conduction:
» Steady-state temperature Transient heat flow in rocket distribution in solids and

fluids nozzles, internal combustion engines, turbine blades, fins, and building

structures



Stress and Equilibrium
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Stress and Equilibrium

% The deformation of a point X (Z[A;_,\-’,:]T)is given by the three components of its

displacement

u = [uvwf - 1

< The distributed force per unit volume, for example, the weight per unit volume, is the

f = [fwfwf]f > 2

<+ The body force acting on the elemental volume dV , The surface traction 7" may be given

vector f given by,

by its component values at points on the surface:
T:[f;f;f;"‘ >3

< Examples of traction are distributed contact force and action of pressure. 4 load P

acting at a point i is represented by its three components:

pr—



Stress and Equilibrium

% However, we represent stress by the six independent components as in,

o = O-x?o-}'fo-:f"I;:?];:?TI)' 5

% First we get forces on faces by multiplying the stresses by the corresponding areas.
Writing all the forces in X', Y and Z directions are equated to Zero and recognizing
dV =dx, dy, dz, we get the equilibrium equations.
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Strain Displacement Relations
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Strain Displacement Relations

The Normal strain on the X, Y and Z directions can be obtained as follows,
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The strains in all three directions can be expressed as, when the equation 6 and 7
can be substituted in the equation 8 can get a matrix form . The matrix form has to

be transported
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Strain Displacement Relations

The deformation of the dx - dy face for small deformations, which we consider here. Finally

the strain displacement matrix has been obtained.
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For linear elastic materials, the stress-strain relations come from the generalized Hooke's
law. For isotropic materials, the two material properties are Young's modulus (or modulus

of elasticity) and Poisson's ratio Considering an elemental cube inside the body, Hooke's
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Strain Displacement Relations

VY Final step after test (1)

¥ Initial step

(a) Initial Shape of cube b) Final shape (Elongation in x direction)

In the first test elongation has been encountered in X direction so that the length has

been increased while breath/height decreases

@) _ Iy
E.‘CY 7
E
o__ Yoy
g = —
E
) VO'.X




Strain Displacement Relations

v Initial step VY Final step after test (2)
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(2) Initial Shape of cube c) Final shape (Elongation in y direction)

In the second test elongation has been encountered in Y direction so that the length has

been decreased while breath/height increases
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Strain Displacement Relations

YV Final step after test (3)

¥ Initial step

(a) Initial Shape of cube d) Final shape (Elongation in = direction)

In the Third test elongation has been encountered in Z direction so that the length is

constant while span increases
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Stress Strain Relations

In the general case the cube is subjected to combined normal stresses ¢, o, and o._.
Since we assumed that the material is linearly elastic, the combined strains can be

obtained by superposition of the foregoing results:
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Stress Strain Relations

After substituting all the stress and strain values in matrix form will get the stress strain

equations
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Plane Stress Condition

< Two specializations of the foregoing 3D equations to two dimensions are of interest in
the applications: plane stress and plane strain. Plane stress is more important in
Aerospace structures, which tend to be thin.

% In this case all stress components with a z component are assumed to vanish. For a
linearly elastic isotropic material, the strain and stress matrices take on the form.
There are two matrices which shows the stresses and strains in the element while

plane stress condition exist
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Plane Stress Condition

< When substitute the values of the stress and strain matrix the plane stress
condition exist as follows,
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Plane Stress Condition

< The final expression for the stress strain equation in plane stress condition is,
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% Inverting the matrix composed by the first, second and fourth rows of the above
relation gives the stress-strain equations
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Plane Stress Condition
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% The final expression for the stress strain equation in plane stress condition is,
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< Inverting the matrix composed by the first, second and fourth rows of the above

relation gives the stress-strain equations
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Plane Stress Condition(Assumptions)
% In this case all strain components with a z component are assumed to vanish. For a

linearly elastic isotropic material, the strain and stress matrices take on the form.

< The normal strain in the Z direction is said to be Zero for this condition and also the

shear strain in the xz, yz,zz and zy tends to zero

< In the same way the normal stress in all directions have some finite values. The

shear stress in the xz, yz, zx and zy tends to zero
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Plane Stress Condition(Assumptions)

s After substituting the normal and shear stresses and strains the final equations are

attained as follows.
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Learning Objectives

At the end of this topic, you will be able to:

3o Explain the concept of variational principles

3 Explain weighted residual method principles

e Know concept of potential energy

e Understand one dimensional problems
Outcomes

By the end of this topic, you will be able to:
< Understand the concept of variational principles
< Discuss about weighted residual method principles
< Understand the concept of potential energy

» Solve one dimensional problems



Variational Method (Rayleigh Ritz)/Concept of Potential Energy

In mechanics of solids, our problem is to determine the displacement of the body
satisfying the equilibrium equations.

Normally stresses are related to strains, which, in turn, are related to displacements.
This leads to requiring solution of second order partial differential equations.
Solution of this set of equations is generally referred to as an exact solution.

Such exact solutions are available for simple geometries and loading conditions, and
one may refer to publications in theory of elasticity.

For problems of complex geometries and general boundary and loading conditions.
obtaining such solutions is an almost impossible task.

Approximate solution methods usually employ potential energy or variational methods,
which place less stringent conditions on the functions.



Variational Method (Rayleigh Ritz)/Concept of Potential Energy

Principle of Minimum Potential Energy
For conservative systems, of all the kinematically admissible displacement fields, those
corresponding to equilibrium extremize the total potential energy. If the extremum

condition is a minimum, the equilibrium state is stable.

The total potential energy of an elastic body, is defined as the sum of total strain

energy and the work potential: Potential Energy = Strain energy + Work potential

The total strain energy U is given by,
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The work potential WP is given by

WP=—|.‘Gde\'—['zz‘fl'ds—zu;TP:. —a 2

The total potential for the general elastic body
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Advantages of Variational Method (Rayleigh Ritz)

The functional I contains lower order derivatives of the field variable compared to the
governing differential equation and hence an approximate solution can be obtained
using a larger class of functions

Sometimes the problem may possess a dual variation formulation, in which case the
solution can be sought either by minimizing (or maximizing) the functional I or by
maximizing (or minimizing) its dual functional.

In such cases, one can find an upper and a lower bound to the solution and estimate
the order of error in either of the approximate solutions obtained.

Using variational formulation, it is possible to prove the existence of solution in some
cases.

The variational formulation permits us to treat complicated boundary conditions as
natural or free boundary conditions. Thus, we need to explicitly impose only the
geometric or forced boundary conditions in the finite element method, and the

variational statement implicitly imposes the natural boundary conditions.



Problems in Variational Approach

< Find the approximate deflection of a simply supported beam under a uniformly
distributed load p using the Rayleigh-Ritz method

p per unit lenght

.......

Approach; Find the functional Whose extermination yields the differential equation
governing the deflection of the beam. Assume an approximate solution satisfying
the boundary conditions in terms of two unknown constants and evaluate the

constants using the conditions of extermination of 1.



Problems in Variational Approach
Solution: Let w(x) denote the deflection of the beam (field variable). The differential

equation formulation leads to the following statement of the problem. The governing

equation is, d*w
El ———-p=0; 0<x<1 e 4
dx* P (4)

The boundary conditions are,
w(x =0)=w(x=1) =0 (deflection zero at ends) )

d (\ =()= El‘j{ (x=1)=0 (bending moment zero at ends)
e

To Find w(x) that minimizes the integral,

A=r!0F.dr=;‘![El(i“] 2pu}1 """""""" (6)

w(x) by orthogonal functions of the sinusoidal type.

w(x)=C, snrl(/?}")+(f1 m(3l ) C )+ G () (7)



Problems in Variational Approach

ol {5 () sn()f -ofesn()-con(3r )} o
=i[i’{cz(fJ‘w(’s"wa(%”)'sin(”ﬂwcc(,)’(’7”)2

By using the relations,
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Problems in Variational Approach

where C, and C2 are independent constants. For the minimum of A, we have,
~ 4

oA _ El 2@1(5) LA -

oC, 2 Il ) 2 b/ 4

~ R
oA _ EI 2(;(3_”) ! —p2—1=0
ac, 21" 2\1)2( P

The values of the constants,

The values obtained for the Mid length is,

968 pl* 1 pl*

—1/2)= N
pix )= a3 EI 765 EI




Weighted Residual Method

Methods of weighted residuals

» Point collocation method
» Sub domain collocation method
» Galerkin Method

» Least square method



Collocation (or Point Collocation) Method

In this method, the residual R is set equal to zero at n points in the domain V, thereby
implying that the parameters C; are to be selected such that the trial function l/(x)
represents I/I(x) at these n points exactly. This procedure yields n simultaneous-
algebraic equations in the unknowns C, (i = I, 2, ..., n). The collocation points X; at

which, j = 1, 2, ..., n are usually chosen to cover the domain V' more or less uniformly in

some simple patter

f(R)=Randw=5(x, —x) - 4

where o indicates the Dirac delta function, X, denotes the position of the j-*" point, and x
gives the position of a general point in the domain V. Thus, W = [ at point x = X, and

zero elsewhere in the domain V(j =1, 2, ..., n).



Problems on Collocation (or Point Collocation) Method

% Find the solution of the differential equation Z ?+¢+x =(0; 0<x<]. Subjected to
- o3

the boundary conditions ¢(0)=¢(l) using a point collocation method, find the solution
of the differential equation.

Approach: Assume an approximate solution satisfying the boundary conditions with

two unknown constants. Set the residue equal to zero at the collocation points to
evaluate the constants

Solution:

The approximate solution satisfying the boundary conditions is taken as,

#(x)=cx(1-x)+c,x* (1-x)



Problems on Collocation (or Point Collocation) Method

Where, C1 and C2 are unknown constants. Using this solution, the residue can be
expressed as,

d*¢

R= y —+P+x=c(2+x-x")+¢,(2-6x+x"—x’)+x
Lo

The residue is set equal to zero at each of the collocation points:

R(x=—l)=Cl(—2-{-—1———]-)-{-6‘2(2—}--{-1-——‘-)-}-1
4 4 16 2 16 64) 4



Sub Domain Collocation Method

+ Here, the domain V is first subdivided into n subdomains, i =/, 2, ... , n, and the

integral of the residual over each subdomain is then required to be zero:
[RdV,=0, i=12,...n

v

« This yields n simultaneous algebraic equations for the n unknowns Ci, i = 1, 2, ... , n.

It can be seen that the method is equivalent to choosing

I Ifxisin ¥,

f(R):Randw:{

0 ifxisnotin ¥
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Problems in Sub Domain Collocation Method

d’¢
dx*
the boundary conditions @(0) =¢(1) using sub domain collocation method, find the

Find the solution of the differential equation +d+x=0; 0<x<]-Subjected to

solution of the differential equation.

Approach: Assume an approximate solution satisfying the boundary conditions with two
unknown constants. Set the integration of residue equal to zero at the collocation
points to evaluate the constants

Solution:

The approximate solution satisfying the boundary conditions is taken as,

¢ (x) = c,x(1-x)+c,x* (1-x)



Problems in Sub Domain Collocation Method

where C1 and C2 are unknown constants. Using this solution, the residue can be
expressed as,

L,
dx”

+J+x=wﬂ—2+x—x”+cg2—6x+x2—x5+x

|
4

j R(x)dx =

x=0
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Problems in Sub Domain Collocation Method

( | 1 ) | 1 1 ) |
| ——t————|+C| m—F—————— |+ —
2 32 192 2 16 192 1024) 32

85 1661 3

_— " —

CF——mt
192 3072 © 32

The above equation can be written as ,can be rewritten as

~1456¢, +973¢, =96
~1360¢, —1661c, = —288

The final solution of the given problem

#(x) =0.1175x(1-x) + 0.0772x*(1 - x)



Galerkin Approach

< Here, the weights W, are chosen to be the known functions f{x) of the trial solution

and the following n integrals of the weighted residual are set equal to zero:
IfRdV:O_ i:1_._.2_......,_}1
v,

Problems Based on Galerkin Approach

>

<+ Find the solution of the differential equation d’¢ +d+x=0; 0=x<1

-

dx~

Subjected to the boundary conditions ¢(0) =¢(1) using a Galerkin method, find the
solution of the differential equation.

Approach: Assume an approximate solution satisfying the boundary conditions with two
unknown constants. Set integration of the weighted residue equal to zero at the
collocation points to evaluate the constants

Solution:

The approximate solution satisfying the boundary conditions is taken as,

P(x)=cx(1—x)+c, x> (1—x)



Problems Based on Galerkin Approach

The integration of the elements has been done using Galerkin approach
l
1 11 ll

R(x)dx=———¢, ——

[ Reods =3 -0 15

l

\R(\)d\—l—ﬂ-q 19

-4 3 12 20

l

X R(\)d\—l—ﬂc, -‘—10,

-(, 4 60 5 °

|

x'R(x)dx = L3 lc, . e
5 1§ 108 °

0
After solving those equations we will get,
-0.3¢,-0.15¢, =-0.0833

—~0.15¢,-0.1238¢,=-0.05
The final result will be,

¢ (x)=0.1924x(1-x)+0.1780x"(1-x)



Problems on Least Squares Method

< Find the solution of the differential equation d¢ +d+x=0; 0<x<lI

2
-

dx

Subjected to the boundary conditions ¢(0)=¢(1) using a Least square method,
Find the solution of the differential equation.

Approach: Assume an approximate solution satisfying the boundary conditions with
two unknown constants. Set integration of the residue square equal to zero at the
collocation points to evaluate the constants

Solution:

The approximate solution satisfying the boundary conditions is taken as,

——

¢(x)=cx(1-x) +¢:'2:<:2 (I1-x)



Problems on Least Squares Method

The residue can be expressed as,

d’¢

dx

R=

+@+x=¢(2+x-x)+c,(2-6x+x" -x')+x

The integration of the square of the residue is,

I= j w(x)R (x)dx

x=0

By assuming weighting function is unity,

I= j R* (x)dx

x=0



Problems on Least Squares Method

For the minimum value of the integral,
cl CR

a—CI—J'2Ra;d\—
fl =j2R fR dx =0
o B e
jR(z—Rdr=j[c,(—2+x—x2)+c2(2—6x+x2—x3)+x](—2+x—x2)dx
0 (’cl 0
101 101 11
= c + ¢, ——=0
30 60 12
l fRdx j[c, —-2+1— )+c,(2-6x+x2—x3)+x:|(—2-6x+x2—x3)dx
oc,

0

707 1572 399
€+ e~ =
420 420 420

The final result will be,

d(x) = 0.1875x(1 —x) + 0.1695(x)? (1 — x)



Discretization
of
Domain



Learning Objectives

At the end of this topic, you will be able to:

<+ Describe briefly the basic element shapes
<+ Explain in detail about discretization process
<+ Explain different node numbering schemes

<+ Describe the process of automatic mesh generation

Outcomes

By the end of this topic, you will be able to:

<+ Understand the basic element shapes.

<» Discuss about discretization process.
<+ Discuss about the different node numbering schemes.

» Understand the process of automatic mesh generation
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Introduction

Discretization of domain is the first step of finite

element method.

This involves discretization of irregular domains into
smaller and regular sub-domains known as finite

elements.

This is equivalent to replacing the domain having an
infinite number of degrees of freedom (dof) by a

system having a finite number of dof.

A variety of methods can be used to model a domain

with finite elements.

Different methods of dividing the domain into finite
elements involve varying amounts of computational
time and leads to different approximations to the

solution of the physical problem.
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Basic Element Shapes

The shapes, sizes, number and configurations of the elements have to be chosen
carefully such that the original body or domain is simulated as closely as possible

without increasing the computational effort needed for the solution.

The choice of the type of element is given by the geometry of the body and the
number of independent coordinates necessary to describe the system

If the geometry, material properties and the field variable of the problem is described

in terms of a single spatial coordinate, we can use the one dimensional elements as
shown.

Node Node
1Q ()2

E -




Discretization Process

Various considerations are to be taken into account in the discretization process.

Type of Elements:
» The type of elements to be used will be evident from the physical problem.
» If the problem involves the analysis of elements of truss structure under a given set
of load conditions (as shown in (a)), the type of elements to be used for idealization

is obviously the bar or line elements (as shown in (b)).




Discretization Process

» In the case of stress analysis of the short beam (as shown in (a)) , the finite

element idealization can be done using three-dimensional solid elements (as shown

in (b)).

B

LLLLL

Element i

(a) Original Beam (b) Idealization using three-dimensional elements




Discretization Process

» Consider the problem of analysis of the thin walled shell (as shown in (a)).
» In this case, the shell can be idealized by several types of elements (as shown in (b)).

» Here, the number of dof needed, the expected accuracy, the ease with which the
necessary equations can be derived, and the degree to which the physical structure
can be modeled without approximation will dictate the choice of the element type to be

used for idealization. % %
Gty 3

Using conical ring elements Using axisymmetric ring elements

(a) Original Shell

PAAN

Using flat triangular plate elements

(b) Idealization using different types of elements




Discretization Process

» In certain problems, the given body cannot be represented as an assemblage of only
one type of elements.

» In such cases, we may have to use two or more types of elements for idealization. An
example of this would be the analysis of an aircraft wing.

» Since the wing consists of top and bottom

covers, stiffening webs, and flanges,

three types of elements-namely, triangular (== {
plate elements (for covers), rectangular i\

i/ '

"1‘,"?['

d‘\ A=

shear panels(for webs), and frame elements [ i -
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Example

A helical spring is subjected to a compressive load as shown in Figure (a). Suggest

different methods of modeling the spring using one-dimensional elements.

Solution:
Approach: Use various one-dimensional or line elements.
» The helical spring (in the form of curved wire) can be divided into several line or
one-dimensional segments. These segments can be straight or curved.
» Each of the straight line segments (or elements) can be assumed to be a spatial

truss element with each of its endpoints (or nodes) having three displacement dof

(parallel to the x, y, and z axes) as shown in Figure (b).
» Since this element has only translational degrees of freedom (with no rotational
degrees of freedom), it will not be able to carry any moment As such, the element

may not be able to represent the behavior of the helical spring accurately.



Example
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I Element [
(a) Helical spring in compression (b) Spatial truss element (c) Spatial frame element (d) Curved frame element
» Alternately, each of the straight line segments (or elements) can he assumed to be

a spatial frame element with each of its endpoints (or nodes) having three
displacement dof (parallel to the x, y, and z axes) and three rotational dof (about

the x, y, and z axes) as shown in Figure (c).




Example

» In the case of the curved line segments (elements), each element can be treated

as a curved frame element with three displacement dof (parallel to the x, y, and z

axes) and three rotational dof (about the x, y, and z axes) at each end as shown in
Figure (d).

» Because of the inclusion of rotational degrees of freedom, the models shown in
Figures ( ¢) and (d) will be able to simulate the behavior of the helical spring more

accurately.



Size of Elements

 The size of elements influences the convergence of the solution directly, and hence it
has to be chosen with care.

 If the size of the elements is small, the final solution is expected to be more accurate.

» The use of smaller-sized elements leads to more computation time. Sometimes, we
have to use elements of different sizes in the same body.

« For example, in the case of stress analysis of the box beam shown in (a), the size of all

the elements can be approximately the same, as shown in (b).

(@) Original structure (b) Finite element idealization




Size of Elements
 In the case of stress analysis of a plate with a hole as shown in (a), the elements of
different sizes have to be used, as shown in (b).
» The size of elements has to be very small near the hole compared to distant places.

« Another characteristic called aspect ratio, affects the finite element solution. It

describes the shape of the element in the assemblage of elements.

+ Elements with an aspect ratio of nearly unity generally yields best results.
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(a) Original structure (b) Idealization using elements of different sizes




Location of Nodes

« If the body has no abrupt changes in geometry, material properties, and external

conditions (e.g., load and temperature), the body can be divided into equal

subdivisions and hence the spacing of the nodes can be uniform.

« On the other hand, if there are any discontinuities in the problem, nodes have to be

introduced at these discontinuities, as shown.
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Abrupt change in the cross section of beam
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Concentrated load on a beam (b) Discontinuity in geometry
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Abrupt change in the distributed load :' Aluminum |
A Bimetallic beam Nodal line

(a) Discontinuity in loading
(¢) Discontinuity in material properties
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(d) Discontinuity in material
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Number of Elements

% The number of elements to be chosen for idealization is related to the accuracy desired,
size of elements, and the number of dof involved.

< Although an increase in the number of elements generally means more accurate
results, for any given problem, there will be a certain number of elements beyond which
the accuracy cannot be significantly improved. This behavior is shown graphically.

« Moreover, since the use of a large number of elements involves a large number of dof,

we may not be able to store the resulting matrices in the available computer memory
A

Exact sOlution | e m e e ccmr e r e c e c e n----—

Solution given by
finite element method

+ Number of element

T R - ————————— —

No significant improvement beyond Ny




Simplifications Afforded by the Physical Configuration of the Body

+ If the configuration of the body as well as the external conditions are symmetric, we
may consider only half of the body for finite element idealization.

% The symmetry conditions, however, have to be incorporated in the solution procedure.
This is illustrated in figure, where only half of the plate with a hole, having symmetry in

both geometry and loading, is considered for analysis.
< Since there cannot be a horizontal displacement along the line of symmetry 44, the

condition that # = () has to be incorporated while finding the solution.

~ > - -
- — — —
< - s —
‘4--« --------- @ -------- *-"‘ /r-H-++-’-Q-+-’-.-H.-:’
4 —3 ' ,
A symmetric condition « = 0 along this nodal line
- ——
- >
Y(H

V(1) (a) Plate with Hole (b) Only of plate can be considered for analysis




Finite Representation of Infinite Bodies

< In most of the problems, like in the analysis of beams, plates, and shells, the
boundaries of the body or continuum are clearly defined. Hence, the entire body can be
considered for element idealization.

< However, as in the analysis of dams, foundations, and semi-infinite bodies, the
boundaries are not clearly defined.

« In the case of dams, since the geometry is uniform and the loading does not change in
the length direction, a unit slice of the dam can be considered for idealization and

analyzed as a plane strain problem.

Unite slice considered for
plane strain analysis




Finite Representation of Infinite Bodies

« In the case of the foundation problem we cannot idealize the complete semi-infinite
soil by finite elements.

% Since the effect of loading decreases gradually with increasing distance from the point
of loading, we can consider only that much of the continuum in which the loading is

expected to have a significant effect as shown in (b).

 Once the significant extent of the infinite body is identified as shown, the boundary

conditions for this finite body have to be incorporated in the solution.

n

Footing\ Semi-infinite soil
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(a) Original foundation

B C

(b) Idealization of Semi-Infinite Medium




Finite Representation of Infinite Bodies

 The semi-infinite soil has been simulated by considering only a finite portion of the soil.

« In some applications, the determination of the size of the finite domain may pose a
problem.

« In such cases, one can use infinite elements for modeling.

+ As an example, figure shows a four-node element that is infinitely long in the x direction.

(X yi=ys) (Xs=w, yi)
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Node Numbering Scheme

% The finite element analysis of practical problems leads to matrix equations in which
the matrices involved will be banded.

% Since most of the matrices involved are symmetric, the demands on the computer
storage can be substantially reduced by storing only the elements involved in half

bandwidth instead of storing the entire matrix.

% The bandwidth of the overall or global characteristic matrix depends on the node

numbering scheme and the number of dof considered per node.

% If we can minimize the bandwidth, the storage requirements as well as solution time

can also be minimized.



Node Numbering Scheme

. : g o i 12,3 4,56 789)  (10,11,12
% Consider a three-bay frame with rigid joints, et RO iR MRS
L T y =
20 stories high, as shown.
< Assuming that there are 3 dof per node, 5|c D 6 7 8
(13,14,15) (16,17,18) | (19.20,21) | (22,23,24)

there are 252 unknowns in the final
equations (including the dof corresponding to

the fixed nodes), and if the entire stiffness

matrix is stored in the computer, it will

require 2522 = 63,504 locations. Stﬁges
< The bandwidth (strictly speaking, half-
bandwidth) of the overall stiffness matrix can
be shown to be 15, and thus the storage < =1 < <
required for the upper half-band is only 15 x 7 L 2 2
252 = 3780 locations.
| 81 82 83 84
e 7’y 777 777 777

(241,242,243) (250,251,252)




Node Numbering Scheme

< By applying constraints to all the nodal dof

except number 1 at node 1 (joint 4), it is clear

B=Bandwidth=15

that an imposed unit displacement in the | _

fe—r
direction of 1 will require constraining forces at
the nodes directly connected to node A-that is, O
B and C.
» These constraining forces are nothing but the y
cross-stiffness's appearing in the stiffness | ** 1
matrix, and these forces are confined to the
nodes B and C. 0 k=

 Thus, the nonzero terms in the first row of the

global stiffness matrix will be confined to the

—_—

first 15 positions.



Node Numbering Scheme

+ The bandwidth is defined as

B = (maximum difference between the numbered dof at the ends of any member+1)

 This definition can be generalized so as to be applicable for any type of finite element
as

Bandwidth B)=(D+1).f ------- (1)

Where, D is the maximum largest difference in the node numbers occurring for all
elements of the assemblage and fis the number of dof at each node.

