

Sub Code:19BCC5TH01 ENTREPRENEURSHIP AND INNOVATION

Time: 3 hours

(Common to CE, ME, ECE) Max. Marks: 60

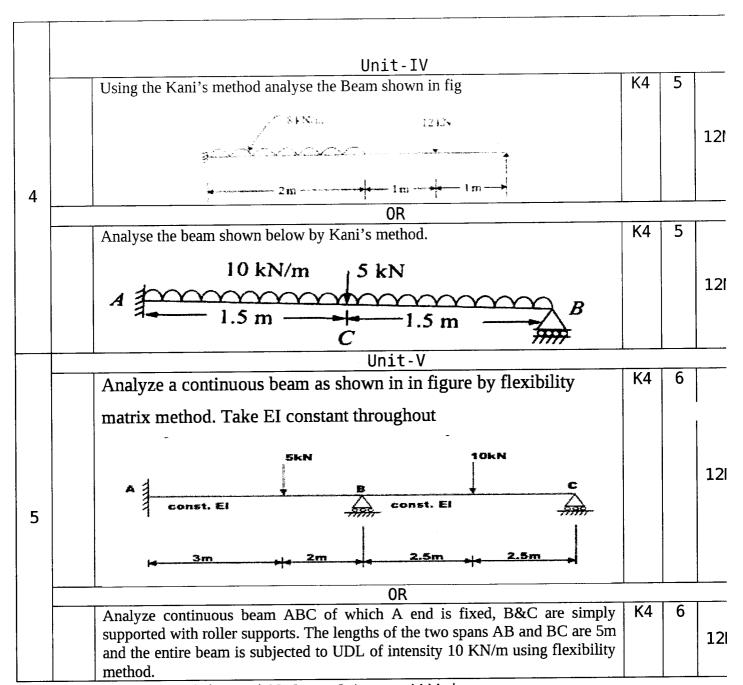
Note: Answer All **FIVE** Questions. All Questions Carry Equal Marks (5X12=60M)

Q.No	An Questions Carry Equal Marks (5X12=60M)							
41110	Questions Unit-I	KL	CO	M				
		140	1					
	i) Explain the characteristics of entrepreneurs a ii) Discuss the role of entrepreneurship in	K2	C01	6M				
	a ii) Discuss the role of entrepreneurship in Economic Development	K2	C01	.6M				
-		i	L					
1	i) Discuss the Social Responsibilities of		T	,				
		K2	C01	6M				
	b Entrepreneur							
	ii) Outline the Financial Support of Commercial	K2	C01	CN				
	Banks to entrepreneurship			6M				
	Unit-II		· · · · · · · · · · · · · · · · · · ·					
_	a Discuss the steps in creativity process	K6	C02	12M				
2	OR		·					
	b i) Explain the factors affecting creativity	K6	C02	6M				
	11) Discuss the importance of innovation	K6	C02	6M				
	Unit-III							
	a i) Discuss the objectives of EDPs	K6	C03	6M				
	ii) Explain the need for training for entrepreneurs	K6	C03	6M				
3	OR .							
	i) Discuss the phases of EDP for new entrepreneurs	K6	C03	6M				
	b ii) Develop and appropriate training programme to	K6	C03	CN				
	entrepreneurial spirit			6M				
	Unit-IV							
	a i) Explain the meaning of a project	K5	C04	6M				
4	ii) Discuss the sources of new ideas.	K5	C04	6M				
	OR OR							
	b i) Evaluate project feasibility study	K5	C04	6M				
	11) Outline project evaluation techniques	K5	C04	6M				
	Unit-V							
	i) Explain the meaning and definition of small and	K4	C05	6M				
	a micro entrepreneurs			6M				
	11) Discuss the importance of small and micro	K4	C05	6M				
5	enterprises			OP				
	OR							
	i) Analyze the causes of sickness in small business	K4	C05	6M				
	b and suggest remedies			6M				
	11) Outline the factors influencing growth of small	K4	C05	6M				
	and micro entrepreneurs 1: Knowledge Level CO: Course Outsome Addarks**			Ol'I				

KL: Knowledge Level CO: Course Outcome M:Marks***

Sub Code: 19BCE5TH02

STRUCTURAL ANALYSIS-II


Time: 3 hours

(CE)

Max. Marks: 60

All Questions Carry Equal Marks	(5 X 12 = 60M)
---------------------------------	------------------

	All Questions Carry Equal Marks (5 X 12 = 60M)			
Q. No	Questions	KL	CO	М
1	Unit-I A propped cantilever of span 9.2m is fixed at one end and propped at the other end and carries a UDL of 12.7kN/m on its whole span. Calculate the prop reaction and draw the shear force and bending moment diagrams	К3	1	12
-	OR A fixed beam of span 12m carries a central point load of 55kN along with a UDL of 25kN/m on its whole span. Calculate the fixed end moments for the beam. Also draw the shear force and bending moment diagrams.	K3	1	12
	A two span continuous beam ABC is fixed at A and simply supported at B and C. The span AB=6m and span BC=5m. The span AB carries a UDL of 23 kN/m and span BC carries a central point load of 26kN. EI is constant for the whole beam. Find the moments and reactions at all the supports and draw the bending moment diagram using Clapeyron's theorem of three moments	К3	2	12
2	Using Clapeyron's theorem, solve the problem of the continuous beam as shown in Figure EI is constant throughout 12 KN 3m 1,5m 1,5m 1,5m	КЗ	2	12
	Draw BMD for the Continuous beam shown in fig. by using Moment Distribution method. SkN SkN/m 15kN Im E 3m E 4m CC 2m F 2m D	К3	4	12
3	Analyse the continuous beam shown in Fig. by moment distribution method and draw the bending moment diagram 2KN/m 5KN 6m 3m 2m 2.5m 2.5m I I I I I I I I I I I I I	K4	4	12

VIETU ENGLEERING COLLEGE

III B.Tech I Semester Regular Examinations, February-2022 Sub Code: 19BCE5TH03 DESIGN OF REINFORCED CONCRETE STRUCTURES

Time: 3 hours (CE) Max. Marks: 60

Note: Answer All **FIVE** Questions.

All Questions Carry Equal Marks (5 X 12 = 60M)

Q.No	ļ	Questions Questions	KL	CO	M
		` Unit-I	1	4	
1		i) Write short notes on balanced, under reinforced and over reinforced sections with sketches	K1	1	6M
	a	ii) What would be the increase in the moment of resistance if it is reinforced with 2-16 mm bars of Fe 500 grade in compression at an effective cover of 40 mm. Whether the neutral axis would shift upwards or downwards