% The above equation indicates that D has to be minimized in order to minimize the
bandwidth.

% Thus, a shorter bandwidth can be obtained simply by numbering the nodes across
the shortest dimension of the body.



Node Numbering Scheme

It is clear from the figure that the numbering of nodes along the shorter dimension

produces a bandwidth of B = 15 (D = 4), whereas the numbering along the longer

dimension produces a bandwidth of B =66 (D = 21).

Different Node Numbering Schemes
1 2 3 4 1 2 43 64
5 6 7 K 2 23 44 65
3 24 45 66
29 e 3 2 @2 2 2
- 78 79 80 5 41 62 83
B-!-._ 32—-'— ﬂ?‘-n E'!'-_ ZL‘— “Er- E?—- E.I—'h
(a) Node Numbering along the Shorter Dimension (b) Node Numbering Scheme along the Longer Dimension




Example

A drilling machine is modeled using one-dimensional beam elements as shown in
Figure(a). If two dof are associated with each node, label the node numbers for
minimizing the bandwidth of the stiffness matrix of the system.

Solution

Approach: Number the nodes along the shorter side of the machine first.




Example

Because the column (vertical member) of the machine has 5 nodes and the arm

w7

(horizontal member) has only 4 nodes, we number the nodes along the shorter

side as shown in Figure.

~

Noting that the maximum difference between the numbers of the end nodes
among all the elements is 2, the bandwidth of the resulting stiffness matrix of the

system is given by

B=(D+1)f = (241)2 =6

Note that the nodes can also be numbered as shown in Figure, which also yields the

same bandwidth of B = .



Automatic Mesh Generation

% Mesh generation is the process of dividing a physical domain into smaller sub-
domains (called elements) to facilitate an approximate solution of the governing

ordinary or partial differential equation.

+ For this, one-dimensional domains (straight or curved lines) are subdivided into
smaller line segments, two-dimensional domains (planes or surfaces) are subdivided
into triangle or quadrilateral shapes, and three-dimensional domains (volumes) are

subdivided into tetrahedron and hexahedron shapes.

< If the physical domain is simple and the number of elements used is small, mesh

generation can be done manually.

< The automatic mesh generation schemes are usually tied to solid modeling and

computer aided design schemes.




Automatic Mesh Generation

« When the user supplies information on the surfaces and volumes of the material
domains that make up the object or system, an automatic mesh generator generates

the nodes and elements in the object.

% The user can also specify minimum permissible element sizes for different regions of

the object.

+ Many mesh generation schemes first create all the nodes and then produce a mesh of

triangles by connecting the nodes to form triangles (in a plane region).

+ The most common methods used in the development of automatic mesh generators

are the Tessellation and Octree methods.

% In the tesselation method, the user gives a collection of node points and also an

arbitrary starting node.

« The method then creates the first simplex element using the neighboring nodes.



Automatic Mesh Generation

< Then a subsequent or neighboring element is generated by selecting the node point

that gives the least distorted element shape.
« The procedure is continued until all the elements are generated.

+ The step by - step procedure involved in this method is illustrated in figure for a two

dimensional example.

Mesh Generation Using Tesselation Method

3
©
o
o
v
S
o

(a) Nodes in the Object or Region (b) Generation of Simplex Elements (¢) Complete Set of Nodes and Elements




Automatic Mesh Generation

 The user can define the boundary of the object by a series of nodes.

+ Then the tesselation method connects selected boundary nodes to generate simplex

elements.

 The stepwise procedure used in this approach is shown.

Tesselation Method with Nodes Defined on the Boundary

(a) Nodes on the boundary of the (b) Geometry of Object or Region (C) Complete Set of Nodes and Elements
Object or Region




Automatic Mesh Generation

« The octree methods belong to a class of mesh generation schemes known as tree
structure methods, which are extensively used in solid modeling and computer

graphics display methods.

+ In the octree method, the object is first considered enclosed in a three dimensional

cube.

« If the object does not completely (uniformly) cover the cube, the cube is subdivided

into eight equal parts.

< In the two-dimensional analog of the octree method, known as the quad tree method,

the object is first considered enclosed in a square region.

« If the object does not completely cover the square, the square is subdivided into four

equal quadrants.

« If anyone of the resulting quadrants is full or empty, then it is not subdivided further.



Example

Generate the finite element mesh for the two-dimensional object (region) shown by
the crossed lines in Figure (a) using the quadtree method.
Solution
Approach: Use the quadtree method.
» First, the object is enclosed in a square region as shown by the dotted lines in
Figure (a).
» Since the object does not occupy the complete square, the square is divided
into four parts as shown in Figure (b).
» Since none of these parts are fully occupied by the object, each pan is

subdivided into four parts as shown in Figure (c).



b 74

Example

It can be seen that parts 1, 3, and 4 of 4, part 3 of B, parts 2 to 4 of C, and parts
1 to 3 of D are completely occupied by the object, whereas pans 1, 2, and 4 of B
and pan 1 of C are empty (not occupied by the object).

In addition, part 2 of 4 and part 4 of D are partially occupied by the object;

hence, they are further subdivided into four parts each as shown in Figure (d).

It can be noted that parts a and y of pan 2 (of 4) and parts a and b of part 4 (of
D) are completely occupied while the remaining pans, namely b and s of pan 2
(of A) rand y of pan 4 (of D), are empty.

Since all the parts at this stage are either completely occupied or completely
empty, no further subdivision is necessary.

The corresponding quadtree representation is shown in Figure (e). Note that the

shape of the finite elements is assumed to be square in this example



Example
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Interpolation Functions



Learning Objectives

At the end of this topic, you will be able to:

+ Define interpolation function

% Reduce the polynomial equation to various cases of interest

% Classify finite elements based on geometry of the element and order of
the polynomial

% Derive the linear interpolation polynomials for the basic one, two-and

three-dimensional elements in terms of the global coordinates



Outcomes
By the end of this topic, you will be able to:

% Explain interpolation function

< Understand the polynomial equation to various cases of interest

% Understand the finite elements based on geometry of the element and
order of the polynomial

< Discuss the linear interpolation polynomials for the basic one, two-and

three-dimensional elements in terms of the global coordinates



Introduction

« The solution of a complicated problem in finite element method is obtained by
dividing the region of interest into smaller regions i.e. finite elements and

approximating the solution over each sub-region by a simple function.

« Thus, a necessary and important step is that of choosing a simple function for the

solution in each element.

« The functions which are used to represent the behavior of the solution within an
element are called interpolation functions or approximating functions or interpolation

models.
+ Polynomial type interpolation functions are most widely used because
» It is easier to formulate and compute the finite element equations
» To improve the accuracy of the results by increasing the order of the polynomial

« When the interpolation polynomial is of order one, the element is termed a linear

element.



Introduction

< A linear element is called a simplex element if the number of nodes in the element is 2,

3, and 4 in one, two, and three dimensions, respectively.

« If the interpolation polynomial is of order two or more, the element is known as a

higher order element.

o(x) 8(x) 4(x)
__ Extract solution fxtract solution Eyract solution
e 7 Y. 2 N ~— #(X) = agtaix+ax
——-----\.~: ------- ¢(x) " aU " Constant M) au+a|X+axX N))( (
\\\ - N
’ X R ’ X ’ X
j¢—Subregion or—p| [—Subregion or—p Subregion or —pf "

element

(a) Approximation by a constant

Polynomial approximation in one dimension

element

(b) Quadratic approximation

element

(b) Linear approximation




Introduction

« In higher order elements, some secondary (mid-side and/or interior) nodes are
introduced in addition to the primary (comer) nodes in order to match the number of
nodal degrees of freedom with the number of constants (generalized coordinates) in

the interpolation polynomial.

« If the order of the interpolation polynomial is fixed, the discretization of the region (or

domain) can be improved by two methods.

« In the first method, known as the r-method, the locations of the nodes are altered

without changing the total number of elements.
« In the second method, known as the h-method, the number of elements is increased.

« On the other hand, if improvement in accuracy is sought by increasing the order of the
interpolation of polynomial the method is known as the p-method.



Polynomial Form of Interpolation Functions
% If a polynomial type of variation is assumed for the field variable @(x) in a one-
dimensional element, ¢(X) can be expressed as
dx)=a,+ax+ax’ +.+a x" L. (1)

< Similarly in two and three dimensional finite elements the polynomial form of

interpolation functions can be expressed as

2 2 "
d(x,y)=a+a,x+ay+ax’ +ay +axy+.ta,y . (2)
d(x,y,2)=a, +ax+ay+az+ax’ +ay’ +a.z2’

+ XY+ Q)2+ U F AR e (3)

Where @, , 0,,..... a, are the coefficients of the polynomial, also known as generalized

coordinates; n is the degree of the polynomial.



Polynomial Form of Interpolation Functions

+ The number of polynomial coefficients m is given by

m = n+1 for one-dimensional elements - ----- (4)
n+l

m= Z j for two-dimensional elements - ----- (5)
j=!
n+l

m= Z J(n+2-j) for three-dimensional elements - - - - - - (6)

J=

« In most practical applications, the order of the polynomial, n the interpolation functions

is taken as one, two, or three.

« Thus, Equations (1) to (3) reduce to the following equations for various cases 0

practical interest.



Polynomial Form of Interpolation Functions

% For n=1 (linear model)

One-dimensional case:  @(x)=a, +a,x - - ~(7)
Two-dimensional case:  #(X,)) =@, +a,x+ ;) - - -(8)
Three-dimensional case; (%, ),2) =@ tax+ay+a,z .. (9

% For n=2 (quadratic model)
One-dimensional case: #(x)=a +a,x+ax" - - =(10)
Two-dimensional case: 9(6Y) =@ +@X+y+ax +ay +axy .. (11)
Three-dimensional case; 906 12) =G+ B2+ 8,V +AIF A T a ¥ F W -(12)

+ QXY + 0y VZ + Q) ZX



Polynomial Form of Interpolation Functions
% For n=3 (cubic model)

One-dimensional case:

d(x)=a, +ax+ax’ +a,x° el

Two-dimensional case:

d(x,y) = +ax+ay+ax +ay’ ap+ax’ +ayt +an’y ey’ - - - (14)
Three-dimensional case:

d(x,0,2) = +ax+ay+az+ax’ +a,) +a,z

raxy+az o X +a,y a2 eyt atz (19

b 7
FO Y I+ XY QX+ QY2+ Xy



Simplex, Complex and Multiplex Elements

< Based on the geometry of the element and the order of the polynomial used in the
interpolation function, finite elements can be classified as simplex, complex and

multiplex elements.

% The simplex elements are those for which the approximating polynomial consists of

constant and linear terms.

< Thus, the polynomials given by equations 7 to 9 represent the simplex functions for

one, two, and three-dimensional elements.

« For example, the simplex element in two dimensions is a triangle with three nodes
(corners).

+ The three polynomial coefficients «, , a,, and a, of equation 8 can thus be expressed in
terms of the nodal values of the field variable ¢.

< The polynomials given by equations (10) to (15) denote complex functions.

 The complex elements may have the same shapes as the simplex elements but will
have additional boundarv nodes and, sometimes, internal nodes.



Simplex, Complex and Multiplex Elements

% For example, the interpolating polynomial for a two-dimensional complex element

(including terms up to quadratic terms) is given by equation (11).
+ Since this equation has six unknown coefficients a, the corresponding complex

element must have six nodes.

+ The multiplex elements are those whose boundaries are parallel to the coordinate axes

to achieve interelement continuity, and whose approximating polynomials contain

higher order terms. y?

Example of a multiplex element




Interpolation Polynomial in Terms of Nodal Degrees of Freedom

« The unknown solution or the field variable (e.qg., displacement, pressure, or temperature)
inside any finite element is assumed to be given by a simple function in terms of the

nodal values of that element.

% The nodal values of the solution, also known as nodal degrees of freedom, are treated as

unknowns in formulating the system or overall equations.

« The solution of the system equations gives the values of the unknown nodal degrees of

freedom.

« Once the nodal degrees of freedom are known, the solution within any finite element

(and hence within the complete body) will also be known to us.
« Thus, we need to express the approximating polynomial in terms of the nodal degrees of
freedom of a typical finite element e.

« For this, let the finite element have M nodes.



Interpolation Polynomial in Terms of Nodal Degrees of Freedom

« We can evaluate the values of the field variable at the nodes by substituting the nodal
coordinates into the polynomial equation given by equations (1) to (3). For example,

equation (1) can be expressed as

p(x) = noe - - -(16)



Interpolation Polynomial in Terms of Nodal Degrees of Freedom

« The evaluation of equation (16) at the various nodes of element e gives

— t nodel !
¢(at nodel) | I HABaE
—T
¢(at nodel ). n (at nodel).
= e =
* =0 - a=lnle 1)
| ¢(at node M) T
1 (at node M)

+ By inverting equation (17) , we get

o] ¢ (18



Interpolation Polynomial in Terms of Nodal Degrees of Freedom

< Substituting equation(18) into equations (1) to (3) gives

p=pa=p 1l @ =Mo" - (19)
where

-7 1] -

+ Equation (19) expresses the interpolating polynomial inside any finite element in

terms of the nodal unknowns of that element ¢ |



Selection of the Order of the Interpolation Polynomial

While choosing the order of the polynomial in a polynomial-type interpolation function,

the following considerations have to be taken into account:

» The interpolation polynomial should satisfy, as far as possible, the convergence

requirements.

» The pattern of variation of the field variable resulting from the polynomial model
should be independent of the local coordinate system.

» The number of generalized coordinates (¢) should be equal to the number of nodal
degrees of freedom of the element (p.).

» According to second consideration, it is undesirable to have a preferential coordinate
direction i.e. the field variable representation within an element and hence the

polynomial should not change with a change in the local coordinate system.

» This property is called geometric isotropy or geometric invariance or spatial isotropy.



Selection of the Order of the Interpolation Polynomial

» In order to achieve geometric isotropy, the polynomial should contain terms that do
not violate symmetry which is called Pascal's triangle in case of two dimensions and

Pascal tetrahedron or pyramid in the case of three dimensions.

Total number of
terms involved

Constant model |
Linear model 4
Quadratic model 10
Cubic model 20

Quartic model 35

In three dimensions (Pascal tetrahedron or pyramid)




Selection of the Order of the Interpolation Polynomial

» Thus, in the case of a two-dimensional simplex element (triangle), the interpolation

polynomial should include terms containing both x and y, but not only one of them, in

addition to the constant term.

» In the case of a two-dimensional complex element (triangle), if we neglect the term x’

(or x’y) for any reason, we should not include y* (or x)?) also in order to maintain
geometric isotropy of the model.

» Similarly, in the case of a three dimensional simplex element (tetrahedron), the
approximating polynomial should contain terms involving x, y, and z in addition to the
constant term.

» The final consideration in selecting the order of the interpolation polynomial is to make

the total number of terms involved in the polynomial equal to the number of nodal

degrees of freedom of the element.



Linear Interpolation of Polynomials in Terms of Global Coordinates

% The linear interpolation polynomials correspond to simplex elements.

+ In this section, we will derive the linear interpolation polynomials for the basic one-,
two-, and three-dimensional elements in terms of the global coordinates that are
defined for the entire domain or body.

One-dimensional simplex element o)
A
» Consider a one-dimensional element (line O(x) = o + o / o
segment) of length [ with two nodes, one at /* '
each end, as shown. T E f o
» Let the nodes be denoted as i and j and the o; 0(x)
nodal values of the field variable ¢ as ¢, and ¢.. l k 4 A
o i i
X
— x| — b e———( = (x=xi) —:]
X
One-dimensional simplex element




Linear Interpolation of Polynomials in Terms of Global Coordinates

» The variation of ¢ inside the element is assumed to be linear as
p(x)=ax+a,x - - -(21)
where, a, and «, are the unknown coefficients. By using the nodal conditions
dx)=D, at x=x
#x)=0, at x=x,
and equation (21) we get,
Q. =a,+a,x,

D, =, +a,x,

» The solution of these equations gives
Dx -0 x, i

2

o ---(22)
-0,

] /
where, x; and x; denote the global coordinates of nodes i and j, respectively.

a, =



Linear Interpolation of Polynomials in Terms of Global Coordinates

» Substituting equation (22) in equation (21) we get,

Ox -Dx, | (D -0,
P(x) = [ H " ]x .- = (23)

[ [

» The equation (23) can be written as

#x)= N,(x)0,+N,(0)0, =[N@)| @

- - (24)
where  [N(x)] =[ N,(x)N,(x)] = =(25)
X —x
N (x)=-
and ] } e
J'VJ. (X) — ! -xi

» The linear functions of x defined in equation (26) are called interpolation or
shape functions.

o [0

O lq)

J‘

}: vector of nodal unknowns of elements e - --(27)



Linear Interpolation of Polynomials in Terms of Global Coordinates

» The value of N(x) can be seen to be 1 at node i (x =x) and () at node j (x = X).

» Likewise, the value of N, (x) will be 0 at node i and 1 at node j.
» These represent the common characteristics of interpolation functions .

» They will be equal to 1 at one node and 0 at each of the other nodes of the

element. B(x,y)
) (D;
Two-dimensional simplex element 'Q dlxy) = a1 + X +ay
; : D,
» The two-dimensional simplex element is a straight \/ T
b,
-sided triangle with three nodes, one at each corner, ‘
o04y)
as indicated. ——__
\
j T T*
» Let the nodes be labeled as i, j, and k by proceeding ) S
| s o ¢ o)
counterclockwise from node i, which is arbitrarily \i ///0:'%)
= k
specified (v
Two-dimensional simplex element




Linear Interpolation of Polynomials in Terms of Global Coordinates
» Let the global coordinates of the nodes i, j and k be given by (x,, ), (x;, y) and (x, ,
y,) and the nodal values of the field variable o(x, y) by ¢;, ¢, , ¢, respectively.
» The variation of ¢ inside the element is assumed to be linear as

P(x.y) =+ +ay

---(28)
» The nodal conditions
#(x,y)=0, at (x=x,y=y)
p(x,y)=D; at (x=x,y=y)
px.y) =D, at (x=x.y=y,)
Lead to the system of equations

D =a +a,x.+a.).

) | == { 28]

O =aq+ Xty

<Dk =, +a,x, +a,),



Linear Interpolation of Polynomials in Terms of Global Coordinates
» The solution of equations (29) yields

]
a=—(ad +a®. +a0,)
1 7 4 F J KK

A

1 (30
a,=— (0D, +b0 +bD,) 130)
RE®7: I L B
]
a,=—I(0,+c,® +c0,)
© 24 t
» The area of the triangle ijk is given by
1'1 % W :
A:; 1 % :5(-"13’_;*3‘;3’;:+~"k}"1 =X Ve =%~ %)) -==(31)
AR

G =XV~ %Y, b= Y=Y €= %%,

a; =XV, — %V, bj =iV 6 =X 7X ~==(32)

G =%yt %Y, b =Y~y G=%—%



Linear Interpolation of Polynomials in Terms of Global Coordinates

» Substituting equation (30) in (28) and rearranging the equations results in

—(e)

¢(x3y) = N;(X,)’)(D,- + N},‘('x’y)(b,' + Nk (x’y)(bk o [N(x’y)](b -"(33)
where
[N(x, y)]=[N,(x, )N, (x, )N, (x, )] ==(34)

I
N.(x,y)=—1/(a +bx+c
(%)) 2A(, X+¢))
I
Nj(x,y)za(aj+b,.x+cjy) ---(35)

I
N, (x,y)= Z_A(ak +bx+c,y)

and

S

- p =vector of nodal unknowns of elements e ==~ (36)

=
[
=




Three-Dimensional Simplex Element

# The three-dimensional simplex element is a flat-faced tetrahedron with four nodes,
one at each corner, as shown
« Let the nodes be labeled as i, j, k, and [, where i, j, and k are labeled in a

counterclockwise sequence on any face as viewed from the vertex opposite this face,

which is labeled as /. i

+ Let the values of the field variable be ¢. , 0, O (X, iyl, z)

and ¢, and the global coordinates be (x. , y., z, ),

(X, Y02 ) (%, ¥, 2 ), and (x;, v, z)) at nodes i, j, ‘(5.:, -

k and [ respectively. (% y,j 2)

% If the variation of ¢(x ,y,z) is assumed to be w‘
linear, y

H(x,3,2) = +ax+ay+az  -==(39)

Three-dimensional simplex element




Three-Dimensional Simplex Element
% The nodal equations ¢ =, at (x,,y,,z,) ¢=®at(x,,y,,z) ¢ =P at (x,, »,z)and
¢ =&, at(x,,y,,z) produce the system of equations
O =q +ax +a,y,+0a,z
O =q+a,x +tayy+0,z, ---(40)
O, =0, +ax, +a,y, +Q,z
O =a+a,x +a,y,+a,z

+ Equation (40) can be solved and the coefficients a;, a;, @, , o are expressed as

Q= 6LV(a'¢' ta,®;+a,0, +a )

I
a2 = 6_V(b'q)' +qu)j +b‘.(bk +b1q)l) """(41)

a, = 6LV (€@, +¢, @, +¢, D, +¢D))

a,= 6LV(d,.(b,. +d ®,+d, 0, +d0))



Three-Dimensional Simplex Element

< The volume of the tetrahedron ijk/ is given by

1 X Vi &
il % ¥ &
V:— J ']./ J ___(42)
6l x, y. 2z
1 % y g
X, ¥ Z
G=% Jr % —=-(43)
Y N 2
LB
b=-1 y z ---(44)
Iy g
x, 1 z
¢=- 1 z ---(45)
v 1z




Three-Dimensional Simplex Element

and x, y |
d;i==x, ¥ | ag)
x y |

+ The signs in front of determinants in equations (43) to (46) are to be reversed when
generating a;,b;, ¢, d, and a, b, ¢, d; .

« By substituting equations (41) in (39) we get,
§(x,3.2)= N,(x, 3,20 + N, (x,3,2), + N, (5., 2), + N (5,3, 20 =[N (x, 3, ) ).---(47)
where
[N(x,y,2)]=[N;(x,y,2)+ N (x, y,2)+ N, (x,y,2) + N, (%, y,2)]

N.(x,y,2z)= lV (a,+bx+c,y+dz)
I
N.(x,,2)= 6_V(aj +bx+c;y+dz) ---(48)

N.(x,,2 )- | (aA+bx+cAy+d,‘4)



Three-Dimensional Simplex Element
I
N,(x,y,2z) = = (a,+bx+c,y+dz)

]
and ~(e) |9,
)
9

C° - Continuity:
The one-, two-, and three-dimensional simplex elements considered previously must
satisfy the following two properties that imply C" -continuity:

» The shape function corresponding to any specific node, such as node i, varies
linearly from a value of 1 at that node i to a value of 0 at each of the remaining
nodes of the element. Thus, the shape function N; will have a value of 1 at node i
and a value of 0 at each of the remaining nodes of the element.

» The sum of all the shape functions at any point within the element, including its
boundaries, will be equal to 1.




Interpolation Polynomials for Vector Quantities

« In equations (21), (28), and (39), the field variable ¢ has been assumed to be a scalar
quantity.
« In some problems the field variable may be a vector quantity having both magnitude

and direction.

% In such cases, the usual procedure is to resolve the vector into components parallel to

the coordinate axes and treat these components as the unknown quantities.

« Thus, there will be more than one unknown (degree of freedom) at a node in such

problems.

% The number of degrees of freedom at a node will be one, two, or three depending on

whether the problem is one-, two-, or three-dimensional.



Interpolation Polynomials for Vector Quantities

 The interpolation function for a vector quantity in a one dimensional element will be

same as that of a scalar quantity since there is only one unknown at each node. Thus,
~(e)

u(x) = N,(0)¢, + N (x)9, =[N (x)]¢ —-(50)
Where,  [N(x)] =[N, (x)V,(x)]

=@ ¢1
o)

and u is the component of ¢ parallel to the axis of the element that is assumed to
coincide with the x axis.

i (bl = U j
Xi Xj
)o—rx

One-dimensional problem

Two-dimensional problem




Interpolation Polynomials for Vector Quantities

% The shape functions N, (x) and N, (x) are the same as those given in equation (2)

 For a two-dimensional triangular (simplex) element the linear interpolation model of

equation (33) will be valid for each of the components of ¢, namely, u and v. Thus,
u(x,y)=N,(x, )y + N, (x, )y, + N (X, 9),. “==(51)
V(.T,}") — N,-(X, }’)¢3,- + N.,‘ (Xa Y)¢:j + NA- (x9 y)¢2k "-(52)

where #,.,¢; ., and ¢, are nodal values of u ¢,,,4,, and ¢,, are the nodal values of v.

« Equations (51) and (52) can be written in matrix form as

&(w)={“(x"";}=[N(x,y)1$‘” --~(53)

v(x, y

where
N(xy) 0 Ni(xy) 0 Ny 0

0 N@» 0 N@y 0 Nyl Y

[N(x,»)] {



Interpolation Polynomials for Vector Quantities

D3 = w;

(-\.io .‘.h :l)
By2= 1w

Dy = wy Xt, Vi 21)

(R}

(X v 1) Oya2=w

"
. ®y2= U P31 = Wi
(xe, w, 2x)
X
D3p.2= Uk
Three-dimensional problem
and ¢, 1

¢ =1 » = vector of nodal degrees of freedom ~==(55)




Interpolation Polynomials for Vector Quantities

+ Extending this to three-dimensions, we obtain for a tetrahedron element

(u(x,y,2))
B5,7,2)=1 v, 3,2) | =[NGx 3,2 o
(WX, y,2),
where
[ N.(x,y,2) 0 0 N,(x,y,2)
[N(x,y,2)] 0 N.(x,y,z) 0 0
0 0 N(x,y,2) 0
0 0 N, (x,y,2) 0 (57)
N;(x,),2) 0 0 N.(x;3,2)
0 N,(x,,2) 0 0
0 N,(x,y,2) 0 0]
0 0 N,(x,y,z) 0
N.(x,y,z) 0 0 Nfxy 2)_




~-(¢)

Interpolation Polynomials for Vector Quantities

r¢3i—2
¢3i—1
#,
¢3;‘ -2
¢3,’—l
¢3]
¢3k -2
¢3k =
Py
¢3/"2
¢3I—]

¢3i =2

— —

---(58)



Treatment
of
Boundary Conditions



Learning Objectives

At the end of this topic, you will be able to:
+ Derive the linear interpolation polynomials for the basic one-, two-, and
three-dimensional elements in terms of the local coordinates.

+ List the convergence requirements for obtaining exact solution.



Outcomes

By the end of this topic, you will be able to:
« Understand the linear interpolation polynomials for the basic one-, two-,
and three-dimensional elements in terms of the local coordinates.

« Explain the convergence requirements for obtaining exact solution.



Linear Interpolation Polynomials in Terms of Local Coordinates

« Now, we will derive the interpolation functions of simplex elements in terms of a
particular type of local coordinate systems known as natural coordinate systems.

% A natural coordinate system is a local coordinate system that permits the specification
of any point inside the element by a set of non dimensional numbers whose magnitude
lies between 0 and 1.

% Usually natural coordinate systems are chosen such that some of the natural

coordinates will have unit magnitude at primary or corner nodes of the element.



Linear Interpolation Polynomials in Terms of Local Coordinates

One dimensional element
» The natural coordinates of the one dimensional element are as shown.

.
—
L

A
S
A 4
£
—_—
A

—— o * o
0 X Node | P Node 2

X/ X X

(1,0) (L1, L2) (0, 1)

» Any point P inside the element is identified by two natural coordinates, L, and L,,
which are defined as

ke
b I %%
L b5 i
Sl ox-x

where, -
[, and [, are the distances shown in image and | is the length of the element.



Linear Interpolation Polynomials in Terms of Local Coordinates

» Since it is a one-dimensional element, there should be only one independent
coordinate to define any point P. This is true even with natural coordinates because

the two natural coordinates L, and L, are not independent but are related as

Ltly=oite® - - - (60)

[

» The natural coordinates L, and L, are also the shape functions for the line element.

Comparing the equation (59) with (26), we get
N=L, N=L, -~ (61)
» Any point x within the element can be expressed as a linear combination of the nodal

coordinates of nodes 1 and 2 as

= xIL1 + x2L2 wm:= (62)

where L, and L, may be interpreted as weighting functions.




Linear Interpolation Polynomials in Terms of Local Coordinates

» The relationship between the natural coordinates and Cartesian coordinates of any

point P can be written in matrix form as

phay e

{AL | ! IHI}I{ -l}{l} - (64)
LJ (t,=x)|-x 1|{x] I|-x, 1]|x

» If fis a function of L, and L, , differentiation of f with respect to x can be performed,

or

using the chain rule, as

d ool o i

dv oL éx oL, éx - - <(65)



Linear Interpolation Polynomials in Terms of Local Coordinates

» From equation (59),

oL,
=- and Cﬁ == - - -(66)

» Integration of polynomial terms in natural coordinates can be performed by using the

simple formula

- | B!
(- &b - - (67)
' (@t f))!

where

a, is the factorial of a and it is given by a! = a(o-1)(a-2)........(1)




Two-Dimensional (Triangular) Element

A natural coordinate system for a triangular element is as shown

3 (x3,3)

2 (x2, y2)
(0, 1, 0)

(x1, v1) 1
(1,0, 0)




Two-Dimensional (Triangular) Element

» Although three coordinates L, , L,, and L, are used to define a point P, only two of them

are independent. The natural coordinates are defined as

A 4, A. -

Pt [ =% o2 (68)
4 4 ° A4

where 4, is the area of the triangle formed by the points P, 2 and 3; 4, is the area of

the triangle formed by the points P, 1 and 3; 4, is the area of the triangle formed by
the points P, 1 and 2; and A is the area of the triangle 123.

» Because L, are defined in terms of areas, they are also known as area coordinates.

Since we have

A+4,+4 =4 - - - (69)
also
A 4‘1‘\ A4
L+ =+ =2=L+L,+L =1 - - +(70)
A A4 4

N=L N.=L. N. =L



Two-Dimensional (Triangular) Element

» The relation between the natural and Cartesian coordinates is given by
x=xL +xL +xl, -« = (71)
y=yL +yL,+ylL,

» Equations (69) and (71) can be written in matrix form as

1 Ti 4 2
X = .\‘1 .\'3 .\..3 <L2 ; - (72)
o »n vl

» Equation (72) can be inverted to obtain,

I Y

L (05 =%,) (1—y) (5-x,)

1
L= 24 (y %) (-3) -%)§x;
L] ‘ (=) -3 (g -x) )

===il73)




Two-Dimensional (Triangular) Element

» The area of the triangle 4 is given by

11 X, W
A==l % ¥ e

5 A &

1 x

» If fis a function of L, L,, and L,, the differentiation with respect to x and y can be
performed as

f Z ¢f cL,
6‘\' i=1 CL{' 5\‘
of ‘i of L - e(73)
6\' i=1 6[4! a}
where oL, _y,-y & x-x,
Cx 24 cy 24
CL) Vi~ “. 6L§ X — \J
LW T T .- - (76)
ox 24 & 24




Two-Dimensional (Triangular) Element

» For integrating polynomial terms in natural coordinates, we can use the relations

I A
ijL‘f.dL: ap L ---(77)
A ] (a+ [ +1)!
an
[[z16; a4 = AP o4 ey
- S (a+f+y+2)!

» Equation (77) is used to evaluate an integral that is a function of the length along an

edge of the element.

» Equation (78) is used to evaluate area integrals.



Example

Show that the natural (area) coordinate Li (i = I, 2, 3) is the same as the shape function

Ni given by Eq. (35 ).




Example

Solution
The area coordinate L/ , defined as the ratio of the area of the shaded triangle to the total

area of the triangle ijk shown in Figure can be expressed as

bd

l
2 d ~-(E.1)
==

2

h

_4

L,
A

bh

where d and h denote the distances of the perpendiculars from the points P and i to the

base jk of the triangle.



Example

» The area Al of the triangle Pjk can be determined in terms of the coordinates of
P j, and k as

I x y
= s _ o K (E.2)
24 =1 X, V=X Y -xy;+x(y, y,)+ y(x, xj.)
Ll % 2
Equations (E. I ) and (E.2) lead to
24, 1
L= 1 = 2A(x V) +x(y, = y)+ y(x - x;) (E.3)

which can be seen to be identical to the shape function Ni given by Eq. (35).



Three-Dimensional (Tetrahedron) Element

« The natural coordinates for a tetrahedron element can be defined analogous to those of

a triangular element.

» Thus, four coordinates L, , L,, L,, and L, will
be used to define a point P, although only

three of them are independent.

» These natural coordinates are defined as

R

=4 (79
- (79)

(x1, v1, 21)
(1,0,0,0)

- - ————

4 (X4, s, 24)
(0,0,0,1)

x,y: 2)
(L, L2, L3, Ls)

2
(x2, v2, 22)
(0, 1,0,0)

V.
Li=— i=1,2,3,4
v

V= Volumeof 1234

Vi =Volumeof P234
Vi = Volumeof P134
V3 =Volumeof P 124
Vi=Volumeof P123




Three-Dimensional (Tetrahedron) Element

» V. is the volume of the tetrahedron formed by the points P and the vertices other than

the vertex i (i=1, 2, 3, 4), and V is the volume of the tetrahedron element defined by

the vertices 1,2,3, and 4.

» Because the natural coordinates are defined in terms of volumes. they are also known

as volume or tetrahedral coordinates. Since

N+V+V,+V, =V
we get

.. i §

i .

Vv Vv V ¥V

=L+L+L +L,=1 - ~~(80)

» The volume coordinates L, , L,, L, and L, are also the shape functions for a three-

dimensional simplex element:

N =L,N;=L, N, =L, N, =1, - +(81)



Three-Dimensional (Tetrahedron) Element

» The Cartesian and natural coordinates are related as
y=Lx¥Lx, 2Ly, vLx,

- = (82
y=Ly+Ly,+Ly,+L,y, el
z=Lz+Lz+Lz +Lz

» Equations (80) and (82) can be expressed in matrix form as
I 1 3 (Ll\
X % B X Xl s @
| Sl v 1 2 3 4 1 & (83)
i n »non on||b
z]l 1% % % Z|lL,
» The inverse relations can be expressed as
(L (a b ¢ d][1)
L a b, ¢, d,||x
jato 1% B S - - -(84)
L| 6V|ia b ¢, dl||y

F a, b e dyllz

.




Three-Dimensional (Tetrahedron) Element

where
a b ¢ d,
1la, b, ¢, d,
V =— ~ "|= volume of the tetrahedon 1,2.3,4 - - -(85)

6la, b, ¢, d,
a, b, ¢, d,
5 ¥ 5

a=% ¥ 2z - - ~(86)
ATR
I ¥ 2z

h==l 3 - == (87)
1 9% %2,
Y, 1 z

e=-x 1 2 - = =(88)
X 1z




Three-Dimensional (Tetrahedron) Element

d=lx, y 1 - - -(89)
v,y 1
» These constants are the co factors of the terms in the determinant of equation (85).

» If fis a function of the natural coordinates, it can be differentiated with respect to

Cartesian coordinates as

of _i of oL
dx % OL. Ox

’ - - - (90)




Three-Dimensional (Tetrahedron) Element

oL, b oL ¢ & d

i

ox 6V &y 6V 6 6

<i<(g1)

» The integration of polynomial terms in natural coordinates can be performed using the

relation

a!Bly!é!

o/  ---(92)
(a+pf+y+0+3)

[[[nLLdr =

v



eXampie
Show that the natural coordinate 1; is same as the shape function N, given by Eq. (48).
Approach: Use the definition of the volume of a tetrahedron.
Solution:
Using the definition of L ; given in Eq. (79), we have
[ - volume of tetrahedron pikl _ 7, (E.1)

=4 4

" volume of tetrahedron ikl Y

Where, the volume V, can be expressed as (from Figure):

pe—
=
o
3

X; 2z I & yj.\

l
=—qlle, . Zl=x{l » z|+yll X Zi=z|l X yir SE2
I




Example

Using Egs. (43) to (46), Eq. (E.2) can be rewritten as

= é(a+bx+cy+dz) (E.3)
Thus, Li, defined by Eq. (E. I), can be expressed as
I
L=—(a+bx+cy+dz E.4

Which can be seen to be identical to the expression of N, given in Eq. (48).




Convergence Requirements

Since the finite element method is a numerical technique, we obtain a sequence of
approximate solutions as the element size is reduced successively. This sequence will
converge to the exact solution if the interpolation polynomial satisfies the following

convergence requirements.

+ The field variable must be continuous within the elements.

%  All uniform states of the field variable ¢ and its partial derivatives up to the
highest order appearing in the functional /(p) must have representation in the
interpolation polynomial when, in the limit, the element size reduces to zero.

% The field variable ¢ and its partial derivatives up to one order less than the

highest order derivative appearing in the functional /(p) must be continuous at

element boundaries or interfaces.



Convergence Requirements

» The elements whose interpolation polynomials satisfy the requirements (1) and (3) are
called compatible or conforming elements and those satisfying condition (2) are

called complete elements.

» If " derivative of the field variable ¢ is continuous, then ¢ is said to have (" continuity.
In terms of this notation, the completeness requirement implies that ¢ must have '
continuity within an element, whereas the compatibility requirement implies that ¢

must have (™! continuity at element interfaces.

» If the interpolation polynomial satisfies all three requirements, the approximate
solution converges to the correct solution when we refine the mesh and use an

increasing number of smaller elements



Convergence Requirements

» In order to prove the convergence mathematically, the mesh refinement has to be
made in a regular fashion so as to satisfy the following conditions:

1. All previous (coarse) meshes must be contained in the refined meshes.

2. The elements must be made smaller in such a way that every point of the
solution region can always be within an element.

3. The form of the interpolation polynomial must remain unchanged during the

process of mesh refinement. Conditions 1 and 2 are illustrated as shown.

A

D B

(a) Idealization with 2 elements (b) Idealization with 8 elements (c) Idealization with 32 elements




Convergence Requirements

» From Figure, in which the solution region is assumed to have a curved boundary, it can
be seen that conditions (1) and (2) are not satisfied if we use elements with straight
boundaries.

» In structural problems, interpolation polynomials satisfying all the convergence

requirements always lead to the convergence of the displacement solution from below

while nonconforming elements may converge either from below or from above.

(a) Idealization with 6 elements (b) Idealization with 12 elements




Treatment of Boundary Conditions

Prescribed temperature (Dirichlet condition)

« Boundary gives a value to the problem (i.e.) Temperature distribution at a
boundary surface known.

Example: One end of an iron rod is held at absolute zero.

Prescribed heat flux (Neumann condition)

« Boundary gives a value to the normal derivative of the problem.
Example: A heater at one end of an iron rod, then energy would be added at a
constant rate but the actual temperature would not be known.

Convective boundary condition (Robin condition)

+ Boundary is subjected to convective heat transfer with a fluid at ambient.



Analysis of Trusses



Learning Objectives

At the end of this topic, you will be able to:

< Know Finite element modeling, coordinates and shape functions of a truss
< Understand the finite element Equations and the terms involved
+ Explain treatment of boundary conditions involved in truss element

 Calculate stress , strain and support reactions of a truss element




Outcomes

By the end of this topic, you will be able to:

< Understand the Finite element modeling, coordinates and shape functions
of a truss

+ Explain about the finite element Equations and the terms involved

< Discuss the treatment of boundary conditions involved in truss element

+ Work out the stress, strain and support reactions of a truss element



Introduction to Trusses

% A truss structure consists only of two-force members. That is, every truss element is

in direct tension or compression.

« In a truss, it is required that all loads and reactions are applied only at the joints and

that all members are connected together at their ends by frictionless pin joints.

O 4 16 ™
A

Example of Two Dimensional Stress



Types of Trusses

Pratt truss
» The design uses vertical members for compression and horizontal members to
respond to tension. The continued popularity of the Pratt truss is probably due to
the fact that the configuration of the members means that longer diagonal members
are only in tension for gravity load effects.
Warren truss
» The warren truss has made up of several bar pin jointed or welded. At the final
stage the ends will be either roller supported or pinned supported. It has a good
strength
Space truss
» In space truss all members are not in the same plane
» Many space trusses having plane truss. Several plane truss joined together form a
space truss Plane truss
» In plane truss all the members are in the same plane

The forces acting only on the plane of members

Y/




Finite Element Modeling of Truss

« Finite element modeling is the procedure of discritization of a structure and the

numbering of the element.

Discritization

» It is a process of subdividing the whole structure into a small finite elements of

equal size and shape for the better accurate solutions of the object.

Numbering of the Element

» After subdividing the whole into small elements the numbering has to be done for

creating stiffness matrix and global stiffness matrix.



Discritization of a Structure

% The first step is to model the bar as a stepped shaft, consisting of a discrete number of
elements, each having a uniform cross section. Specifically, let us model the bar using
four finite elements.

< The average cross-sectional area within each region is evaluated and then used to
define an element with uniform cross section. In addition to the cross section, traction

and body forces are also (normally) treated as constant within each element

.:. Howeve r, cross-sectional area, traction, YL L sty '/;// L /1/////////// /774

and body forces can differ in magnitude o
from element to element. Better f
approximations are obtained by i , )
increasing the number of elements. It \ 7 4
is convenient to define a node at each | | O
location where a point load is applied. Y s

X

(a) Shows the element before (b) Shows the element after
discritization discretization




Numbering of a Structure

< In a one-dimensional problem, every node is permitted to displace only in the £x
direction. Thus, each node has only one degree of freedom (dof) . The five-node finite

element model is considered which has five dofs.
« The displacements along each dof are denoted by Q, 0, ..,0.. In fact, the column

vector Q = /0, 0,, ...,Q/"is called the global displacement vector.

LU Lttt
lor
lQ: Fs
l()\./’\ 0 0 o o
3 — X
—-) —) —> i—> 5 —>
O O O Os 05
L0uFs
(d) Global numbering method
l()s‘f'\
X Q=[010:0:0:04T
F = [FLFsFs FaFs)
(c) Q and fF vectors represented




Numbering of a Structure

% The global load vector is denoted by F = [F,F,, ..., F J". The sign convention used is that

a displacement or load has a positive value if acting along the +x direction. At this stage,

conditions at the boundary are not imposed

Elements Nodes
~\ b 3 Local
& v "8 numbers
l Q ) 2 (1) o ™
- » (2) 2 3
p— — = - | Global
q q Q\) s 2 numbers
(e) Local numbering method 2
@ Il 4 5 _
(f) Combination of local and global number




Coordinates and Shape Functions
In the local number. scheme, the first node will be numbered 1 and the second node 2.

The notation X, = x-coordinate of node 1, X, = x-coordinate of node 2 is used. We define a

natural or intrinsic coordinate system, as

| |‘!’ b l ‘, 2

| J

xi—) e~ |
X >
X2

(a) B == (b) g

——— v

Typical Elements in x-and :-Coordinates

The system of coordinates in defining shape functions, which are used in interpolating the

displacement field
2

.\': —.Y

(x=x)-1

1




Coordinates and Shape Functions

The unknown displacement field within an element will be interpolated by a linear
distribution. This approximation becomes increasingly accurate as more elements are

considered in the model. To implement this linear interpolation, linear shape functions will
be introduced as,

u=Ng, +N,q,

Once the shape functions are defined, the linear displacement field within the element can

be written in terms of the nodal displacements ¢, and g, as,

oy =€
M(E)=5
'Vz(f):“_;



Coordinates and Shape Functions

UUn nown

U

=
o
|
po—
9 |+
W

U

qi

&=10
£ = -] (a) E= 4]
u

A

q>
u=Ng + Nogz
qi
l 2




Coordinates and Shape Functions
In matrix notation,
u=Ng
Where,
N =[N,.N,| and q=[q,.q, ]
In these equations, q is referred to as the element displacement vector. It is readily

verified that u = ¢, at node 1, u = ¢, at node 2, and that u varies linearly.

The displacement u and the coordinate x are interpolated within the element using the

same shape functions N, and N,. This is referred to as the isoperimetric formulation in

the literature.

Properties of the Shape Functions:
1. First derivatives must be finite within an element.

2. Displacements must be continuous across the element boundary.



Problems on Coordinates and Shape Functions

Problem 1:
! P

x1=20m.x=241n =361

1] ro

Sy

(a) Evaluate, N, , and N, at point P.
(b) If ¢, = 0.003 in. and ¢, = -0.005 in., determine the value of the displacement ¢, at
point P.

Solution:
when we use the equation below can get shape functions at 1 and 2.

2

Xy =%

6= (x-x)-1

-
gp =R(24_20)—l
=-0.5



Problems on Coordinates and Shape Functions

To fine the shape function we have,

1+¢

2
After substituting the values can get ,

Nz(‘f)z

N, =0.75, N,=0.25

Using this equation can fine displacement in each element.
u=Nq,+N,q,
u=075x 0.003 + 0.25 x -0.005
u=0.00124 m



Finite Element Equations
(Assembly of Global Stiffness Matrix and Load Vector)

The main difference between the one-dimensional structures considered and trusses is
that the elements of a truss have various orientations. To account for these different

orientations, local and global coordinate systems are introduced.

Deformed
Element

e qi=qicos q+ ¢2sing
q2=q3¢08 q + ¢4Sin q

g
Local Coordinate Systems Global Coordinate Systems




Finite Element Equations
(Assembly of Global Stiffness Matrix and Load Vector)

1. In the local numbering scheme, the two nodes of the element are numbered 1 and 2.

2. The local coordinate system consists of the x’ -axis, which runs along the element
from node 1 toward node.

3. All quantities in the local coordinate system will be denoted by a prime (*).

4. The global x-, y-coordinate system is fixed and does not depend on the orientation of
the element.

5. Note that x,), and z form a right-handed coordinate system with the z -axis coming
straight out of the paper.

6. In global Coordinate system every node has two degrees of freedom (dofs).

A systematic numbering scheme is adopted here: Anode whose global node number is j
has associated with it dofs 2/ - I and 2j: Further, the global displacements associated with
node j are Q 2j-1 and Q 2j



Finite Element Equations
(Assembly of Global Stiffness Matrix and Load Vector)

» Let ¢, and g, be the displacements of nodes 1 and 2, respectively, in the local
coordinate system. Thus, the element displacement vector in the. local coordinate

system is denoted by

q =[g,,4,]' el

» The element displacement vector in the global coordinate system is a (4 x /) vector

denoted by, "
q9=19,9,9:9. ] “en2

» The relationship between ¢’ and ¢ is developed as follows: that q,equals the sum of
the projections of ¢, and ¢, onto the x" -axis. Thus,

g, = q,c0s0 + g, sinf

q, =q,c0sf + g, sinf

» Transformation matrix L is given by,

f m0 0
L= == ()
[O 0 [’m]



Finite Element Equations
(Assembly of Global Stiffness Matrix and Load Vector)
Calculation Of L and M

Simple formulas are now given for calculating the direction cosines ¢ and m from nodal

coordinate data. let (X, ¥,) and (X,, Y,) be the coordinates of nodes 1 and 2, respectively.

We then have, X =4

l =cosf =-

“e

Yo~ W

m=cosp= == (=sind) (x2,32)

(21)

(xX1,01)

The Equivalent length can be calculated by

b= \/(xz =X ) + (Y.~ )




Finite Element Equations
(Assembly of Global Stiffness Matrix and Load Vector)
Element stiffness matrix

The truss element is a one-dimensional element when viewed in the local coordinate

system. ) E(,At,[ | _lj

k B
¢ \=1 1

where, 4, is the element cross-sectional area and E, is Young's modulus. The problem at
hand is to develop an expression for the element stiffness matrix in the global coordinate
system. This is obtainable by considering the strain energy in the element. Specifically, the

element strain energy in local coordinates is given by
1
Ue = _quq R 6
2
The stiffness matrix in global coordinates can be written as,

k=LTK'L e



Finite Element Equations
(Assembly of Global Stiffness Matrix and Load Vector)

The Stiffness matrix is given by,

/2 fm =00 ~im)

EA|tm m  ~fm -m

(|- ~tm £ Im

~fm -m’  fm m’)
Stress Calculations:

Expressions for the element stress can be obtained by noting that a truss element in local

coordinates is a simple two-force member

o=E q’[_ 9

=% l]{"f] g
/"It‘ ql

This equation can be written in terms of the global displacements ¢ using the transformation

q'=Lg as, E
og==[-1 1L
”..[ JLgq 10



Finite Element Equations
(Assembly of Global Stiffness Matrix and Load Vector)

The final Expression for the Stress calculation will be,

a=%[—/3 -m [ mlq

=kl



Problems on Truss

Consider the four-bar truss shown in Fig. E4.1a. It is given that E = 29.5 X 106 psi and
A = 1in 2 for all elements. Complete the following:

(a) Determine the element stiffness matrix for each element.

(b) Assemble the structural stiffness matrix K for the entire truss.

(c) Using the elimination approach, solve for the nodal displacement.

(d) Recover the stresses in each element. !

(e) Calculate the reaction forces.
Os 25000 1b
A (.)I:

I % »o O 3I >0

o 9 E=29.5x 10° psi

A=10in>

(I) (4
l e M 20000 Ib
: g 2 I » (s > » \




Problems on Truss

(a) It is recommended that a tabular form be used for representing nodal coordinate data
and element information. The nodal coordinate data are as follows:

Node X y
B 0
2 40
3 40 30
4 40 30

For simplicity the diagram has been modified as follows,

0 25 000
4167 44— 4
"~ &
3
// Forces: Ib
15 833 €~A—0 » 20 000
3126 21 879




Problems on Truss

o

The element connectivity table is, [Element I

9 l 2
2 3 2
3 I 3
- - 3
The nodal coordinate data and the given element connectivity information, we obtain the
direction cosines table: [Element e ‘ "
1 40 I 0
2 30 0 -l
3 50 08 06
4 40 | 0

For example, the direction cosines of elements 3 are obtained as C = (X3 - X1)/le

= (40 -0)/50 =0.8and m = (Y3 - Y1)/le = (30 - 0)/50 = 0.6. The element stiffness

matrices for element 1 can be written as : I

0 -1 0]
K,=29.5'x|0" 0 0 0 0l2
40 -1 0 013

0 0 0|4




Problems on Truss

The element stiffness matrices of elements 2,3, and 4 are as follows,

5 0 3 4 7

0 0 0 0]
K2=»29'SXI06 0 1 0 —116
30 1o 0 0 03

0 -1 0 14

_295x10°| 48 36 -48 -36

AN W N -

K3
30 |-64 -48 64 48
-48 -36 48 36 |
1 0 -1 07
i 295x10°10 0 0 o8
30 (-1 0 1 0f
0 0 0 0]f




Problems on Truss

(b) The structural stiffness matrix K is now assembled from the element stiffness matrices.

By adding the element stiffness contributions, noting the element connectivity, we get,

e

268 576 -150 0 768 =576 0 0|l

576 432 0 0 -576 -432 0 0|2

150 0 150 0 0 0 0 0|

g 295100 0 0 0 20 0 200 0 off
600 |_768 -576 0 0 2268 576 -150 0]°
-576 -432 0 =200 576 2432 0 0]6

0 0 -150 0 150 0|7

_ o 0 0 0o 0 o0

(c) The structural stiffness matrix K given above needs to be modified to account for the
boundary conditions. The elimination approach will be used here. The rows and columns
corresponding to dofs 1, 2, 4, 7 and 8, which correspond to fixed supports, are deleted
from the K matrix.



Problems on Truss

The reduced finite element equations as follows,
15 0 0 [(0,] (20000 ]
———| 0 2268 5.76 |0, 0
|0 576 2432||Q,] |-25000

Solution of these equations yields the displacements,

.
~
I
- N

0] [27.12x107* |
{0, t=14 5.65x10° ‘}in.
1O, \-22.25x10"‘1
The nodal displacement vector for the entire structure can therefore be written as,

0=[0,0,27.12x107,0,5.65x107,-22.25x10%,0,0]" in.



Problems on Truss

(d) The stress in each element can now be determined by,

- 29.5x106

0

=20 000.0psi

[~1010]4

¢

\

3\

0

0
27.12x10™

0

The stress in member 2 is given by

~ 29.5x10°

0,

=-21 880.0 psi

&, = 5208.0psi

o, =4167.0psi

(010 =1

[ 5.65x10° |

~22.25x10°

-27.12x107°
0




Problems on Truss

(e) The final step is to determine the support reactions. We need to determine the
reaction forces along dofs 1,2,4,7, and 8, which correspond to fixed supports. These are
obtained by substituting for Q into the original finite element equation R = KQ - F. In this

substitution, only those rows of K corresponding to the support dofs are needed, and F =

0 for these dofs. Thus, we have ( 0
: _ = 0
le 2268 5.76 -150 0 =768 =576 O O 3
27.12x10™
R, 576 432 0 0 576 432 0 O
| 29.5%10° 0
{R b= 0 0 0 200 0 =200 0 0f ot
3 600 5.65x10™
R, 0 0 0 0 =150 0 150 0 .
-22.25x10
R, 0 0 0 0 0 0 0 0 .
f h' 4 b L 0 /
R) [-15833.0
R,| | 31260
SRy =1 21879.0 ;1b
R, -4167.0
R, | 0




Treatment of Boundary Conditions in Truss

# The boundary conditions are the important aspects of the problem analysis. The
boundary conditions has to be specified at every support particularly the truss is

concern .

The boundary conditions has to be specified for,
» Simply supported condition
» Fixed condition
» Roller support condition

Free end conditions

A4



Treatment of Boundary Conditions in Truss

Simply Supported Condition

w = 30N/m
MR iiii22i2 000
—
L=30m

When the object is simply supported at both ends,

First end :
Displacement in x direction is finite

Displacement in vy direction is zero

Second end :
Displacement in x direction is finite

Displacement in y direction is zero



Treatment of Boundary Conditions in Truss

Fixed Condition

j /
Ry —»7 P—>»  —> R
Y /

When the object is fixed at both ends,

First end :
Displacement in x direction is zero

Displacement in y direction is zero

Second end :
Displacement in x direction is zero

Displacement in y direction is zero



Treatment of Boundary Conditions in Truss

Roller Support Condition

I 1

X=0 x=L

When the object is fixed at one end and roller supported at other end,

First end :
Displacement in x direction is zero

Displacement in y direction is zero
Second end :

Displacement in x direction is finite

Displacement in y direction is zero



Treatment of Boundary Conditions in Truss

Free End Conditions

—

When the object is free at both ends,

First end :
Displacement in x direction is finite
Displacement in y direction is finite
Second end :
Displacement in x direction is finite

Displacement in y direction is finite



Summary

Let’s summarize the topic:

< A truss structure consists only of two-force members. That is, every truss
element is in direct tension or compression .

< The warren truss has made up of several bar pin jointed or welded. At the final
stage the ends will be either roller supported or pinned supported. It has a good
strength.

< Discritization is a process of subdividing the whole structure into a small finite
elements of equal size and shape for the better accurate solutions of the object

< The main difference between the one-dimensional structures considered and

trusses is that the elements of a truss have various orientations.
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Analysis of Beams
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Learning Objectives

At the end of this topic, you will be able to:
+ Describe the Potential energy approach
« Describe the Galerkin approach
« Illustrate the Element Stiffness Matrix for Hermite Beam Element

< Derive load vector derivation for concentrated and UDL



Outcomes

By the end of this topic, you will be able to:

» Understand the Potential energy approach

» Discuss about the Galerkin approach

+ Explain the Element Stiffness Matrix for Hermite Beam Element

Workout the load vector derivation for concentrated and UDL

*
0.0



Introduction

Beams are slender members that are used for supporting transverse loading.

Long horizontal members used in buildings and bridges, and shafts supported in

bearings are some examples of beams.

Beams with cross sections that are symmetric with respect to plane of loading are

considered here.
A general horizontal beam is shown.
Figure shows the cross section and

the bending stress distribution.

B o Py
a1 e
S e e atatn ey el R
A » M A
0 L N

(b) Deformation of the neutral axis




Introduction

% For small deflections, we recall from elementary beam theory that where is the
normal stress, is the normal strain, M is the bending moment at the section, is the

deflection of the centroidal axis at x, and I is the moment of inertia of the section about

the neutral axis (z-axis passing through the centroid). y
~~ d4
M / : |
O=——yY ---(1) :
I ,
UL —
o :
€= — ~{2) . y
E |
d 3v B M ___(3) )




Potential - Energy Approach

The strain energy in an element of length dx is

dU:ljaedAdx
2

(M
= “dA |dx
2(51 Ly J
Noting that , 1 d4 is the moment of inertia /, we have

dU-lM—dx (4)
2 EI

When Eq. 3 is used, the total strain energy in the beam is given by

U= jE/(d de
2% |\ dv’ (5)




Potential - Energy Approach

The potential energy of the beam is then given by

Lo (dvY) ,
-3 pa-So-Swt o

X

where p is the distributed load per unit length, P is the point load at point m, M, is the
moment of the couple applied at point %, v, is the deflection at point m, and v/, is the
slope at point £.



Galerkin Approach

For the Galerkin formulation, we start from equilibrium of an elemental length. From we

e | [

M _
dx
When Egs. 3, 7, and 8 are combined, the equilibrium

recall that

a (8) y M+ dM

equation is given by

. 2 v
M (R (9) V4 dv
dx’ dx’

=

e——dx —»

Free body diagram of an elemental

length dx.
For approximate solution by the Galerkin approach, we look for the approximate

solution v constructed of finite element shape functions such that



Galerkin Approach

jL[ : [E/df)- }¢dx=0 (10)
0| g’ dx’

Where ¢ is an arbitrary function using same basis functions as v. Note that ¢ is zero

where has v a specified value. We integrate the first term of Eq. 10 by parts. The

integral from () to L is split into intervals 0 to X , X to X, and X, to L. We obtain

ml! m

dvdo, o d( _dav\|" df. dv
& jp¢d¥+_( ]¢0 dx( dx]¢

dx’ dx‘ de\  dx’ A
: : . (11)
—E df " _mtl 8l
dx’ dx ; dx” dx 5

We note that EI(d’v/dx") equals the bending moment M from Eq. 3 and (d /dx)[EI(d*v/dx*)]

equals the shear force ¢ from (8). Also, v and M are zero at the supports.



Galerkin Approach

At X, the jump in shear force is P, and at X, the jump in bending moment is - M,. Thus,
we get

dvd*¢
dx’ dx’

L L
Jy B1Z 5 S| pgds—3 P.g, - M g =0 (12)
m k
For the finite element formulation based on Galerkin's approach, v and ¢ are constructed

using the same shape functions. Equation 12 is precisely the statement of the principle of
virtual work.
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Element Stiffness Matrix for Hermite Beam Element
Finite Element Formulation
» Typically, the degrees of freedom of node / are 0, and Q,.. The degree of freedom

Q,,, is transverse displacement and (Q,, is slope or rotation. The vector represents

the global displacement vector.

0=[0.0,...0,] —(13)

» For a single element, the local degrees of freedom are represented by

T
q = [qw(INCquJ ---(14)



Element Stiffness Matrix for Hermite Beam Element

» The beam is divided into elements, as shown in Fig. Each node has two

degrees of freedom.

Qs

QZl-l

Q2| Q‘)

Qi Q3
TUl rUZ

UU'1 L’

b

Qi Qs Qs
ol ol ol of
o ?L@) ®

Local
e |1 2
s SR 1 2
2|12 | 3 Global
313 | 4
4 |4 5

» The local-global correspondence is easy to see from the table given in

Fig.(Finite element discretization) ¢ is same as  [v,v',v,v’,] |




Element Stiffness Matrix for Hermite Beam Element

» The shape functions for interpolating v on an element are defined in terms of

¢ on -1to + 1, as shown in Fig.(Hermite shape functions).

Slope = 0

Slope =0  p,  Slope =0

-1 0 +1

-
4
b

g

Hermite shape functions




Element Stiffness Matrix for Hermite Beam Element

» The shape functions for beam elements differ from those discussed earlier. Since
nodal values and nodal slopes are involved, we define Hermite shape functions,
which satisfy nodal value and slope continuity requirements. Each of the shape
functions is of cubic order represented by

H=a+b&f+cl +d&, i=1234
---(15)
» The conditions given in the following table must be satisfied:

® Gloharena Technolodies Pyt | td All richts reserved



Element Stiffness Matrix for Hermite Beam Element

» The coefficients a, b, ¢, and d, can be easily obtained by imposing these conditions.

Thus,

1. 2, : 1 : i

Hi=—(1-&) (2+& (2 ~3& 4 £
! 4( 2) (2+¢) 0T4( £+ &)

: £)? I g2 | g3
Hy=—(1-¢) (é+1) or —(1-¢-&+&)

4 4

l‘ 2% = 1 - = «3
H;:-I(Hc) (2-¢) or z(2+3:—: )
Hﬁi(“?):(f—l) or %(-1-5+~::°+53)

» The Hermite shape functions can be used to write v in the form

; v av
w¢é) =Hv +H, (a’_fl +Hyv, +H, (d_fl

-—-(16)

—{(17)
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Element Stiffness Matrix for Hermite Beam Element

» The coordinates transform by the relationship

=% 14+¢
X = X, + X5
2 2
\ + ‘\.\, .\‘} = .\‘ ¢o
e -(18)
2 2

Since /,=X,-X, is the length of the element, we have

{
dx = —2d¢ —(19)
2

» The chain rule dv/d& = (dv/ dx)(dx/d &) gives us

dv L, dv 120)
d& 2 dx




Element Stiffness Matrix for Hermite Beam Element

» Noting that 4y / dx evaluated at nodes 1 and 2 is ¢, and ¢, respectively, we have

o [e [e
v(§)=H, ¢, +7Hz‘h +H3‘13+?H4Q4 ---(21)

which may be denoted as

v=Hg ~(22)

where

[ /
H :{Hl,'eH\,H;,"?HJ} -(23)
g R

» In the total potential energy of the system, we consider the integrals as summations

over the integrals over the elements. The element strain energy is given by

= EI (‘1"‘,’] dx ~-(24)
eldx



Element Stiffness Matrix for Hermite Beam Element

From Eq. 20,
dv 2 dv d’v 4 d’v
= —  and —= ——
dx [, d¢ - £ dE

Then, substituting v = H ¢, we obtain

dvY  16(dm Y (d2H
8V _ g (25
[de - fi(dé‘:] [_dé‘:jq -




Element Stiffness Matrix for Hermite Beam Element

On substituting dx = (£, /2)d¢ and Eqs.25 and 26 in Eq.24, we get

9 9 3 |
~& —‘“( 1+38), - =& ~E(1+38)1
i 35N, - - (1+3£)
1 8EI¢|(-1+3&£Y 3 1408
E(T?.j ( ; b] e 16’ £ dzq —(27)
e -1 N ]
9 3 143£Y
mmetric & —=E(+35 | — | £
-63 43 8‘3( .«) e( 4 J ed

Each term in the matrix needs to be integrated. Note that

+1 i 2 +1 +1
jg-d§:3— [£de=0 [dE=2

~] -1 =1



Element Stiffness Matrix for Hermite Beam Element

» This results in the element strain energy given by

U, =

e

q' kg ---(28)

o | —

where the element stiffness matrix is

12 6/ -12 6L
EI|6(, 4 - 6L, 20

e

k=— (29)
£1-12 -6L 12 - 6L

6/, 202 - 6L 4L

which is symmetric.



Element Stiffness Matrix for Hermite Beam Element

» In the development based on Galerkin's approach (see Eq.12),

2, 12 * e\
Eld’?df: ’Ell?-[d[? dl? g —(30)
dx” dx’ (\de )\ de
Where
T
v=lu v v vl —(31)

» We note that is the set of generalized virtual displacements on the element,
v=FHqgand ¢ = Hy Equation 30 yields the same element stiffness as Eq. 28 on

integration, with l,z/f k*q being the internal virtual work in an element.



Derivation of Load Vector for Concentrated and UDL

+ The load contributions from the distributed load p in the element is first considered.
We assume that the distributed load is uniform over the element:

[ v = [ Pée f Hd;’]q ~(32)
£ : -1

£

< On substituting for H from Egs.16 and 23 and integrating, we obtain
I pvdx = f“q -—(33)

[,

kakARARRRR
e

,
Pl. L
2 2
12\ Lt ¢ 4 2




Derivation of Load Vector for Concentrated and UDL

Where
.| P, pli pl, pl,
/ {2’12’2’ 12] i3

« This equivalent load on an element is shown in Fig. 8.6. The same result is obtained

by considering the term 1. pc/> dx in Eq. 8.12 for the Galerkin formulation. The point

loads P, and M, are readily taken care of by introducing nodes at the points of

application. On introducing the local-global correspondence, from the potential-
energy approach, we get

1 ;
[[=-0'k0-0'F -—(35)
and from Galerkin's approach, we get

\PTKQ—\PTF :0 "'(36)

where W = arbitrary admissible global virtual displacement vector.



Example-1 (Simple Problems on Beams)

For the beam and loading shown in fig, determine
1) The slopes at 2 and 3,
2) The vertical deflection at the midpoint of the distributed load.

- CTTLLTITT
T 0 A o A

.k Sl

E =200 GP, [=4X10%mm*

6000 N 6000 N

d\' 1000 Nom 1000 N.m(h

I |
2 3




Example-1

We consider the two elements formed by the three nodes. Displacements 01,02, 03, and Os are
constrained to be zero, and 04 and Os need to be found. Since the lengths and sections are equal, the

element matrices are calculated from eq. 29 as follows:

EI_(200x10")(4x10")

‘ = ~=8x10° N/m
& I

(12 6 ~12 6]
.1 2 3 6 4 "'6 2
k' =k” =8x10

-12 -6 12 -6

_6 2 =6 4_
e=1 O 0 O 0

e=2 g 0 O O



Example-1

We note that global applied loads are Fs=-1000 N.m and Fs =+ 1000 N.m obtained from pl?/12
as seen in fig. We use here the elimination approach. Using the connectivity, we obtain the global
stiffness after elimination: p/* /12

[t 8

(2) 1 (2)
2K

g 2
=8x10°
2 4

The set of equations is given by

5[8 2“@} {—1000}
8x10 =
2 4(|0,| |+1000



Example-1

The solution is |0, | -2.679x10™*
0, 4.464x10™

For element 2, ¢1 =0, ¢2= 04, ¢3 =0, and g4 = Os' To get vertical deflection at the midpoint of the
element, use v=Hg at £=0

4 /
v=0+§H3Q4+O+§H4Q,,

=(.;)(1](-2.67%10“‘)+(-;-](-H(4.464x10*‘)

=-8.93x10° m
=-0.0893 mm



Example-2

A beam element is subjected to a uniformly distributed transverse load along its length as shown in
figure (a). Determine the consistent load vector using the basic concepts of solid mechanics.

Py per unit length

$A44444080444000000 0441
f f

[ | *|

Fig (a) Consistent load vector

When a uniform beam is subjected to a uniformly distributed load of intensity P, along its length /,
the reactions at the ends given by the simple beam theory, when both the ends are fixed, is shown
in figure (a).



Example-2

The negative values of the reactions can be taken as the nodal loads corresponding to a uniform
beam element as shown in figure (b).

A N
A~

ji

12 12
Fig (b) Consistent load vector

So that the element load vector due to a uniform distributed load can be taken as

r pl |
2

P

p g 12 —> (EI)
pl

2

ol
12 |




Example-2

The element load vectors of a fixed-fixed beam for other types of loads such as a linearly varying
distributed load or a concentrated load or moment acting at any point along the length of the beam
element can be generated in a similar manner using results from the simple beam theory.

The consistent load vector of a beam element corresponding to a specified load distribution can be
generated.




Example-3

A uniformly distributed load of magnitude P, per unit length is applied along the length of a beam
element. Derive the corresponding consistent load vector in the local coordinate system.

Solution
The consistent load vector, 'P:Mfor a uniformly distributed load,.®(x) = F,
(N,(x)

o £ N, (x)

P J’ j [N] dx= ‘jo PN de= | V()

! o P
[N, (X))
, 2 ,

2

Qx* =30 + 1)/ b

e 3 A 222 s

- J‘ p()<(x Zf,Y +[.’X)/11 }dx=< 12 } ’ (E.I)
S | —(2x=3%)/1 2

(X' =)/ 2

_pE

L J2)
Which can be seen to be identical to eq. (e. 1) of example 2.

X




Summary

Let’s summarize the topic:

+ Beams are slender members that are used for supporting transverse loading.

Long horizontal members used in buildings and bridges, and shafts supported

>,
0.0

in bearings are some examples of beams.
« Analysis of beams is carried out by Potential energy approach and Galerkin

approach.
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Two Dimensional Stress
Analysis - I



Learning Objectives

At the end of this topic, you will be able to:
< Understand the two dimensional finite element formulation
+ Explain about finite element modelling
%+ Describe constant strain triangle
« Illustrate the Iso-parametric representation
< Solve the Jacobian of transformation
< Explain the potential energy approach
+ Explain Element stiffness and Force terms
+ Discuss the Characteristics of constant strain triangle element

< Understand the Treatment of boundary conditions



Outcomes

By the end of this topic, you will be able to:
« Explain two dimensional finite element formulation
+ Understand about finite element modeling and constant strain triangle
+ Discuss the Iso-parametric representation
+ Workout the Jacobian of transformation
« Discuss the potential energy approach
« Describe about Element stiffness and Force terms
+ Understand the Characteristics of constant strain triangle element

< Explain the Treatment of boundary conditions



Two Dimensional Finite Element Formulation

# The displacements, traction components, and distributed body force values are functions of

the position indicated by (x, y). The displacement vector u, is given as,

uy = [u, vj"

Where, u and v are the x and y components of u,,
respectively.
+ The two dimensional problem in a general setting

for an arbitrary shape is shown in figure

t = thickness at (x, y)

fu 1 = body force components
per unit volume at (x, y)




Two Dimensional Finite Element Formulation

#» The body force, traction vector, and elemental volume are given by,
f=fufyIT T=[T,TJT and dV=t d4

Where, t is the thickness along the z direction.

% The body force f has the units force/unit volume, while the traction force T has the

units force/unit area. The strain-displacement relations are given by,

| du dv du +dv [
dv dy '\ dy dx

+ Stresses and strains are related by,

0
10 >:—E\ v 1 0 Ke, ;
1-v°




Two Dimensional Finite Element Formulation

Where,

» 0..0, - represent stresses in x and y directions (N/m?).
» T, Represent shear stress in x-y direction (N/m?).

» E - modulus of elasticity (N/m?).

» v - Poisson’s ratio.

» €.,€, -strainin x and y directions (N/m?) ,

» /- shear strain in x-y direction (N/m?).



Two Dimensional Finite Element Formulation

» In general the above equation can be represented as,
o = De
where D here is a (3 X' 3) matrix, which relates three stresses and three strains.

» The region is discretized with the idea of expressing the displacements in terms of
values at discrete points.

» Triangular elements are introduced first.

» Stiffness and load concepts are then developed using energy and Galerkin approaches.



Finite Element Modeling

L)

# The two-dimensional region is divided into straight-sided triangles. Figure.1 shows a

typical triangulation.

L/

< The points where the corners of the triangles
meet are called nodes, and each triangle formed
by three nodes and three sides is called an
element.

< The elements fill the entire region except a small
region at the boundary.

(_)2;

L O 1

Node j

¥ X

Fig.1 Finite Element Modeling
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Finite Element Modeling

The idea of the finite element method is to solve the continuous problem

approximately, and this unfilled region contributes to some part of this approximation.

In the two-dimensional problem discussed here, each node is permitted to displace in

the two directions x and y. Thus, each node has two degrees of freedom (dof’s).

The displacement components of node j are taken as ng_ ; in the x direction and (), in

y direction.

We denote the global displacement vector as,

0=[0), 0» Q3. Q"

where N is the number of degrees of freedom.



Finite Element Modeling

<+ Computationally, the information on the triangulation is to be represented in the form

of nodal coordinates and connectivity.

< The nodal coordinates are stored in a two dimensional array represented by the total

number of nodes and the two coordinates per node.

% Figure shows the nodal connectivity for a typical element,

« For the three nodes designated locally as I
1,2, and 3, the corresponding global node (3, y3)

numbers are defined in Fig.1.

‘.I'"
'[ element

e— U

(x, y)

2+ Fig.2




Finite Element Modeling

+ This element connectivity information becomes an array of the size and number of

elements and three nodes per element. A typical connectivity representation is shown

in Table.1. TABLE 1: Element connectivity
Three nodes
Element number

¢ l 2 3
| | 2
2 4 2 7
11 6 7 10
20 13 16 | 15

+ The nodal coordinates designated by (x,y,), (x,y, and (x;y,) have the global
correspondence established through Table.1. The local representation of nodal
coordinates and degrees of freedom provides a setting for a simple and clear

representation of element characteristics



Constant Strain Triangle

% The displacements at points inside an element need to be represented in terms of the
nodal displacements of the element.

% For the constant strain triangle, the shape functions are linear over the element. The

three shape functions N, , N,, and N, corresponding to nodes 1,2, and 3, respectively,

are shown in Figure.3 below.

« Shape function N, is 1 at node 1 and linearly reduces to 0 at nodes 2 and 3. The

values of shape function N thus define a plane surface shown shaded in Figure.3(a)
£=0

> ;/n=0




Constant Strain Triangle

% Similarly N, and N, are represented by similar surfaces having values of 1 at nodes 2
and 3, respectively, and dropping to 0 at the opposite edges as shown in fig.3 (b) and
().

Fig.3 (b) £ =)

« Any linear combination of these shape functions also represents a plane surface. In

particular, N, + N, + N, represents a plane at a height of 1 at nodes 1, 2, and 3, and,

thus, it is parallel to the triangle 123.



Constant Strain Triangle

« Consequently, for every N, , N,, and N,,
N, +N,+N, =1
N,,N,, and N, are therefore not linearly independent; only two of these are

independent.

% The independent shape functions are conveniently represented by the pair &, 1] as,

N;y=€ Ny=m Ny=l=&-n =1

-~

Where &, 1 are natural co-ordinates as shown in figure.3.

% Here, in the two-dimensional problem, the x, y coordinates are mapped onto the &, 1

coordinates, and shape functions are defined as functions of &, il



Constant Strain Triangle

 The shape functions can be physically represented by area coordinates. A point (x, y) in

a triangle divides it into three areas, 4,, 4,, and 4; as shown in Fig.4.

Fig.4 \/3'] =0

% The shape functions N, , N,, and N, are precisely represented by,

N,=h N=% y=% 1
IA’] y V]

A A
Where 4 is the area of the element.



Iso-Parametric Representation

< In iso-parametric representation element geometry and displacement are represented

using the same set of shape functions.

« The displacements inside the elements , are now written using the shape functions and

the nodal values of the unknown displacement field.

— N AT AT
u=N,q +N,q,+N.q.

— 2
v=Ng,+Nyq,+Nyg,
< Equation 2 can further be modified using equation 1 as,
u=(g,+4s )¢ +(g; +95) 1 +¢s
— 3

v=(q,+95)$ +(9, +95)7 + 4



Iso-Parametric Representation

 The relations in equation 2 can be written in matrix form by defining a shape function

matrix as,

N = "3 # i

< Which can simply be written as,
U=Nq —+ 5

% For the triangular element, the coordinates X,} can also be represented in terms of

nodal coordinates using the same shape functions.

 This is Isoparametric representation. This approach lends to simplicity of development
and retains the uniformity with other complex elements.



Iso-Parametric Representation

 We have,
x=Nx +Nx,+N,x,

y=Ny, +N,y, + Ny, =
« Which can also be written as ,
x=(x-x)+(x-x)n+x

% Using the notations X, § =X =, and . 5= Y=l in equation 7 we get ,

Y= Xy36 T X550 T

V=V TVt Vs

v

« Equation 8 relates x and y co-ordinates in-terms of ¢ and » coordinates. Equation 3
relates u and v as functions of ¢ and 7.



Solved Problem

1. Evaluate the shape functions N, N, and N, at the interior point P for the triangular
element shown in figure

Given data :- y

Coordinates at node 1 ( x,,y,) = (1.5, 2) 3(4,7)
Co ordinates at node 2 ( x,,y,) = (7, 3.5)
Coordinates at node 3 ( x;,y;) = (4, 7)
Coordinates at interior point P = (3.85, 4.8) 27. 3.5)

» X




Solved Problem

To find :-

Shape functions N, N, and N, at point P.

Solution : -

Using the isoparametric relations of equations 6,7,8 we have,

3.85=15N,+7N, +4N, =-2.5¢ +3n+4 21

48=2N,+3.5N, + TN, =-56—-3.50+7 55

The above two equations are rearranged in the form,
2.56-3n=0.15
5E+3.5n=22
On solving the equations we obtain,

£=03 and =02



Solved Problem

Which implies that the values of shape functions are ,

N,=03  N,=02  N,=05

Result :~

The values of shape functions at the interior point P are,

N,=03  N,=02  N,=05



Jacobian of Transformation

# The Jacobian is defined as determinant of 2 x 2 matrix. In evaluating the strains,

partial derivatives of u and v are to be taken with respect to x and y.

» From equations 2 to 8 , we see that ,
u=u(x(£.n),y(&.n) and similarly v =v(x(.n). y(£.n))

< Using the chain rule for partial derivatives of u, we have,

Cu _Cu Cx ¢ cu Cy
6 xof oOyoé
- ~ ~ - -~
Cu _ou Cx | Cu Oy

cxcén cven

on
which can be written in matrix notation as,
( - 3 [+ AL -~ = R )
cu CX V cu
o0& 0 0OF || ox
¢ " d=b ke 59
cu ox Oy ||cu
7 P | e
on) [on on|\% |




Jacobian of Transformation

Where the (2 X 2) square matrix is denoted as the Jacobian of the transformation, J:

ox Oy
J = % ey - 10
cx Oy
on on |
+ On taking the derivative of x and y,
s S V0
7| Yo | 511
B




Jacobian of Transformation

Also from equation 9,

o ) A
cu cu
Cx o BE

g ael N
cu cu
) on

Where J/ is the inverse of the Jacobian J. given by

e :L Y I3
detJ|—=x, 2,

det = X3V — X i



Jacobian of Transformation

« From the knowledge of the area of the triangle, it can be seen that the magnitude of
det ] is twice the area of the triangle. If the points 1,2, and 3 are ordered in a

counterclockwise manner, det ] is positive in sign. We have,

A== |det] |

where | | represents the magnitude.



Jacobian of Transformation

% From equations 10 and 11 it follows that,

cu
Ox
cu

)

cu

—Pp 122

+ Replacing u by the displacement v, we get a similar expression,

D [ Q)\
- <

o

2|

—

Y o

ov

on

—vx23

._))l‘ —
2 a"g

X3

Oy

oy

on

—p 12D



Jacobian of Transformation

 Using the strain displacement equations, we get,
’6u w

ox
ov > 13 a
0y
cu Cv
o+

0y Ox

>
7

(3

r."zs(% —qs)")’n(‘h "(15) |
"xz}(qz "qo)+xls(q4 —qﬁ) |

=Xy (4, =9¢)+ x5 (0 =)+ 73 (0 = 96 ) = 13 (44 "qﬁ)J

« From the definition of we can write y,, = y,; and y,, = y,; —,; and so on. The forgoing
equation can be written of the form,

Y3y = V345 + V145
X35q, T X34, + X4 i

X2y T Vo3 T X345t V3 qs T Vo ds + Va4 |

|
=——
det.J

N

1

=detJ< 313b




Jacobian of Transformation

« This equation can be written in matrix form as,
E= Bq - 14
where B is a (3 x 6) element strain-displacement matrix relating the three strains to

the six nodal displac_ements and is given by,

1 s Oy 0o 0 |
g=—l 0 X3 0 X3 0 X1
Gpd > 15.a
_.\'32 .})23 x|3 y3| le ylZ I
(or) l | Va3 0 = 0 W 0 ..
[B] - ﬂ 0 _x32 0 x3l O _le
_—x32 Vi Xsp =Vu Xy Yy | - 15.b

« It must be noted that all the elements of the B matrix are constants expressed in terms

of the nodal coordinates.



Solved Problem

2) . Determine the Jacobian of the transformation .J , for the triangular element shown.

Given data :-

Coordinates at node 1 (x,,y,) = (1.5, 2)
Coordinates at node 2 ( x,, y,) = (7, 3.5)
Coordinates at node 3 (x;,y;) =(4,7)

Coordinates at interior point P = ( 3.85, 4.8 )

To Find:~

Jacobian of Transformation .J.

» <

3(4,7)

1(1.5, 2)

P(3.85,4.8)

2(7,3.5)

» X




Solved Problem

Solution : -
We have,
J_-xl_; 3»‘13__ =29 =24
Nxs ys]| (30 -35

Thus det J = 23.75 units.

This is twice the area of triangle.

Result : -

Jacobian of Transformation for the given triangular element is 23.75 units.



Potential Energy Approach

« The potential energy of the system, [], is given by,

1 .
nz-jeTDetdA —Izﬂft dA —jurt dl —Zu,.TR > 16

2 A A L. i
« In the last term in equation 16 , ‘I’ indicates the point of application of load P, and

PI':[P.\" P\Jir
 The summation in '/’ gives the potential energy due to all point loads.
 The total potential energy can be written in the form,

1= Z%J‘ETDEIdA —Zj’urftdA —jllrtd[ - Zu,.TR >17a
or e “4 ;

¢ 4 L

[1= ZU Zju fidA~[u"tdl -y u' P 517b

L

]
Where U, = 5 j e’ DetdAis the element strain energy.

A



Element Stiffness

+ We now substitute for the strain from the element strain - displacement relationship in

equation 14 into the element strain energy equation, we get ,

U, = L J.e"'Det dA

-
A

= ;‘[qubeqtdA > 183

A

 On solving we get ,

U,= ~-12~qu"(1 >18b

Where, K¢ is the element stiffness matrix given by
k=t AB' DB > 18¢



Force Terms

* The body force term j uTﬁdA appearing in the total potential energy in equation

17.b is considered first . We have ,

I urftdA =t(,j (zgﬂ_ +\f‘,)a’A > 19a.
« Using the interpolation relations, we get,

LqutdA = qlt(t(,fx.[e N,dA) +4, (te_f).j(’ deA)
t4, (fef.\. j N sz)+ q, (t‘, 1, L deA) > 19.b

+q (t(,f \. J‘o N 3dA) 4 (te./ . L N 3dA)



Force Terms

o j N; dA Represents the volume of a tetrahedron with base area 4, and height of corner

e
equal to 1 (non-dimensional).

% The volume of this tetrahedron is given by {(1/3) x Base area x Height}.

1
— Ae

Hence, We have,
[ N.dA = ;

e

 Equation 19.b can now be written in the form,f U' ftdA=q"f¢

e

Where, f¢ is the element body force vector given by,

= (1 f, fufy ST



Force Terms

« A traction force is a distributed load acting on the surface of the body. Such a force acts

on edges connecting boundary nodes. A traction force acting on the edge of an element

contributes to the global load vector £

 The point load term is easily considered by having a node at the point of application of

the point load.

« The contribution of body forces, traction forces, and point loads to the global force F

can be represented as,

FE Y, (f¢+T¢)+P
Stress calculations:-

< Since strains are constant in a constant-strain triangle (CST) element, the

corresponding stresses are constant.



Force Terms

 The stress values need to be calculated for each element. Using the stress-strain
relations, we have,
o =DByq > 20
< Using the element connectivity table we now extract the element nodal displacements

q from the global displacements vector Q.

« If the element is in a state of plane stress, the stress-strain relations are given by

g:|Dl‘; 2> 21

Where 0}

XX

O=C. ?

Yy

0.
. %)

« Equation 20 is used to calculate the elemental stresses. Principal stresses and their

directions are calculated using Mohr's circle relationships.



Characteristics of Constant Strain Triangle Element

« The CST element was the first finite element developed for the analysis of plane stress

problems .

 Because the displacement model is linear (Equation.2), the element is called a linear
triangular element. From Equations (15.a) and (15.b), we find that the [B] matrix is
independent of the position within the element and hence the strains are constant

throughout the element.

« This is the reason why this element is often referred to as a CST element (constant

strain triangular element).

+ The displacement model chosen (Equation.2) guarantees continuity of displacements
with adjacent elements because the displacements vary linearly along any side of the

triangle (due to linear model).



Characteristics of Constant Strain Triangle Element

« From Equation.21, we can notice that the stresses are also constant inside an element.,
« Hence, the element is also called a CST (Constant Stress Triangular) element.
% More accurate normal stresses can be obtained by using smaller size elements.

+ However, the convergence to the correct solution will be very slow.



Solved Problems

3. For the two-dimensional loaded plate in figure determine the displacements of nodes 1

and 2 and the element stress using plane stress conditions. Body force may be neglected

in comparison with the external force Y 1000 Ib

E ]

’/g 3
7

Element (¢) = 2

o
5.

Element (¢) = |

Ly X
/ Thickness t = 0.5 in

Thickness ( ¢ ) = 0.5 inches. ; 3in 1 Bl

Given Data : 4

Modulus of elasticity (E) = 30 x 10° psi, Poisson’s Ratio v = 0.25

Displacements 0, (acting in y direction at nodel),Q;,0, (acting in x, y directions at node 3),

Q,, O, (acting in x and y direction at node 4) are all zero.



Solved Problems

To Find:-
The displacement and stresses at nodes 1 and 2.
Solution:-

For plane stress conditions, the material property matrix is given by,

1 v 0 | [32x10" 08x10" 0

E
D:l v 10 |=[08x10" 3.2x10" 0
-V
o0 =YL © 0 1.2x10"
We establish the connectivity from the figure as follows,
Nodes
Element No
I 2 3
I I 2 4
2 3 4 4




Solved Problems

On performing the matrix multiplication DB¢, we get,

1.067 04 0 04 -1.067 0
DB'=10"{0267 -1.6 0 16 -0267 0
' -0.6 04 06 0 0 -04

-1.067 04 0 -04 1.067 0 |
DB*=10"|-0267 16 0 ~-1.6 0267 0
- -06 -04 06 0 0 04

These two relationships will be used later in calculating stresses using, o° = DBq

T
The multiplication, I eAeBe DB* gives the element stiffness matrices .



Solved Problems

The element stiffness matrices are,

1 2 3 4 7 8 4= Global dof
(0983 -05 -045 02 -0533 03 |

-05 14 03 -12 02 -0.2
-045 03 045 0 0 -03

k'=10
02 -12 0 12 =02 0
0533 02 0 -02 0533 0
03 =02 -03 0 0 02|
5 6 7 8 3 4 4— Global dof
0983 -0.5 -045 02 -0.533 03]
05 14 03 -12 02 -02
, .| -045 03 045 0 0 =03
k=10

02 =12 0 12 <02 0
-0533 02 0 -02 0533 0
03 =02 -03 0 0 0.2




Solved Problems

Now its sufficient to consider the stiffness associated with Q,, 0, and Q,.

Since the body forces are neglected, the first vector has the component F, = -1000/b.

(where [bis unit of pounds , 1 /b = 0.453 Kg).

The set of equations is given by the matrix representation,

3

(0983 -0.45 0.2](Q] [0
10" <045 0983 0 [1Q,p=40 ¢
02 0 14]|0,] |-1000

e

Performing matrix multiplication and solving for the displacements we get,

0=1913x 107 in. 0,=0.875x10~1n. 0,=-7436x10in.



Solved Problems

For element 1, the element nodal displacement vector is given by,
g' =10°[1.913,0,0.875-7.436,0,0]
The element stresses ¢’ are calculated from DB/q as
o' =[-9.33,-1138.7,-62.3] psi
Similarly,

¢’ =107[0,0,0,0,0.875,~7.436]'

o =[93.4,23.4,-2974] psi



Solved Problems

Result:-

The nodal displacements Q,, 0, and Q, are calculated as ,
0,= 1.913x1071n.
0,=0.875x10~in.
0,=-7.436x10~1n.

The nodal displacement vector and element stresses for elements 1 and 2 are calculated

as,

g' =10°[1.913,0,0.875-7.436,0,0]
o' =[-9.33,-1138.7,-62.3]  psi

¢’ =10°[0,0,0,0,0.875,-7.436]

o =[93.4,23.4,-297.4] psi



Treatment of Boundary Conditions

 The finite element method is used for computing
displacements and stresses for a wide variety of

problems.

% The physical dimensions, loading, and boundary
conditions are clearly defined in the problems

we discussed .

< In other problems, these are not clear at the

outset.

30 MPa
- >
-— —
=5 -
R —
<41 3() mm —
- -
— —
= | .
- >

s (3() NI e

Fig 5.8(a)

> <

=30 MM

< O O T T

> X

I

Fig 5.8(b)

Rectangular plate




Treatment of Boundary Conditions

« An example is the problem illustrated in Fig. 5.8a.

« A plate with such a loading can exist anywhere in space. Since we are interested in the
deformation of the body, the symmetry of the geometry and the symmetry of the
loading can be used effectively.

% Let x and y represent the axes of symmetry as shown in Fig. 5.8b. The points along the
x-axis move along x and are constrained in the y direction and points along the y-axis
are constrained along the x direction.

« This suggests that the part, which is one-quarter of the full area, with the loading and
boundary conditions as shown is all that is needed to solve the deformation and

stresses



Two Dimensional Stress
Analysis - IT



Learning Objectives

At the end of this topic you will be able to:

<+ Know about axisymmetric Solids
<+ Derive the relationship between stress and strain

» Formulate axisymmteric problems

Outcomes

By the end of this topic, you will be able to:

< Understand about axisymmetric Solids

< Differentiate the relationship between stress and strain

 Solve the problems relating axisymmteric



Axisymmetric Solids

 Axisymmteric solids are solids with axial symmetry.

+ These solids have their geometrical and material properties independent of the

circumferential co-ordinate, 8. As shown in figure 1 .
ZW T

Circumferential
cooordinstc

Meridional
cross section

—h

ru

Figure 1 Axisymmetric Solid
 Few examples of axisymmetric solids are water reservoir, water treatment plant ,

cooling tower , cylindrical tank with spherical dome as shown in fig.2.



Axisymmetric Solids

/CE

Water reservoir

%

Water treatment
. plant

Cylindrical tank
with spherical dome

Figure 2 Examples of Axisymmetric Solids

« Problems involving three-dimensional axisymmetric solids or solids of revolution,

subjected to axisymmetric loading, reduce to simple two-dimensional problems.



Axisymmetric Solids

» Because of total symmetry about the z-axis, as seen in Fig.3.a, all deformations and

stresses are independent of the rotational angle 6.

S , Revolving
area A

NS Boundary

Figure 3



Axisymmetric Solids

« Thus, the problem needs to be looked at as a two dimensional problem in rz, defined

on the revolving area (Fig.3.b).

 Gravity forces can be considered if acting in the z direction. Revolving bodies like

flywheels can be analyzed by introducing centrifugal forces in the body force term.

< The various forces acting on Figure.3.b are displacement force term, body force term,

traction force, point load, written as,

u = [uw]’
I=JEL ]
f=lLh"

P=[P,P]



Axisymmetric Formulation

 Considering the elemental volume shown in Fig.4, the potential energy can be written in

the form,
H%j: [o" erdado~[" [u frdado~[" [u'Trdld0-Yu[P 51
A A L i
dv=rd0drd:
\4/ =rd0di .
d())\\ &
N

Figure 4



Axisymmetric Formulation

« Where, rdldf is the elemental surface area and the point load P; represents a line load

distributed around a circle, as shown in Fig.3.b.

« All variables in the integrals are independent of 6 . Thus, Eq. 1 can be written as,

[1= 27[%“'0'7' € rdA —.[u"'ﬁ*dA —J'urTrdl - Zui"'}? > 2

A A A
Where,

u = [uw]" 3.8
=L ia
T=[T,T.]" 55



Axisymmetric Formulation

 From Fig.5, we can write the relationship between strains E and displacements « as,

/i
€= [E’,,E:,"/,:,Eo]

| Ou ow 6u+8w u §

- ; - ; 26
or 0z 0z Or r

Figure 5



Axisymmetric Formulation

 The stress vector is correspondingly defined as,

I
Gz[al"az’or:’GU] ') 7

< The stress-strain relations are given in the usual form, viz.,

0 = DE

> 8
where, the (4 x 4) matrix D can be written as ,
L g g
1-v |-V
y V
I 0
E(]—v) |-y 1-v

(+v)(1=29) o o L=y 0

-y 1-v

79



Finite Element Modeling - Triangular Element

* The two-dimensional region defined by the
revolving area is divided into triangular
elements, as shown in Fig.6.

» Though each element is completely
represented by the area in the rz plane, in
reality, it is a ring-shaped solid of revolution
obtained by revolving the triangle about the z-

axis.




Finite Element Modeling - Triangular Element

* A typical element is shown in Fig.7.

|
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Figure 7

* The definition of connectivity of elements and the nodal coordinates follow the steps

involved in the CST element.
+ We note here that the r- and z- coordinates, respectively, replace x and y.

“ Using the three shape functions N, NV,, and V, . we define,
u = Ng =2 10



Finite Element Modeling - Triangular Element

< Where u is defined in equation 3 and,

[N 0N 0N 0

} 511
0 N 0 N, 0 N,
q=(0142939:95+95 )" 5 17

% If we denote N, =¢and N, =1, and note that N, = I - ¢- 5y, then Equation 10 gives,

\r

=4, +nq, +(1“€'77)‘Is

. ) - 13
0 =q{q, +’7q4+(]—§—’7)q6

By using the isoparametric representation, we find,

r+17r3+(l—§—17));

r |
2=z +nz,+(1-€-n)z

5
-

> 14



Finite Element Modeling - Triangular Element

< The chain rule of differentiation gives,

r@u\ rau\
o0& B
1%L _ glorl 315
cil it
on | |0z )
0| ()
O A
3 > s = J < or > > 16
Cw Cw
onj Loz,

where, the Jacobian is given by ,

v
J =( 13 '3) > 17a
By 23



Finite Element Modeling - Triangular Element

 Replacing the nodes as i,j,k instead of 1,2,3 , we get the relation as,

r w 4 w

N. : a+b +cz
l
{N,p=<L t=—1a,+b_+c,z; > 17b
J / J ) J
24
N L] @40, e
_.l - " -) 17
A——(c,.zj+ijzk+r;,z,.—rjzk—rjz,.—rkzj) c

% In the definition of J/ earlier, we have used the notation. 7, = r,-7;and z; = z, - Z;
% The determinant of J is,



Finite Element Modeling - Triangular Element

 Recall that, \det J‘ =24, That is, the absolute value of the determinant of J equals

twice the area of the element. The inverse relations for Equations 15 and 16 are given
by ,

N Ou | (b0 00
Ay O& A O&
<6' L=J17° | and <6’ L = e 318
cu it 3l0) ow
(02 ) k@l]} | 0z 16771

Where

e ¥ [l > 19
detJ\=-r, 2z,



Finite Element Modeling - Triangular Element

 Introducing these transformation relationships into the strain- displacement relations,
in equation 6 and using equation 13, we get,

rzz.x(‘ll “ls)—zu(‘h“ls)

detJ
"33(‘]2 "q(,)—’h((l.; —q())
& det.J s = 20
=135 (41 =)+ 115 (45 = 4 )+ 225 (4 = 4 ) ~ 215 (9 ~ 4 )

detJ

N.g, +N,q; + Nyg,

( /

« This equation can be written in matrix form as,

€=Byq > 21



Finite Element Modeling - Triangular Element

+ where the element strain-displacement matrix, of dimension (4 x 6), is given by,

ay 0 23 0 2y
detJ det.J det./
Z, 2 7
0 =2 (0 =B 0 =L
- et et dets | 7%
S Ay A&y 4p
detJ detJ detJ detJ detJ det
Moy ko N
S0 i I I 2

 The element stiffness matrix [K ] is given by,

k=21rA B DB 323
Where,



Finite Element Modeling - Triangular Element
% 2n7A, is the volume of the ring-shaped element shown in Fig.7. Also A, , is given as ,

- Lhget] >2
9,

« The body force term is given as,

21( ' frdd=q' f° 325

where the element body force vector f is given as,

27rrA

/= [f,,f Lo f,,f} 3 26

« The bar on f terms indicate that they are evaluated at the centroid.



Solved Problems

In fig. 8 a long cylinder of inside diameter 80mm and outside diameter 120mm snugly fits
in a hole over its full length. The cylinder is then subjected to an internal pressure of 2

Mpa. Using two elements on the 10mm length shown, find the displacements at the inner

radius.
:
ot | = ,
| |
il | I 4
2 Mpa! ; Fi | 4’<§‘
|
e ) : o Jlo mm
| I " 0
I | F; 2 N
ol I | ‘ 3"@ d
= | |
_ €— : " : 40 mm ’| ”
L 80 mm diam L 60 mm >
¢ 120 mm diam N : E =200 GPa
=073

Figure 8



Solved Problems

Given Data :-
Inside Diameter = &80 mm.
Outside Diameter = 120 mm.
Internal Pressure = 2 MPa .
Young'’s Modulus (E) = 200 x 10’ Pa.
Poisson’s Ratio (v ) = 0.3.

To Find :-

The displacements at the inner radius ( O, and Q, ). (Since roller supports are provided

at the nodes 1 and 2. There is displacement only in x-direction & the displacement in y

- direction is zero).



Solved Problems

Solution :-

Consider the following table:

Coordinates
Connectivity Node
Element r z
1 : 3 1 40 10
2 2 3 4 3 60 0
4 60 10

We will use the units of millimeters for length, Newton's for force, and Mega-Pascal's for

stress and E. These units are consistent. On substituting £ = 200000 MPa and v = (.3, we

have, 2.69x10° 1.15x10° 0 1.15x10° |
ol 1L15x10° 2.69x10° 0  1.15x10’

0 0 077 0
1.15x10° 1.15x10° 0 2.69x10°




Solved Problems

For both elements, det J = 200 mm’ and 4, = 100 mm. From Eq.24 , forces F, and F; are
given by,

2l P 27(40)(10)(2)
===

F=F, =2514N

The B matrices relating element strains to nodal displacements are obtained first. For

Element.1, -
r= 3~(40+40+ 60) =46.67Tmm and ,

005 0 0 0 005 0]
2 o 01 0 -01 0 0
0.1 -005 -01 0 0 005
00071 0 00071 0 00071 0

B



Solved Problems
For element 2, F= —;—(40 +60+ 60) =53.33mm and

005 0 0 0 005 0]
b 0 0.1 0 -01 0 0
101 =005 <01 0 0 005
000625 0 000625 0 0.00625 0

The element stress-displacement matrices are obtained by multiplying DB:

[ -126 1.15 0.082 -1.15 143 0 |

| 049 269 0082 -2.69 0.657 0.1
DB =10

0.77 -0385 -077 0 0 0.385

0384 1.15 0191 -1.15 0766 0 |

[1-0.97 0 142 =115 0.072 1.15]

— _,[-0503 0 0647 -2.69 0.072 2.69
DB =10

0 -038 -0.77 038 077 0
-0.407 0 0743 -1.15 0.168 1.15




Solved Problems

: ; . S g o
The stiffness matrices are obtained by finding 27r4,B DB for each element,
Global d of — 1 2 3 4 7 8
[ 403 =258 -234 145 -1932 113 ]

845 137 -789 193 -0.565
230 -024 0.6 -~1.13

789 -1.93 0

. 2.25 0
symmetric 0.565

Global d of — 3 4 5 6 7 8
[ 2.05 0 =222 169 -0.085 -1.69]

0.645 129 -0.645 -129 0

=107 501 =346 -242 217
9.66 1.05 -9.0I
262 0.241

symmetric 9.01

Using the elimination appl:oach, on assembling the matrices with reference to the degrees

of freedom 1 and 3, we get, . 403 -234](Q] (2514
2514

-2.34 435

9



Solved Problems

On performing matrix multiplication and solving the linear equations we obtain the values
of displacements as,

0, =0.014x107 mm

0, =0

0, =0.0133x10" mm

Q4 =0

Result :-

The values of displacements at the nodes 1 and 2 on the inner surface of cylinder are,

0, =0.014x107 mm
0, =0

Q, =0.0133x10 mm
04 =0



Solved Problems

2. A triangular axisymmetric ring element with nodes i, j, and k is shown in figure 9.
The (r, z) coordinates of the nodes in centimeters are also indicated in figure 9. Find the
shape functions corresponding to the nodal corresponding to the nodal degrees of freedom

of the element.

———

\§~ —”
hadl e pap—— Y

e b T T s W=y
/ : ) u2= Q-1
/N : (tj, z)=(70,60)
/
i |
,//) e o - wi = Qy
v’ '
/ : u = Qa1
:
| i oy ) o
X s = O ! (r,2,)=(80,40)
\\ | 7’
M, ! 0O u~Qui
|
|
|
|

Figure 9



Solved Problems

Given Data:-

The co-ordinates at nodes i ,j , k.
(7:-2;) = (80,40)
(r,.,z_,.)z (70,60)
(752 )= (50,20)

To find :-

The shape functions at the nodes
N, (r,z)
Nj (r,z)
N, (rz)



Solved Problems

Solution :

The matrix of shape functions corresponding to the six degrees of freedom of the element
is given by Eq. (11) with the shape functions defined in Eq.17 a and b. The constants a,

/@ ,a, of can be found by replacing x and y by rand z, respectively, as,

a,=rz,~nz;=70(20)-50(60) =-1600

a,=rnz-rz, =50(40)-80(20) =400
a, =rz,—r.z,=80(60)-70(40)=2000
b=z -z, =60-20=40

b, =2,-2, =40-60=-20
¢,=n-r=30-70=-20

¢, =r-1=80-50=30

¢, =r,—r,=70-80=-10



Solved Problems

The area of triangle i, j, k is given by ,
I

- ;(80(60)+ 70(60) +50(40) ~80(20)~70(40) - 50(60))
=400cm’ = 0.04m’
Thus the shape functions are defined as,

N.(r,z)= L(a. +b.r+c.z)=O.5+0.025r—0.03752
] 2A J ! /

N, (r,z)= ZIA(G" +hr+¢,z)=2.5+0.025r-0.0125z



Solved Problems

For the above problem find matrix [B]
Solution :-

The B matrix is given by the relation,
b 0 b 0 b O]

I

8]=34

On substituting the known values we obtain ,

40 0 -20
I I
-(-2+0.05,-0.025.) 0 -
[B]= l‘( e ) r
0 -20 0
-20 40 30

(0.5-0.025,-0.037, )

0

0

30
-20

I

r

-20
(2.5+0.025,-0.0125, )

0
-10

0

0

-10
-20




Solved Problems

The centroid of the element is given by,

{r,,g}={§(,;+,;.+;;) ;( tz, M)} {;(80+70+50) ;(40+60+20) = {66.6667,40.0} cm
3 J

The matrix [Q] can be determined by evaluating [B] at the centroid, (r, z) = (r, 2).
Noting that,

| I

( -2.0+0.05r-0.025z) =
66.6667

1-2.0+0.05(66.6667)-0.025(40)} = 0.005

-(0.5+0.0257 -0.03752)= ——
66.6667

|~ | P I~

(0.5+0.025(66.6667)~0.0375(40)} = 0.003

1
(2.5-0.025r-0.0125z) = —{2 5-0.025(66.6667)-0.0125(40) } = 0.005

1
r 66.6667



Solved Problems

The matrix [B] can be found as,

- 0.05 0 -0025 0 -0.025 0
[B] l [B 0 z):l _ 0.005 0 0.005 0 0.005 0
E T 0 -=0.025 0  0.0375 0 -0.0125
1-0.025 0.05 0.0375 -0.025 -0.0125 -0.025

Resuit :-

Value of [B] matrix is found out as,

[ 0.05 0 -0025 0  -0.025 0
[B]:[B(r,z)]= 0005 0 0005 0 0.005 0
= = 0 -0025 0 00375 0 00125
-0.025 005 0.0375 -0.025 -0.0125 -0.025




Solved Problems

3. If the Young's modulus and the Poisson's ratio of the material of the triangular ring
element ijk considered in problem 2 are given by 207 GPa and 0.3, respectively, Find the

stiffness matrix of the element ?
Given Data :-
Young'’s modulus (E) = 207 Gpa.

Poisson’s Ratio (v) = 0.3.

To find :-

The stiffness matrix of the element [K (¢)] .



Solved Problems

Solution :
The stiffness matrix [K (¢ ] is given by the equation 23 as,
- ,._7' p—
k*=2zrA,B DB

we already know the values of [E]. The value of D is calculated below,

07 03 03 0 27865 1.1942 1.1942
[D]=207(10") 03 07 03 0 S 1.1942 2.7865 1.1942
(1.3)(04)[ 03 03 0.7 0 1.1942 1.1942 207865

0 0 0 02 0 0 0

Noting that,
27rA = 27(66.6667)(400) = 1675.5208(10° )’ = 0.167552m’

0
0
0
0.7962




Solved Problems

The stiffness matrix of the triangular ring element ijk can be found out as,

(13623 -0.4419 -0.6720 -0.4961 -0.5052 -0.0542]
-0.4419 0.6253 0.3502 -0.6045 0.0167 -0.0208
[K“’):I=IO“ -0.6720 03502 0.4410 -0.2751 0.1909 -0.0750 N
0.4961 -0.6045 -0.2751 0.7399 -0.1084 -0.1355|m
-0.5052 0.0167 0.1909 -0.1084 0.2743  0.0917
-0.0542 -0.0208 -0.0750 -0.1355 0.0917  0.1563

Result :~

The stiffness matrix of the given triangular axisymmetric element is calculated as,

13623 -0.4419 -0.6720 -0.4961 -0.5052 -0.0542
-0.4419  0.6253  0.3502 -0.6045 0.0167 -0.0208
[ KW]:n 0 -0.6720 03502  0.4410 -0.2751 0.1909 -0.0750

0.4961 -0.6045 -0.2751 0.7399 -0.1084 -0.1355 |m
-0.5052  0.0167 0.1909 -0.1084 0.2743  0.0917
-0.0542 -0.0208 -0.0750 -0.1355 0.0917 0.1563 |

| =




Stress Calculations

+ From the set of nodal displacements obtained in the above problem, the element nodal

displacements q can be found using the connectivity.

 Then, using stress-strain relation in Eq. 8 and strain-displacement relation in Eq.21, we

have,

O'=D§q > 27

where, [B] is B evaluated at the centroid.



Higher Order
and
Isoparametric Elements



Learning Objectives

At the end of this topic, you will be able to:

Describe about Higher Order One-dimensional Elements

Explain about Higher Order Cubic Element

Describe about Higher Order Elements in Terms of Natural Coordinates
[llustrate the Problems on Higher Order and Isoparametric Elements
Describe about Two-Dimensional Isoparametric Elements

Explain about the Numerical Integration



Outcomes

By the end of this topic, you will be able to:

» Discuss about Higher Order One-dimensional Elements

» Describe Higher Order Cubic Element

» Understand Higher Order Elements In Terms Of Natural Coordinates
» Solve the Problems on Higher Order and Isoparametric Elements

» Explain Two-Dimensional Isoparametric Elements

Discuss about the Numerical Integration

b



Higher Order and Isoparametric Elements

 If the interpolation polynomial is in the order of two or more, the element is known as a

higher order element.
« A higher order element can be either complex or multiplex.

« In higher order elements, some secondary (mid-side and/or interior) nodes are
introduced in addition to the primary (corner) nodes in order to match the number of
nodal degrees of freedom with the number of constants (also known as generalized

coordinates) in the interpolation polynomial.
« For problems involving curved boundaries, a family of elements known as isoparametric
elements can be used.

« In isoparametric elements, the same interpolation functions used to define the element

geometry are also used to describe the variation of the field variable within the element.



FEM UNIT I Prepared by CH.SEKHAR
1 Inaplane strain problem, we have
oy = 20000 psi, o, = ~10000 psi
E=130x 106psi’p =03

Determine the value of the stress o,

A)
Plane strain condition implies that
(o O o._
g, =0=—v——-v—+—
- o DN O)
which gives
G, = V(Gx +0‘_‘.)
We have, o, =20000psi o, =—10000psi /. =30x10"psi v=03,
On substituting the values,
o _ = 3000 psi
2. . :
If a displacement field is described by
v = (3x + 6y — )10
determine e,, €,, Yxyatthe pointx = 1,y = 9,
A)

Displacement field
=10 4(—x3 + 2y +6xy)

v=10 “(Bx+ 6y — )

' L

o100t 2xrey) Y =10 *(4y 1 6x)
oy

=

iy
iy Sy n
[ o a € a
L —3>10 =10 M6+ 20)
X o
!
CrE
'y
o
s =+
p
iy
S v
=+t =
ih £ |



3. Consider the differential equation for a problem as

2
Y 1+ 300 x%= 0,
dx

0<x<1.

with the boundary conditions y (0)=0,y (1)=0. Find the solution of the
problem wusing a one coefficient trial function as y=a1x(l—x3). Use

(i) Point collocation method, (ii) Sub-domain collocation method, (iii) Least
square method and (iv) Galerkin’s method.

A)
The given differential equation is

: ()
(:l—g+300x2=0, 0sx=s1l
X

The boundary conditions are y=0 at x=0 and x=1
The trial function is y=a; x (1 - x) e (2)

First let us check this trial function whether it will satisfy the boundary
conditions or not.

For x=0, y=2;(0)(1-0)=0
and for x=1, y=a; (1) (1~ 13)=0
Hence the selected trial function satisfies the boundary conditions.

Now the eqn. (2) = y=a; (x—x‘)

d’y 2 2
dy —4x3 d =a;(0-12x%)=-12a; x
dx—al(l 4x )8“ dxz al( 1

. . 2 2
Substituting in the equation (1), we get the residual as R=-12a; x" + 300 x

1) Point Collocation Method:

In point collocation method, the residual is set to zero

je., R=—12a; x2+300x*=0

Since the number of coefficients to be found is one, (i.e., aj), we require only
one collocation point and this point should lie between 0 and 1.

Let us_ take x=—%
1Y 1Y
: == 12 +300| = | =
Then R 1 11[,‘5] [2] 0
e, 3a; =75 (or) a; =25

Hence the trial function is y = 25x (1 -x°) (Answer)



(i1) Sub-;d'omain collocation Method:

In this method, the integral of the residual over the sub-domain is set to
zero.

1
i.ce., j Rdx=0
0
1
ie., | [ —12a; x%+300 x? )dx=o
0 \
3 3 1
ie., [ - 12 a, ‘fo,— +300%J0'=0

ie, —4a;+100=0

0
(or) a, = lg* =25

Hence the trial function is y =25x (1 — x3) (Answer)

(iii) Least Square Method:

In this method, the integral of the square of the residual over the domain
called as functional is to be minimum.

1
i.e., The functional I=I R? dx = minimum
0
(-12a; x” + 300 x%)? dx

Now I= | R%dx=

o —

(144 a¥ x* + 90000 x* - 7200 a, x*) dx

D ey et D Me— s

o 1
i £ x5 x" x5
=[ 144 afg+ﬂﬂﬂﬂﬂ = 72008 -5—1]

144 o 90000 72002,
5 1 5 5

oI 288 7200
Nowaa]—0=> 5 1”7 =0
(or) 288 a; =7200
: 7200 ‘
1.6, a1 s 588 = 25

Hence the trial function is y =25x (1 - x%) (Answer)



(iv) Galerkin’s Method:
In this method, the domain integral of the product of the trial function with

the residual is set to zero,

1
ie, | v R)dx=0

0
1
ie., I a,x(l—xa)( — 1234 x2+300x2)dx=0
0
1
15e5; I (alx—alx4)(—-1231x2+300x2)dx=0
o -
1

ie., [ ( —12a'fx3+300a1x3+12a§x6—300a1x"')dx=

4 4
31.6., [—-12a1——+300a1—4~+12a1————300a1 71)
2
12 a7 300 12 2 300 _ _
ie., ——3 +—4—'al+7a1————7 a;=0

Dividing by (—12a;) we get
a;y 25 _ 21 25 _ 0
i T
_ 7a;—4a; _175-100
AR 28 28

(or) 3a; = 75 1.e., a1 = 25

Hence the trial function is ¥ =25x (1 —xs) (Answer)



:"lnd htl’;e de.flectipn at the centre of a simply supported beam of span
engt subjected to a concentrated load P at its mid-point as shown in

figure Use Rayleigh-Ritz method. :
\! P
| )
- |
’AT | ]B
= ;77(72777-
5 ,
r & 1
\ )
r—-—>x ! #
Fig.

As per Rayleigh-Ritz method, when the.selected trial function containing Ritz
coefficients makes the total potential energy minimum, that trial function is
assumed as the approximate solution for the problem.

Now the problem is to find the deflection for a beam. Hence the total potential
energy of beam is made to reach the minimum  value by the trial function

containing deflection term.
The total potential energy for a beam is given by

n=U-W

where U - Strain energy

W — Workdone by the external force

Strain energy for a beam,

where y is the deflection which can be expressed as
y-—-a]+azx+a3x2+a4x3+a5x4+... e L)
To simplify the problem, consider the first three terms such as
y=a1+a2x+a3x2 .. (2)

The boundary conditions are y =0 at x=0 and x=1.

Hence eqn. (2) = 0=2a,

ard O=ag ! +aj I2 which gives ag=—ag!

Then y can be expressed as

y=—a3lx+aax2=a3(x2—lx)

Differentiating two times we get,

d a’y _
a—%:a3(2x—l) and ;;2X—283

Then, strain energy is given by

!
U=EL [ 2ayp?dx=El4af1=2E1a51

2%



Work done W=P - ynax =P Yatx=0s2
=P ag ( x2—1Ix )ﬂ.x=l/2 (From Egn.(3))

The total potential energy m is given by
n=U-W

12
=2EIa§l" —Pa3z

2 2
=2EIa3l+Pa3-‘—{
: 2 JT
For minimum potential energy condition, 573=0
. "A Plz
i.c.,, 4 El a5 R
§ ot R L X
wBg==Tg~ N EEIl  16EL

Substituting the value of a3 in equation (3), we get

o oy )
y=4aq (X -lx)=—%(x2—lx)

Maximum deflection occurs at x=1/2

_ . PEFP 44 p 2
H""}wym“*"‘16’13"1(74""’1§J=‘W{:T[‘!2]

I 3
64 Bl which is the approximate solution

3

But the exact solution is y,. = io o8
W48 EI

& Eo get more nccuratf: solution by Rayleigh-Ritz method, the displacement

netion should contain more number of Ritz coefficients such as

_. - 3
y=ay+agX+a;3x“+ua,x" 4 a5 x* and so on,



5. What are the Advantages and Disadvantages of FEM ?

Advantages of the finite element method:

1.

5.

The method can be used for any irregular-shaped domain and all types of boundary
conditions.

Domains consisting of more than one material can be easily analyzed.

Accuracy of the solution can be improved either by proper refinement of the mesh or by
choosing approximation of higher degree polynomials.

The algebraic equations can be easily generated and solved on a computer. In fact, a
general purpose code can be developed for the analysis of a large class of problems.
This method can take care of any complex loading

Disadvantages of the finite element method:

The accuracy of results highly depends upon the degree of discretization (or meshing).
Manual judgement is essential in discretization process.

Finite element analysis requires large computer memory and time, and hence cost involved
is high.

The method is complicated, and hence not viable for simple problems.

Mathematical background on the users part is required.



UNIT Il
1. Explain the steps in FEM.

Step (i): Discretization of the structure
The first step in the finite element method is to divide the structure or solution region into
subdivisions or elements. Hence, the structure is to be modeled with suitable finite elements. The
number, type, size, and arrangement of the elements are to be decided.
Step (ii): Selection of a proper interpolation or displacement model
Since the displacement solution of a complex structure under any specified load conditions cannot
be predicted exactly, we assume some suitable solution within an element to approximate the
unknown solution. The assumed solution must be simple from a computational standpoint, but it
should satisfy certain convergence requirements. In general, the solution or the interpolation model
is taken in the form of a polynomial.
Step (iii): Derivation of element stiffness matrices and load vectors
From the assumed displacement model, the stiffness matrix [K®] and the load vector F® of element
e are to be derived by using either equilibrium conditions or a suitable variational principle.
Step (iv): Assemblage of element equations to obtain the overall equilibrium equations
Since the structure is composed of several finite elements, the individual element stiffness matrices
and load vectors are to be assembled in a suitable manner and the overall equilibrium equations
have to be formulated as

[KIIQ] =F
where [K] is the assembled stiffness matrix, [Q] is the vector of nodal displacements, and F is the
vector of nodal forces for the complete structure.
Step (v): Solution for the unknown nodal displacements
The overall equilibrium equations have to be modified to account for the boundary conditions of
the problem. After the incorporation of the boundary conditions, the equilibrium equations can be
expressed as

[KIIQ] =F
For linear problems, the vector [Q] can be solved very easily. However, for nonlinear problems,
the solution has to be obtained in a sequence of steps, with each step involving the modification
of the stiffness matrix [K] and/or the load vector F.
Step (vi): Computation of element strains and stresses
From the known nodal displacements [Q], if required, the element strains and stresses can be
computed by using the necessary equations of solid or structural mechanics.

2. Consider the bar shown in Fig. An axial load P =300 x 10° N is applied as shown. Using the
elimination approach for handling boundary conditions, do the following:

(a) Determine the nodal displacements

N

IR RRARNY

(b) Determine the stress in each element.

(c) Determine the reaction forces T Eeemme Se T rEeomme
E.= 70 x 102 N/m= E.= 200 > 102 N/mM=
L, = 200mm L. = 300mm

P = 300 KM



To solve the system again the seven steps of FEM has to be followed, first 2 steps contain
modeling and discretization. This result in

/o
@  .® 2
.
1 2 4
_ 1 2 _
G =AE, |1 | soxersxiel 4 W
_E:_ P 1 = 200 -1 1 =19 =315 3.15}2
Similarly
2 3
AE, [ 1 -1 & £ &
Kz— 22 = 105
L |1 1 S 8 o

Next step is assembly which gives global stiffness matrix

9 2 =
3.15 -3.15 o 1
K=l -3.15 3.15+8 -8 |10s82
(@) -8 & 3

Now determine global load vector

\
CANEEE: T

F, || 300 x 103

&st \ Rs )



We have the equilibrium condition KQ=F

SN 4
( ()
A A 4~ ~ "‘Q,]"' R
2. D =J. 19O U % T I
108|-3.15 315+8 -8 | | Q2| =| 3090y 10y - (-315X10°XQ1)
A a a 7% ) (OXQ‘! )
\\U =) O ) t Q3 | r\3 \ ]
\._\'4_/ ) \

After applying elimination method we have Q2 = 0.26mm
a) Nodal displacements = [0, 0.26, 0]" mm

Once displacements are known stress components are calculated as follows

b) Stress in each element:
For element 1

= E11f[ -1 0 Q1 o4 47 Nimm2
b Q2
For element 2
=E1[-1 1]1[Q2
S L’T[ 1 Q =-179.34 N/mm?=
- Q3
c) Supports Reaction:

R1= K11Q1+K12Q2t . eeeeen...... +KinQn-F1

0
R1=10°[3.15 -3.15 O] [0.26] =-0.819X10° N
0

0
Rs=10°[0 -8 8] [0.26] = -2.08 X10° N
0



3. Consider the bar shown in Fig. Using the elimination approach for handling boundary

conditions. Determine the nodal displacements.

hl\ulllr’l\l = = —

1
E,= 2.06 x 10° MPa IL
A,=3387.09mm2 A,=2419.35mm2 | 2
L= L; =304.8mm
P = 444 .8N
Body force = f, = 7.69 x 10-°N/mm?
Solution: S
” 1 2 4
1 -1 228 -2.281 @
K, =_'°t_1_E1 = 106 [
1 L-1 1 -2.28 2.28 2 29
) 2 g @1p
e |3 3 1.63 -1.63|2 34
K= = = H0s
L |9 9 -1.63 1.63|3
§ :
o 2 3
228 -228 0 1
K=|-2.28 2.28+1.63 -163 Hpe2
0 1.63 163 | 3
Body force terms
Element 1
fo, = A, f, L, 1]1
2 1)2
= 3387.09 x 7.69 x 105 x 304_{1 1
1,2

>
39.69]1
- lzg.69)2



Body force terms @f)fm
Element 2 21 foq +fo
P
foo = Af o112 3dfp2
2 13
_ _ {1 >
=2419.35 x 7.69 x 105 x 304.
2 1.3
[28-3 JZ
28.3 )3
Global load vector:
Ly
1fb’l
27 Ty *hin
Dip
3dfo
Fi o1 '-39.69\
k= Fa |T Pp+fuitfoz | =| 512.8
Fs fb2 ; _28.3
( ()3 69.4r1 ) Q2 = 0.23 x 10mm
28 -228 0 Q3 =25x104mm
106 |.2l28 6.92 -16.3| | Q2 | =[5128
G -1.63 1.6 Q3 28.3

After applying elimination method and solving matrices we have the value of
displacements as Q2 = 0.23 X 10°mm & Q3 = 2.5X10*mm



4. Consider the bar shown in Fig. An axial load P =100 x 10° N is applied as shown. Using the
penalty approach for handling boundary conditions, do the following:

(a) Determine the nodal displacements

(b) Determine the reaction forces

T T @ eomm
7 } (b 40mm
) | P L ’
7 =
//: 1 —pP 2 Z
ey =
7 copper
A Steel
7
E1=2x10° MPa E,= 1 X 105 MPa
L,=800 mm L, = 500mm

P =100 KN

Solution:
o .2
N 2 Y
A, = n/4 (60)? = 2827.43mm?
A, = n/4 (40)? = 1256. 63mm?
12
B} 1 | 287432105 |1 4| _ {7.06 7.08| 1
. %1@1 a1l7 e g 4| T s 7082

2 5

AE, |1 - 251 -251|2
- 1953 _ 105 {
251 2513




Global stiffness matrix

1 2 3
7.07 -7.07 0 1
K=|-7.07 9583 -2513 [1052
0 2513 2513 3

Global load vector:

& L
o 2 cZ
(] o )

F=1 F, |=| 100x 103
< Fs J \ 0

Equilibrium Equation

KQ=F

- Q1 0
7.07 -7.07 0
K= | -7.07 2513 [104 Q2 | =| 100 x 10?
0 2513 2513 Q3 0
\

C =max[K;] X 104=9.583 x 10°x104



Modification required

+C Q1
707  -7.07 0
707 9583 2513 |10 Q2
0 -2513 2513 Q3
- g o S
After Modification
/‘ Y
9.583X 10¢ -7.07 0 Q1
-7.07 9.583 -2.513 10¢ Q2
0 2513 9.583x104 | o3
b
Solving the matrix we have
Q1 =7.698X10°mm , Q2 =0.104mm, '

Reaction forces

@ node 1

o~

-

-

0 +Cat

100 x 103

0+C

i A

0

100 x 103
0

Q3=2.736 X 10-6mm

R,= C(Q1 - a1) = -73597.44N

@ node 3

R,= C(Q3 — a3) = -26219.08N



5.An axial load P 300 KN is applied at 20°C to the rod as shown m Fig.The temperature is then
raised to 60°C.

(a) Assemble the K and F matrices.

(b) Determine the nodal displacements and element stresses

A2 = 1200mm?2 ¢

“AA1 = 900mm? ;
/] 1 P 2
/ /
g :
Olq =23 X 106 Per °C O, =11.7 X 106 Per °C
E,=70 x 10° N/m2 E,= 200 X 10° N/m?2
L; =200mm L, = 300mm
P =300 KN is applied at 20% ,the temperature
is then raised to 60%
Solution:
1 2
i 315 =315 |1
K=AE [T WWEIE 11 ] gy
e LA 200 PR 315 315 )2
2 3
1
A 1 -1 800 -800
o M5 = 108 |

by | .-800 aan_js



Global stiffness matrix:

1 2 3

315 -315 0 1
K=|-315 1115 -800 [103 2
0 -800 800 3

Thermal load vector:
We have the expression of thermal load vector given by

g = EAom[‘:

Element 1
0,= 70 X 103 X 900 X 23 X 106 X 40 |-1 |1
< 1|2
.57.96 |1 )
91 =103 l
[57.96)2

Similarly calculate thermal load distribution for second element

3-‘1 12.32 |2

~10
& ff2.82

Global load vector:

@ L D £

0, e-ﬂz 0, "
s F, ) ( 81 i (.57.96\
F= F, |= P+ 6,+6, = 245.64

05

\F3/ \ ) 112.32)

103



From the equation KQ=F we have

=| 24564 |103 -(-315 X 103)Q1-(- 8 X 105)Q3

.
% 7 i, 57-9
31 315 g w o
-315 1115 -800 103 Q2
s -800 840 D
L\-/ 112732 -(0)Q1
7\

After applying elimination method and solving the matrix we have Q2= 0.22mm

Stress in each element:

For element 1

OC.=E1[-1 1] ""01 |
Q2

L 1
=12.60MPa

For element 2

O, =E1[-1

-E o AT

1] sz-EzazAT

L2 . Q3|

= -240.27MPa

6. Define discretization of domain and what are the steps in discretization procedure?

The process of dividing the domain into discrete elements is called discretization.

DISCRETIZATION PROCEDURES:
Type of Elements
Size of Elements
Location of Nodes
Number of Elements
Simplifications Afforded by the Physical Configuration of the Body
Finite Representation of Infinite Bodies

1.

o gk wn



UNIT 111
1. What are the assumptions of Trusses?
The following are the assumptions of Truss element

1. Truss element is only a prismatic member ie cross sectional area is uniform along its length.
2. It should be an isotropic material.
3. Constant load that is load is independent of time.
4. Homogenous material.
5. A load on a truss can only be applied at the joints (nodes).
6. Due to the load applied each bar of a truss is either induced with tensile/compressive forces.
7. The joints in a truss are assumed to be frictionless pin joints.
8. Self-weight of the bars are neglected.

2. Derive Transformation matrix (L) and element stiffness matrix for truss element and also
Stress in each element.

Derivation of Transformation matrix (L):

Consider one truss element as shown that has nodes 1 and 2 .The coordinate system that passes
along the element (x* axis) is called local coordinate and X-Y system is called as global coordinate
system. After the loads applied let the element 5

takes new position say locally node 1 has
displaced by an amount g; and node2 has
moved by an amount equal to g;.As each
node has 2 dof in global coordinate system.
Let node 1 has displacements g, and g, along
x and y axis respectively similarly g;and g,at
node 2.

Resolving the components q;,q,, g3 and g,
along the bar we get two equations as

qi =qicosf + q,sinf
q3 =qscosf + q,siné
Or

G =@l gm

A =qsl+ qum

Writing the same equation into the matrix form



il 5 0 ol

The above equation similar to g* = Lq

Where L is called transformation matrix that is used for local —global correspondence.

I,m are called direction cosines
How to calculate direction cosines

Consider a element that has node 1 and node 2
inclined by an angle 6 as shown .let (x1, y1) be
the coordinate of node 1 and (x2,y2) be the
coordinates at node 2. When orientation of an
element is know we use this angle to calculate |
and m as:

[ =cos8 m=cos (90 - 80) =sind

x‘]? Y‘] 1

d |

X2—X1

and by using nodal coordinates we can calculate using the relation

X2—X1 -1
l=———= m=-—-=

le le

We can calculate length of the element as

Lo =J(X; — X)% + (Y, — 1})2

Derivation of element stiffness matrix for truss element

Strain energy for a bar element we have U =% q"Kgq

For a truss element we can write U =% g'TKq?
Where g*'=L gand g'T=LTqT
Therefore
U=1% qlT Kq?

=1LTqTK L g

=%q" (L"KL)q

=1qTKeq
Where K€ is the stiffness matrix of truss element
Keé¢=LTKL

NSRS

S ~oo

l
m
0
0

'%[—11

N




Taking the product of all these matrix we have stiffness matrix for truss element which is given
as

[ 0 12 Im —1> —Ilm
ge=|m O g[ 1 —1] [l m 0 0] _EAllm m? —lm -m?
0O I]tl=1 1110 0 I m le|=1> —lm 1? Im
0 m —lm -m? Im m?

Stress component for truss element

The stress o in a truss element is given by o= €E But straine=B gland gl =T q

Where B = % [—1 1]
Therefore
q1
_Er . q>
O'—Le[ I —m | m] a5
qs

3. For the two-bar truss shown in figure, determine the displacements. Stress in each element and
support reactions. Take E=2x10° N/mm.

Solution: For given structure if node ——
numbering is not given we have to number them 3 i
which depend on user. Each node has 2 dof say = 1; e s
q1 q, bethe displacementatnode 1, q; & q,
be displacement at node 2, g5 &g, at node 3. _._/_‘_,,--{“f'éoomm? SO0
Nodal coordinate table A0  Eormm
Node | X y
1 0 0
2 750 | 500
3 0 500

Element connectivity table

element | Node 1l | Node 2

1 1 2
2 2 3

Directional cosine table

element l. l m
1 901.3 | 0.832 | 0.554

2 750 | -1 0




12 Im
2

Ke =EAllm m
le —lz —lm
—Ilm —m?
1 2 g
1.84 122 -1.84
1.22 0816 -1.22
K=

5
10 ‘-‘.64 122 1.84
.22 -0.816 1.22

Element 1 has displacements q;,9., q3,9,. Hence numbering scheme for the first stiffness matrix

-2 —Im
—Im —m?
12 Im
Im m?
4
-1.22 |
0816| 2
2
1.22 3 K
0816 4

(=]
o o o ob

2
-2 .66

2.66

(K1) as 12 34similarly for K? 345 & 6 as shown above.

Global stiffness matrix: the structure has 3 nodes at each node 3 dof hence size of global stiffness

matrix willbe 3 X2=6ie6 X6

- 1 2 3 5
1.84 122 -1.84 -1.22
1.22 0.816 -1.22 -0.816 O
5 -1.84 -1.22 45 1.22 -2.66
K=10 -1.22 -0.816 1.22 0.816 0
0 0 2 66 0 2 66
0 0 0 0 0
0
0
_ 0
Global force vector F = _50X103
0
0
Equilibrium equation KQ = F
r1.84 122 -1.84 -—1.22 TR
122 0816 -122 -0816 0 0]|4%
1o5|—184 -122 45 122  -2.66 0|43
-1.22 -0816 122 0.816 0 0!l
0 0 —2.66 0 2.66 0[ids
0 0 0 0 0 04L4g6

Since node 1 is fixed g;=q,=0 and also at node 3 g5 = g,= 0 .At node 2 q;& q, are free hence has
displacements. In the load vector applied force is at node 2 ie F, = 50KN rest other forces zero.

By using elimination method, we can eliminate 1% row & column, 2" row & column, 5" row &

column and 6" row & column in equilibrium equation

The matrix reduced to 2X2 matrix

4.5

5
10 [1.22 0.816

qs

1.22 [CI3]

0

_[—50X103

]

=TT = R 1=
F ?

O O 0o oo oo

0

0

0
-50X103

0
0




Solving above equation we get g; = 0.28mm, g, = -1.03mm

STRESS IN THE ELEMENT:

q1
_Er , _ q>
a—Le[ I —m | m] a5
qs
Stress in the 1%t element
q1
01=£[—l -m | m] gz
qs
0
5
0, =21 10832 0554 0832 0554] 028 = -74.92 N/mm?
—1.03
0.28
5 —
=221 0 -1 0 1603 = -74.66 N/mm?
0
Support reactions:
0
0
—1n5 0.28 _
R;=10°[1.84 1.22 -184 -1.22 0 0] —1.03 -[0] =74.14 KN
0
0
0
0
—1N5 0.28 _
R,=10°[1.22 0.816 -1.22 —-0.816 0 0] —1.03 - [0] =49.88 KN
0
0
0
0
—1N5 0.28 _
Rs=10°[0 0 —-266 0 2.66 0] 103" [0] =-74.48 KN
0
0



Re=10°[0 0 0 0 0 O]

0.28
—1.03

(e}

4. Derive Hermite shape functions for beam element.

1D linear beam element has two end nodes and at each node 2 dof which are
denoted as Qi1 and Q2; at node i. Here Q 2i.1 represents transverse deflection where as Qi
is slope or rotation. Consider a beam element has node 1 and 2 having dof as shown.

Q‘! Qa
Q2{_.[" 43
= - é= 1

The shape functions of beam element are called as Hermite shape functions as they contain
both nodal value and nodal slope which is satisfied by taking polynomial of cubic order

Hi=a*b &+ ¢ £ +d, £

That must satisfy the following conditions

= H, H; | H> H.’ Hs Hs’ H, H,’
= -1 1 (8] O 1 (8] O (8] (8]
= 1 O O (8] O 1 O (8] 1

ri.I\

Ju

Applying these conditions determine values of constants as

H=a+b g+c & +dg
@ node 1
Hy=1, H'=0, &=-1
1=a;-by; +c, —d, LT

H,'=dH,= 0=b, — 2¢c, +3d, (=
dg



H=a+b ¢+c&2+d¢g
@ node 2
Hy=1, H =0, £=1
O=a;+b;+c,+d;——(2)

H,=dH.= 0=b, +2c, +3d,—(*
1 dE1 1 1 1

Solving above 4 equations we have the values of constants
E1= 'y;. " b1=‘% ¥ C1= O, d1= 1{1
Therefore

H,=% (2 -3&+ &3)

Similarly we can derive
H, =% (1- &- £2+&%)

Hy =V (2 +3¢ - £3)
Hy =V (-1- £+E248%)

Following graph shows the variations of Hermite shape functions

Slope =0

Slope \=; K-:\ll

1
-




5. For the beam and loading shown in Fig., determine (1) the slopes at 2 and 3 and (2) the vertical
deflection at the midpoint of the distributed load.

12KN/m

/]
7
§ 1 2
/]
7 L1=L2=1m A

E = 200GPa

| =4 X 108N/mm*
Solution:

Let’s model the given system as 2 elements 3 nodes finite element
model each node having 2 dof. For each element determine stiffness
matrix.

2 3 4

126 426 | 26 26 |
K=8Xx1096 4 6 2 12 K-8X1056 4 6 2 |
12 6 12 6 |3 426 12 6 |s
\6 4 6 4 i 6 4 6 4 [
Global stiffness matrix
1 2 3 4 5 6
(12 6 126 0 0);
6 4 6 2 0 0 |2
12 6 24 0 -12 6 |?
K=8 X 105
6 2 0 8 6 2|4
12 6 12 6|5
0 O 6 2 6 4 )°




Load vector because of UDL

Element 1 do not contain any UDL hence all the force term for
element 1 will be zero.
ie

F1

0

F2 0

F1_ 0
0

F3
F4

For element 2 that has UDL its equivalent load and moment are
represented as

6000N 6000N
TNVIO00ON-m ¥*N1000N-m
| 2 3
ie
F3| (6000 )
_|F4 -1000
F2_ F5 | — | -6000
F6 1000

N e

Global load vector:

1! (o

F2 | 0
F= |F3 - |-6000
F4| |-1000
F5| |-6000
F6) 11000



From KQ=F we write

~ =N

P 4 o e
o
= 0 et/ v

do sk ot 6 Qo) | 16000
8 X 105 =

4 q 8 Pp 2 Q4 -1000

G L o 4o 611G | s

K 5 2 $ 4 )% ) (1000

At node 1 since its fixed both

q1=g2=0 node 2 because of roller

g3=0 node 3 again roller ie g5=0
By elimination method the matrix reduces to 2 X 2 solving this we
have Q4= -2.679 X 10"*mm and Q6 =4.464 X107 mm

To determine the deflection at the middle of element 2 we can write the
displacement function as

V(&) = Hiq5 +HyqyL +H305 +H,q6l,
2 2
= -0.089mm



UNIT IV
1. Derive the expression for strain displacement matrix and stiffness matrix for a constant strain
triangular element.

A: Let us consider a CST as shown in figure

Y vy

13("&73)
[ u’

8 )
1(:,.y‘)

(a) (b)
(a) Local Coordinate System (b) Natural Coordinate System
Three-Node Constant Strain Triangular (CST) Element
Let, (x,y) = local coordinates of any point ‘P* within the element
(&, n) = natural coordinates of anypoint ‘P’ withinthe element

1. Shape Functions:

The variation of the different properties such as: displacement, strain, temperature, etc.
within the element is interpolated by using the shape functions.

» The three shape functions of any point ‘P’ withinthe element are: N;,N; andN; .
« Atnodel:N;=1N;=0,andN;=0

» Atnode2:N;=1N:;=0,andN;=0

» Atnodel:N;=1N;=0,andN;=0

From figure,

« Atnodel:N;=1and¢=1;N,=0,andn=0.

« Atnodel:N;=1andn=1;N;=0,and¢=0.

‘-Atnodel:N3=1;N1=Oand§=0;N3=O,andn ={.



¥ Hence, the three shape functions of any point ‘P” within the element are given by,

N, =¢
Ny=n « @~ __________ (D
N;=1-¢-79
2. Displacement of Point in Terms of Nodal Displacements:
Let {u} = {:j} = displacement vector of any point ‘P’ within the element  --------— -(2)
Uy
Vi
{uy} = g: = element nodal displacement vector — —————————— 3)
Us
V3

= Hence, using the shape functions, the displacements of any point ‘P’ within the element

can be written in terms of the element nodal displacements as,
u=~N,U; + N2U2 + N3Ug
V=N1V1+N2V2+N3V3 ___________ ®
’ oru=(Uy —U3)§ + (Uy— U3)n + Uy

v=W=V)§+ (Vo= Van+ Vs

3. Local Coordinates of Point in terms of Nodal Coordinates:

The local coordinates of any point P within the element can be written in terms of shape
functions and nodal coordinates as,

X = lel + NzXz + N3X3
--------- —9)
y=N;y;1+Nzy; +N3ys3

Putting the values of shape functions from equation (1) in equation (9),
x=8x +nxp + (1= §—m)x3
y=syi+ny2+(1=§=ny;

orx = (x; —x3)§ + (x; — x3)n + x3

-------- {10
y=0nh—-y3)§+0n—y3nty; )

« Using the notations x;; = X; — x; and y;; = y; — ¥, the equations (10) can be written as,

X = X13§ + X230 + X3
-------- —(11)
y=Y13§ +Yy23n+y3



» This equation (11) relates the local coordinates of any point ‘P’ with the natural coordinates.

» Equations (4) and (9) are referred as isoparametric representation of element.

0 Element Strain-Nodal

Element

Displacement Relationship For CST

+ In order to determine the strain at any point ‘P’ within the element, it is necessary to obtain

partial derivatives of ‘u’ and ‘v’ with respect to *x’and *y’.

« However, ‘u’ and *v” are functions of ‘¢’ and ‘n’, as given in equation (8). Using the chain

rule for partial derivatives of u, we get,

¥ From equations(11),

du du dx dJdu dy

9 dx 0f ' dy 0f

du OJdu 6x+6u dy
on 0x dn Ody dn

dx
& = X13
dx
'5,‘7 = X23
ay
53; =-¥i3
oy
% =23

« Substituting equations (13) in equation (11),

Ju ou

§=x13"a—;+}’13'@

ou ou

an —x23"a;+}’23'$

e, s (12)

du T

du




» Above equation (14) can be written in matrix form as,

ou) (Ou
9| _ ¥z i3 ax| . 15
ul = X3 }’23] % -
an) \dy
(Ou) auw
P) dx
SR EN 1D 08— (16)
Laﬂj ayJ
X13 Y13
P o R | [ 17
il X23 Y23l o

« This matrix [J] is known as Jacobian of Transformation.

» From equation (16)

du du
ax ~1)0¢
Fu = U 5, oo (18)
ady 5;7'
» The inverse of Jacobian Transformation [J] is given by,
o L1y ~Ya
l= wmmm— D T ] e e e ]
Ul JIt=X23 X13 ] 2

¥ From equation (8),

du =
P {U; — U3}
. (20)
du
% = {U; — U3}
« Substituting equation (19) and (20) in equation (18), we get,
(ou
Jox{ _ 1r1yxs —y13] {Ul - 03}
.a_u_ UI —X3 X3 U, — U3
\dy
du)
0x }=i{YZ3(U1‘U3)"‘)’13(U2-U3) } ---------- (21)
Ou( = |J[l=x23(U; — U3) + x13(Uz = U3)
ay)
Similarly,
ov
dx _ _1_{ Va23(Vy = V3) — y13(Vo — V3) } __________ (22)
v [J] (=23 (Vs = V3) + x13(V, — V3)



where, |J| = (x13 * Y23 —X23* Y13)
= determinant of [J]
1. Determination of Element Strain Matrix:

« For plane two-dimensional element, the components of strains at any point ‘P” within the

clement are given by,

( du
) |
{E}=¥€y}=< 5; ¥ TRREST «23)
L du N dv
\dy 0x)

« Substituting equations (21) and (22) in equation (23), we get,

1 Y23(Uy = U3) = y13(Uz = U3)
{e} = U'I —xa3(Vh = V3) + x3(V, = V3)
o =X3(Uy — U3) + x13(Uy — U3) + yo3(Vy — V3) — y13(Vo — V3)
1 Y23Uy = ¥13Uz + (V13 — ¥23)Us
{e} = _| =x23V) + x33V5 — (13 — x23)V3
—x23U; + y23Vy + x43U; — y13Vo — (X33 — x23)Us + (013 — y23) Vs
B —(24)
X33 = X3 = (X3 — x3) — (X3 — X3) = X3 — X3 = X1
---------- 25)

Y13~ Y23 =01—Y3) = (2= ¥3) =01 — Y2 = Y12
« Substituting equations (25) in (24), we get

1 Y23Us = y13Uz + y12U3
i —X23Vy + x13V; — x15V3

{e} =
Ul =x23U; + ¥23Vh + x13U; — y13Vo — x32U3 + y12V3

1 | Y23U1 +0- Vi =y13U, +0- Vo +y,,U3 +0- V3
=—| O'Ul—x23V1+0'U2+x13V2+0'U3—x12V3
=X23U; + Y23V + x13U, — yy3Vo — x12Us + y15V3



(U1
Vi
1| Ya3 0 =-»3 0 Y12 0 U,
{€}=m 0 —X23 0 X13 0 —X12 *Vz}
—X23 Y3 X13 ~Yi3 X122 Y1z Us
KV3J
{e}=[Bl{uy} __________ @7
where,
€x
{e} = { €y } = element strain vector
Yxy
1[Y23s 0 -yi3 0  y;2 O
[B]'—‘m 0 -—x3 O X3 0 —xy
—X23 Y23 X13 Y13 X122 Y12
123 0 ¥y 0 y;2 O
[B]=m 0 x3; 0 x3 0 x4
X32 Y23 X13 Y31 X21 Y12
= element strain nodal displacement matrix
1. Element Stiffness Matrix
We know,
[k]{uy} = {f}
where,
k] =t f (BI"[D][B]dA 29)
e
= element stiffness matrix
where,

fdA=A
e

A = area of the element

A= %(Magnitude of [ID
(K] = tA[B)"[D][B] (30)

2. Evaluate the shape functions N1, N2 and N3 at the interior point P for the triangular element

shown in Fig.



o

34,7

2 (7.3.5)

1(15.2)

FIGURE
Solution Using the isoparametric representation we have
385 = L3N + 7N, + AN, = <256 +3n + 4
48 = 2N + 35N, + IN; = -5¢ — 350+ 7
These two equations are rearranged in the form
258 — 3n =015
56+ 359 =22
Solving the equations, we obtain £ = 0.3 andn = 0.2, which implies that

N =03 N, =02 N, =05

3. Find the strain-nodal displacement matrix B' for the elements shown in Fig.. Use local
numbers given at the corners.

i = =
- = F
=z inn.

- =1
-2 3 1
3 an. -]

FIGURE
Solution We have

1 ¥oa 0 3y 0wy O

Bl' = detd 0 Xys l] X33 0 Xay

X32 Yoz X3 Y X1 Mz

2 ¢ 0o 0 -2 0
4 3 0 3 0 0
-3 2 3 0 0 -2

where det J is obtained from x33%3 — X3y = (3)(2) — (3)(0) = 6. Using the local num-
bers at the corners, B? can be written using the relationship as

1 -2 o 0 0o 2 0
Bi== 0 3 0 -3 0 0

63—2—3[}02



4. A two-dimensional plate is shown in the Fig. Determine the equivalent point loads at nodes 7,8,
and 9 for the linearly distributed pressure load acting on the edge 7-8-9.

Fiy

3 MPa

(70 60)

| x (100, 20)

Thickness = 10 mum

FIGURE

Solution 'We consider the two edges 7-8 and §
For edge 7-8
o =1MPa, p, =2MPa, x, = 1600mm, vy = 20mm x

~9 separately and then merge them.

2=851TII!1, b = 40 mm.
£ = Vr(xl - -‘fz}? + (v - }’z)z = 23 mm

¥ =¥ X, - x
c = "= = (.8, 5§ =21 : =
€ £, 0.6
T:r] = == _"0-8- T;-'l = — s = _ﬂlﬁg TIE = —'p‘zc = *1-6:
Ty2 = DS = _1'2
T — 10 > 25

P [ZT.tl + Tx:!) 2Tyl + TyZ’ Txl + 2Tx2, j'.:-p--l + 2:?_;2]1-
= [—1333, —100, —166.7, —125]" N

These loads add to Fy 5, M, 5, and F 4, respectively.

For edge 89

P =2MPa, p,=3MPa, x; =8 mm, p=40mm, x,=70mm, » = 60mm,

&, = v(% - -"z)2 + (- J’z)z = 25 mm
h —h X — X
= U:_s’ 5 = ——
L P £,
Tﬂ = —mc= _1.6, T}l = —[y& = '-1.2, T.I:Z = —phe = —2'4’
T2 =—pos = —18

10X 25
T2 = _"_ﬁ_[thl + Trii 2Ty1 + let Txl + ZTIQ;T‘-H + 2Ty3]'r

¢ = 0.6

= [=233.3, -175, —268.7, -*ZUD}TN
These loads add to Fi s, Fi¢, Fi7, and Fy,, respectively. Thus,
[Fs R4 Fis Rs Br Fs}=[-1333 -100 —-400 -300 -2667 -200]N



5. A CST element is shown in Fig. The element is subjected to a body force f,= x* N/m*
Determine the nodal force vectorf €. Take element thickness = 1 m.

3(0,3)

1 ¢0.0) 2 ¢4.0)
FIGURE

The work potentialis — [ f'udV, where f* = [f,,0]. Substituting for n = Ng. we obtain
the work potential in the form —q'f°, where £ = f NTT4V, where N is given

£

All y components of £ are zero. The x components at nodes 1,2,3 are given, respectively. by

[gf,dv, [ﬂf;dV, /e(l — £ = )fidV

We now make the following substitutions: f, = x% x = £x; + nx, + {1 — £ — n)x; = 4n.

dV = detJdndf,detd = 24,,and A, = 6, Now, integration over a triangle is illustrated
in Fig. 5.6, Thus,

i 1-£
[ffde=fU £ E16m)(12) dyde = 32N

Similarly, the other integrations result in 9.6 N and 3.2 N. Thus,
£ =1032,0,96,0,32,0]"N

6. For the two-dimensional loaded plate shown in Flg, determine the displacements of nodes 1
and 2 and the element stresses using plane stress conditions. Body force may be neglected in
comparison with the external forces.

y 1000 1b

Thickness ¢ = (.5 in.,
£ =30 x 10° psi, v = 0.25

FIGURE |



Solation For plane stress conditions, the material property matrix is given by

1 0
£ | ;’ 0 32 % 107 0.8 x 107 0
D=""7 L —p|=|08x107 32x107 0
00 —~ 0 0 12 % 10

Using the local numbering pattern nsed in Fig. ES.3, we establish the connectivity as
follows:

Nodes
Element No. i 2 3
13 1 2 4
2 3 4 2

On performing the matrix ittiplication DB, we get
1.067 —04 0O 04 -—1.067 0
DB' = 10°( 0.267 —-1.6 0 1.6 —0.267 0
—06 04 06 0 o —0.4
and

—1.067 0.4 0 -—-04 1067 O
DB = 10°] —0.267 1.6 0 —16 0267 O
0.6 04 -06 O 0 0.4

These two relationships will be used later in calculating stresses using o° = DB*q. The mul-
tiplication £,4 B DB gives the clement stiffness matrices,

1 2 3 4 7 8 «— Global dof
[0683 —05 —045 02 —0.533 03
14 03 —-12 02 -02
k' =107 0.45 0 o —03
12 -02 0
Symmetric 0.533 0
i : 0.2 |

5 6 7 8 3 4« Globaldof

(0983 -05 —045 02 0533 03
14 03 =12 02 -02
K= 10 045 0 0 -03
12 62 ©
Symmetric 0533 0O
0.2

In the previous clement matrices, the global dof association is shown on top, In the
problem under consideration, ;, O, O, ¢, and Q. are all zero. Using the elimination ap-
proach discussed in ", itis now sufficient to consider the stiffesses associated with



the degrees of freedom Q, , @5, and Q.. Since the body forces are neglected, the first vector

has the component F, = —1000 |b. The set of equations is given by the matrix representation
0983 —0.45 027|[Q, 0
10°l —045 0983 0O 0,5 ¢ = 0
0.2 0 14100, —-1000

Salving for O, , {5, and Q. we get
G, = 1913 X 107 in. Q. = 0875 X 107 in. ¢y = —7436 X 107 in
For element 1, the element nadal displacement vector is givea by
q' = 1075[1.913.0,0.875, —7.436,0,0]7

The element stresses o are calculated from DB'q as

o! = [-933,-1138.7, —62.3 T psi
Similarly,

q° = 1075[0, 0,0,0,0.875, —7.436]7

o? = [93.4,23.4, —297.4] psi

A long hollow eylinder of inside diameter 100 mm and outside diameter
120 mm is firmly fitted in a hole of another rigid cylinder over its full
!vngih a4s shown in figure 8.14. The eylinder is then subjected to an
mternal pressure of 2 MPa. By using two elements on the 10 mm length
shown, find the displacements at the inner radius. Take E =210 GPa;

=025
|
|
R
|
|
| 2
|<- 50 mm —f
——t20mm—— e omm— |
Fig. 8.14
Solution:

Since the portion of interest (i.c., the 10 mm length part) contains two
elements (1) & (2) of triangular shape as shown, we must evaluate the global
stiffness matrix in order to determine the displacements in the required points
(i.e., at the inner nodes 1 & 2)

Now, the connectivity (i.e., the relationship) between the local element nodes
and global nodes are given along with their coordinates as follows.



Connectivity Coordinates in mm

Element nodes 1 2 3 Nodes r z
Global nodes 1 50 10
For element (1) 1 2 2 50 0
For clement (2) 2 3 4 3 60 0

: 4 60 10

shown in
5 isplacements are
The element with their coordinates and nodal displ

fig. 8.14(a)

Wy Wa
(50, 10) /41 HE > uy
1) (60, 10) E=210GPa .

J i = 2.1 x 10°N/mm
z 2 EJ

LW, (2) 3 ) =0.25
L__) . 2 "-'2 3L Us

(50, 0) (60, 0)
Fig. 8.14(a)

Now consider element (1):

The nodal coordinates as per local element scheme

r; =50 mm; zp =10 mm
ry =50 mm; zo =0 mm
rg =60 mm; zz =10 mm

(Note: The node 3 of clement (1) is actually meant for node 4.)
For axisymmetric triangular element (1) the stiffness matrix is given by the

expression as

[kl; =2 nrA [B]T (D] (B] . (1)
where,
A = Area of the triangle
r = Common coordinate of the element
[D] = Stress-strain rclationship matrix
[B] = Strain-displacement matrix.
Now,
. _ il E @ &H| o171 50 10
ea of triangle, A=§ 1 ry zo =-2—I 1 50 O
1 r3 z3 1 60 10
=—;— [1 (500 - 0) -~ 50 (10 — 0) + 10 (60 — 50)] =50 mm?2 oo EY



The strain-displacement matrix,

By 0 B2
[(‘1‘*"31"*712] {u.2+B._,r+yzz
=" r { - = S
(B] =5A A
T 0 1 0
i B Y2
Now,

™y =ryz3 —rgze=(50x10) — (60 x 0) = 500

Uy =1y %) —ry zg = (60 % 10) - (50 » 10) = 100
U3 =1y 23 —Tg 27 = (50 x0) — (50 % 10) = -- 500
By
Byg=73—-2;,=10-10=0

=Zy—23=0-10=-10

Bz=27y—2,=10-0=10

Y1 =r3—ryp=60-50=10

Yo =11 —r3=560-60=-10

Y3=ry—r;=50-50=0
‘The coordinates,

_ri+rp+r3 50+ 50+60 _ 160

3 3 3
_ZyxtZoHZzz J0+0+10 20
= 3 = 3 =8

and the terms

,’(11'*"31 r+vy; z
=

(a2+f32r+yzz
= ¥

O3+ By r-+vyzz
- r

Substituting the above values in the strain-displacement matrix, we got

— 10 (8] (8] O 10
(B] = 1 | 0.625 0 0.625 0 0.625
100 0O - 10 o -10 8]
10 —-10 - 10 (¢} 0
Hence,
- 10 0.625 (6] 10
(3] 8] 10 —- 10
|7 = 1 0O 0625 0 -10
100 o 0 — 10 0
10 0.625 (o] (0]
o] (0] o 10

The stress-strain matrix,

]
1

3 :
J_ 160[-—5oo+1o\ = }+o

10

0 By

Uy 4 PBar+yy 2
a [ Oy + 33 + ¥y

¥z o

By T3

A

0
0
Y

B

L 13)

. 4)



X r -
(¢ TS it B o
e BoaA-p  on 0
[D] =
0 0 0 (_1__22}1 ]
(1 - 0.25) 0.25 0.25
— 0.25 (1 - 0.25) 0.25
T {(1+0.25) [1-(2x0.25)] G 025  (1-025)
0 0 0
. [0.75 025 o025 0
2.1x10° | 0.25 0.75 0.25 0
~(1.25) (0.5 | 025 025 0.75 0
o 0 0 025
3 1°1 a8
311 3 1 0
=84 x 10 1130
0 0 0 1

Substituting the values of Egns. (2), (3), (4) and (5) in Eqn. (1), we get the

stiffness matrix for element (1)

ie, [kl;=2nrA BT DB

-10 0.625 0 10
0 0 10 — 10
=2nx180 eqy 1 0 0.625 0 -10
3 100 0 0 -10 s
10 0.625 0 0
0 o0 0 10
3 110 - 10 0 0 0
84 x 10* I 310 L] 0625 0 0.625 ]
1 1 3 O 100 0 10 0 - 10
0O 0 0 1 10 - 10 - 10 ()
- 10 0.625 O 10
8] [¢) 10 — 10
_ 5 0 0625 0 —10
14510 o 0o  —-10 ol|”™
10 0625 QO 8]
) 0 0 (8] 10
- 29.375 10 0.625 - 10 30.625 (8]
- 8.125 10 1.875 -10 11.875 (6]
—9.3795 30 0.625 — 30 10625 O
10 — 10 — 10 (8] O 10
388.67 — 193.75 - 105.08 93.75 — 298 .83
—"193.75 400 106.25 — 300 106.25
— 1.4 % 10° — 105.08 106.25 101.18 - 6.25 74.22
- 93.75 - 300 — 6.25 300 - 106.25
— 298 .83 106.25 74.22 — 106.25 3132 67
100 - 100 — 100 O O

O

(8]

0.25

0
=
2

[1—2 2!

)]

. B

10
0.625
0)

)

100

— 100
- 100
O

0

100 1



1, Wi uy Wo u, Wy

[ 5441 -271.3 -147.1 131.3 -418.4 140 | u,
—271.3 560 148.8 — 420 148.8 - 140 | w,
fs Tt ™= 147.1 148.8« 1417 -8.75 1039 -140 | u, .
e., lkj; = 131.3  -420 -875 420 - 1488 0 | wo - O
—418.4 148.8 103.9 -—-1488 439.1 0| ug
140 — 140 — 140 (8] 8] 140 | w,
Similarly consider the element (2)
The coordinates of element (2) in mm are
ry = 50; z;=0
ry = 60; 29 = 0
ra = 60; z4 =10
: ix fi lement (2) is given by,
The stiffness matrix for cie )
klg=2nrA BT (D] [B]
1 ry %y L |1 80 0 — (8)
1 ; e 0| =50 mn
7 = 1 Zy | =% 1 60
el | 2|1 60 10
- 3 (8]
B, 0 B2 0 Pa y i
. . 3o 1+ Yo % | fag+Parr Y3z 0
caklrrenz)  [GatPaftRE | o | ]
1Bl = 5% [ o J l 3 )
2A o - 0 Yo 0 T3
35
T1 Bl Y2 ’i.! 13 l o |

Ly =y Zyg — 'y 7 = (60 X 107 - (60 » 0) = 600
O =132 — 1 23 = (60x0) - (50 x 10) = - 500
Ug=Ty2y—rez;=(50x0)-(60x0)=0
By=7y—23=0-10=~-10
PBo=2zy34-2z;,=10-0=10
Ba=2z2;—25=0—-0=0
Yy =1y —ru=060—-60=0
Ya=1r; —rq=50-60=—10
Yg=ryg—ry;=060-50=10

The coordinates,

_ntrp+ry3 50+ 60+60_ 170
S 3 = 3 3

zy+2zgtE3 0+0-+10 10

B 3 - 3 3




The terms.

oy + 3¢ r+71z 3

r T 170, " 3 y
\
C2tbarrmz 3 [ 556, 10| ~1—§9 =10
r 170 i \ ) 4
as+fPzr+yzz 3 10 )]_
= -170L0-«-0+10(3 ]J_oss
Now,
- 10 0 10 0
lﬁ] - ! 0.59 0 059 0
~ 100 0 0 0 —10
0 —-10 —10 10
Hence
[ —10 o059 0 0
0 0 0 -10
BT =1 10 0.59 0 —-10
~ 100 0 0 —-10 10
0 0.59 0 10
I 0 0 10 0
The stress-strain matrix,
1-w K 1
O Hu (1 — ) H
e YA -2 )
(Tn " 1 (TR & YL
i
] 0 0 '
\
0.75 0.25 025 0
- 21x10° | 025 075 025 o
~(1.25)(0.5)| 025 025 0.75 0
0 0 0 0.25
3110
- 31 3 10
=84 x 10 1130
000 1

Substituting the values of &
matrix for element (2) as.

[ —10 059 0

0 o0 g

_ 170 A 10 059 ¢

(g =2nx=3 X DR o0 0 0 -10

0 059 o

0 0 10
3110 -10 0 10
3118310 1050 o qs9
AT T § 5 00 o o o
0001 0 -10 -10

(4% 4)

0
0.59
¢]

10

0
10
0

qns. (8). (9), (10) & (11) in Eqn. (7), we ge

0'1
-10
~10
10 |*
10
0
0 0 0o
0 059 o0
-10 0 10
10 10 0
(4% 6)

2 ¥

.. (10)

- (1)

t the stiffnegs



-10 0.59

0 0

10 |

0 0 0 10| -2941 0 3059 - 10 059
= T& % 105 10 0.59 0 -10 - 8.23 0 11.77 10 177 10|
0 0 -10 10 [} -941 0 1059 -30 059 30 |
0 0.59 0 10 0 -10 -10 10 16 0]
0 0 10 0
289.2 0 -299 941 -49 -941
0 100 100 -100 - 100 0
= 1.5x10%| —299 100 4128 -2059 -93.1 1059
94.1 -100 - 2059 400  94.1 - 300
-49 -100 -93.1 94.1 101 59
-94.1 0 105.9 - 300 59 300
uy Wy usg W Uy Wy
433.8 0 -4485 141.2 -74 - 1412 ]uz
0 150 150 - 150 - 150 0 [wy
5| —448.5 150 619.2 - 3089 -1397 158.9 |uy
— o - «
e. lkiz=10 141.2 -150 - 308.9 600 141.2 - 450 |w, s )
~74 -150 -139.7 141.2 151.5 89 |u,
~141.2 0 1589  — 450 8.9 450 |w,

Conlbining the stiffness matrices [k]; and [kl, as mentioned in Eqn. (6) and

(12), we can get the global stiffness matrix as (K] = [kl + [k],
‘ 2 ll:‘ W-‘ (LY “’_'
544.1 1271317-1441113131 0 : 0 -4184 140 |u,
. [K]=10° |- 271 3] 560 I 148.8 -420 [ t 1488 | - 140 |w,
~147.1] 148.8 1417 -875 -4485) 141.2 | 1039 | - 140
+ . S Uy
43.38 0 } - 7.4 ’-141.2
1313 -420 ~8.75 | 420 | 150 -1488| 0
E_ 5
I N .  -150 | 0
I 0 0 ;—448.51’ 150 [ 619.2 [-3089[- 13971 1589 | uy
Il L i L
[ - E 0 [ 141.2 [ 150 [-308.9 [ 600 [ 141.2 | —450 |ws
~418.4 14838 1039 —148 139.7| 141.2 [ 439.1 [ 0
+ 3 Uy
} J = 1 I 1515 | 89
140 [-140] -140 ! 0 71589; 450 | 0 | 140
[ % 4 e i ' + + | wy
| [-141.2 0 | ; | 89 | 450



. w ug !
u, w1 Uy W2 u3 3 ' W)‘

140. |
544.1 -271.3 - 1471 1313 0 8 -ﬁg.g [
~2713 560 1488 -420 0 3 =40
- 1471 1488 5755 -875 -4485 141.2 ‘92.8 2
5| 1313 -420 -875 570 150 - 150 - 298. i
IK)=10" 0 0 -4485 150 6192 -308.9 - 139.7 1‘456
0 0 1412 -150 -3089 600 1412 _309
~4184 1488 965 -2988 -139.7 1412 590.6 =
140 -140 -2812 ° 0 1589 - 450 89 590 |
... (13)

We know that the force displacement relationship is given by

[F)=[K](8) .. (14)

where { F } = Nodal force vector

; o
=[Flr’Flz»FZrtF2z:F3r:F32:F4r’1'42]

(K] = Global stiffness matrix

[ &) = Nodal displacement vector

T
=[ul,W],U2,W2,ll3,W3,U4,W4]

The forces acling along the radial direction at the nodes 1 and 2 are

2nrl,p
Flr = F2r - é .
where r;  =Inner radius of cylinder =50 mm.
l

e =Length of finite element = 10 mm.

P =Internal pressure = 2MPa=2x10% N/m?= 2 N/mm?

.
Py =y = ALXS0XI0XE ) o

The forces Fy, , Fy, ,F3, and F,,

are zero and the forceg F3, and F,,
as reaction forces.

are acting



2qn. (14) can be written as
Now, the IEqi > — 140
5441 -271.3 -147.1 1313 g o 1488 140
~271.9 560 148.8  —420 065 —281.2
; I 75 - 448.5 141.2 : 0
~147.1 1488 5755 -8 8.5 10s0 —2988
5 131.3 —- 420 - 8.75 570 ) : " 1397 158.9
10° 0 0 -—4485 150 619.2 -3089 7 s
; 50 - 308.9 600 141.2 '
0 0 141.2 - 15 08. B 5506 5.9
- 4184 1488 96.5 -298.8 - 1;;9.:7 L% o £on
140 —140 -281.2 0 158.9 - 45
) ] uj Fip
W1 F]z
! u, Fyp
J Woy F2z
-4
ug F3r
W3 F3z
Uy Far
Wy | Faz |
544.1 —271.3 - 147.1 131.3 0 0 -4184 140
=971.3 560  148.8  —420 0 0 148.8 ~ 140
-147.1 1488 5755 —8.75 —4485 141.2 96.5 - 281.2
e 08 131.3 —-420 -8.75 570 150 - 150 —298.8 0
e 0 0 —4485 150 6192 -—308.9 —139.7 158.9
0 0 1412 -150 - 3089 600 141.2 - 450
-4184 1488 96.5 —298.8 -139.7 141.2 590.6 8.9
] 140 —140 -281.2 0 158.9 — 450 8.9 590
u; | [31416 ]
0 0 !
lap| {31416 |
K g E e
| =Y a7 mee CEB)
0 0
0 F4r
0 0

Neglecting 2nd, 4th, oth, 6th, Tth and 8th

_ rows and coly ' st
matrix of Eqgn. (15), the remaining te e M

rms gives the matrix equation such as

ma[ 544.1 —14?.1ch _{3141.6]
- 147.1 575.5 lug [ .'314]_5[ .o A16)

e, 10°(544.1 uy - 1471 ug) = 31416
r o 417
10°(-147.1 v, +575.5 ug) = 3141.6
. (18)



5 1 .c
Egn. (18) x ‘;:3]1‘ J=> 10° ( — 544.1 u, + 2128.7 uy) = 11620.3
L :

Egn. (17) + (19) = 10° (1981.6 uy) = 14762

% u2=5_147@——=7.4><10'5mm
10° x 1981.6 .
. 1 3141.6 :
Oy . (17 = 7.
qn. (17) = uy 544.1( R + 14 1112]
i (3141.6>< 1075 +147.1x 7.4 x 107 ° )
544.1

=7.8x 107 5 mm
Result:

The displacements at the inner radius are

u; =7.8x10" > mm

ug=7.4x 10”° mm.

19



UNIT V
1. Explain the sub-parametric, iso-parametric and super-parametric element.
ISOPARAMETRIC ELEMENT
Generally it is very difficult to represent the curved boundaries by straight edge elements. A large
number of elements may be used to obtain reasonable resemblance between original body and the
assemblage. In order to overcome this drawback, isoparametric elements are used.
If the number of nodes used for defining the geometry is same as number of nodes used defining
the displacements, then it is known as isoparametric element.

.

® — Nodes used for defining geometry
I\ — Nodes used for defining displacements

SUPERPARAMETRIC ELEMENT
If the number of nodes used for defining the geometry is more than number of nodes used for
defining the displacements, then it is known as superparametric element.

v

® — Nodes used for defining geometry
2\ — Nodes used for defining displacements



SUBPARAMETRIC ELEMENT
If the number of nodes used for defining the geometry is less than number of nodes used for
defining the displacements, then it is known as subparametric element.

v

® — Nodes used for defining geometry
L5 — Nodes used for defining displacements

2. Consider a rgcla.ngular element as shown in Fig, -Assume plane stress condition,
E =30 X 10°psi,» = 03,and q = (0, 0, 0.002, 0.003, 0.006, 0.0032, 0,077 in. Evaluate 1, B,
and e at § = Oandn = 0.

Solution:

. we have

J=1[2(1~n1+2{1+n)(1+m_(1+n) Y
4201+ € +2(1+ 8 (1+&+(1-8 ﬁ T“
10 4 2 3=———>gs
- ©,1) 1)
o]
t!__ C(1_,|I15) G4
a1 qu
g 2 X
©,0) : 2.0)
FIGURE

For this rectangular element, we find that ¥ is a constant matrix. Now, from Eqs

1;0 0
A=—|0 0

1721 ¢ 1 o
g

M= & o
[

1 1 1 1
- o 1 9o }t o -1 o
B=! o -1 o -{ o § o !
-1 _1 _1 1 21 3 a _1
2 4 Z 4 2 4 2 4

The stresses at £ = p =  are now given by the product
o’ = DB%g



For the given data, we have

p3 0.3 1]
D - %[o.m v ]
) O 0o 035

Thuas,
ol = [66 920, 23 OR0, 40 960]T psi

Evaluate

|
I=fl3€*+xz+-————1 }
-1 (x + 2) dx

using one-point and two-point Gauss quadrature,

Solation Forn = 1,wehave wy = 2,x; = 0, and
I~ 2f(0)

70

Forn =2, wefind w, = w, = 1, x; = —0.57735..., x, = +0.57735..., and [ = 8.7857.
This may be compared with the exact solution

Iozon = B.8165

4, Use Gaussian quadrature to obtain an exact value for the integral

1
I =f [u--“— 1)(s — 1)* dr ds
—1 -

Solution
Considering first the integration with respect to r, we have a cubic order that requires two
sampling points, which from Table 6.1 are given as r; = £0.5773503, and each of the

corresponding weighting factors is unity. Similarly, for the integration with respect to s,
the order is quadratic so the factors are the same. (In the following solution, we note, for
simplicity of presentation, that the sampling points are numerically equal to +/3/3.) Equa-
tion 6.106 is then, for this example.

4 ¥

[y -] () <[ - (-
T ) [ ) -




UNIT VI

1.explain Consistent mass matrix and Lumped mass matrix.

CONSISTENT MASS MATRIX

1. The mass of each element is equally distributed at all the nodes of that Element.

2. Mass, being a scalar quantity, has same effect along the three translational degrees of freedom
(u, vand w) and is not shared

3. Mass, being a scalar quantity, is not influenced by the local or global coordinate system. Hence,
no transformation matrix is used for converting mass matrix from element (or local) coordinate
system to structural (or global) coordinate system.

LUMPED MASS MATRIX

Total mass of the element is assumed equally distributed at all the nodes of the element in each
of the translational degrees of freedom. Lumped mass is not used for rotational degrees of
freedom. Off-diagonal elements of this matrix are all zero.

2.

A composite wall consists of three materials, as shown in Fig. E1001a. The outer tempera-
ture iz Ty = 20°C. Convection heal transfer takes place on the inner surface of the wall with
T = B00°C and # = 25 W, 'm? - °C. Determine the temperature distribution in the wall.

/ . N [

I |

15 m |O.E5m |
(a}

wr 1

Wl =

Y
%
z

[l
K

o

[ .2 m

1 2 3 K
T, {1 T @ T2 (3 Te=207C
()

FIGURE E10Q.1

Solution A three-element finite element model of the wall is shown in Fig. E10.1b. The
element conductivily matrices are

— 30 i -1
-7 el

0.3 —1 1 0,151 —1 1
K — S0 [ 1 —1]
- o1s—1 1

The global K = EK; is obtained from these matrices as

1 -1 0 ©
D
K=6671 4 3 § -5

0 o —5 5

Mow, since convection occurs at node 1, the constant A = 25 is addad 1o the {1, 1] location
of K. This results in

1375 —1 O 0
—1 4 =3 O

o —3 & —5

O o =3 3

K = a6.7



Since no heat genceration & occurs in this problem. the heat rate vector R consists only of
HT e in1 the first row. That is,

R = [25 x 800, ©, 0, 0]F

The specified temperature boundary condition 7, = 20°C, will now be handled by the
penalty approach. We choose C based on

C = max |K,,| > 10*
= 6.7 = B »= 10°

MNMow, C gets added 10 {4, 4] location of K, while €7, is added 1o the fourth row of R. The
resulting equations are

1375 -1 V] D T 25 » B00
567 —1 4 —3 ] T _ ]
o —3 -] -5 s [N
u] 0 —5 80 d0s Ty 10672 = 107
The solution is
T = (3046, 1190, 57.1. 20.0]"°C

A metallic fin, with thermal conductivity £ = 360 W,/ m* ==, 0.1 ¢m thick, and 10 cm long,
extends from a plane wall whose temperature is 235°C. Determine the temperature distri-
bution and amount of heat transferred from the fin to the air at 20°C with A = 9 W/m?-°C.
Take the width of fim to be 1 m.

Solution Assume that the tip of the fin is insutated. Using a three-element finite ela-
ment model (Fig. Ei0.3) and assembling Ky, Hy R~ as given previously, we find that
Eq. 10.40 yields

_ 4 1 0 T
360 A R - RS Ul PR P
__30 ) — _,r ;
333102 o 1 3 % 10 o 1 2 7
. —10711 x 235
9 % 20 % 333 x 1072 ] 2 10711
B 10~ AN o
1 o
A = FW/miC
///’;;,T;=zu°c
g=0
1 2 3 4
T, = 235°C

FIGURE E10:.3

The solution is
[z, Ti, T = [H¥.E, 1952, 1205)°C
The total heat loss in the fin can now be computed as
H = 3 H,
The loss A_in each element is
He = h{Ta'\' - Trm}Ag

where A, = 2 = (1 = 0.0333) m", and T,, is the average temperature within the elzment.
“We obtain

H,... — 3343 W/m



Determine the eigenvalues and eigenvectors for the stepped bar shown in Fig.

Solution Gathering the stiffness and mass values corresponding to the degrees of free-
dom ¢, and 3}, we get the eigenvalue problem

A, ﬁ) _ Az
g N Ls L, {Uz} _ l£|:2(A.L. + Azds) Al ]{Uz}
Ay Az || L & Azl 2ALL, LU,
L. L,
We note here that the density is
F 0.283

=L - == = x 107 1bs*/in.*
P s 352 = 12 7324 10 s/in

Subatituting the values, we get

02 —o01|fesl 25 2.5]{{.&}
30 mﬁ[—n.l n.l]{us}_“'ﬂXIW 25 s |los

=
“A; = lan Ag — LS ind
= JIIIr =
¢

. yn
-1l m_#_l?s R, —

E == 302 10% psi
sprecific weight F = 283 Thbin

Ca)

14527

11.5F2
x x
1 z 3
First rmodie
Secomnd oot g as

(b}
FIGURE

The characteristic equation is

derl (8% 10° — 30.5 X 107%a)  {—3 x 10° — 3.05 x 107%%) | _ 0
U (=3 x 10° — 3.05 X 10%A) (3 X 10° — 6.1 X 107A)

which simplifies to
177 % 1FeA? — 1.465 X 10F4 + 9 X 10% =0
The cigenvalues are
Ay = 6.684 % 10°
Ay = 761 x 10°

Note that A = o, where w is the circular frequency given by 2xf and [ = frequency in
hertz (cvcles/s).
These requencies are

f, = 4115Hz
F = 13884 Hz



The two previous equanons are not independent, since the determinant of the matrix is
zero. This gives

3.9607, = 3.204L/,
Thus,
Uy = [{4,1.236L7]
For normalization, we set
U/MU, =1

On substtuting for U, we get

Uy = [14.527 17.956]
The cigenvector corresponding 1o the second eigenvalue is similarly found 1o be

Uz = [11.572 —37.45]}

The mode shapes are shown in Fig.



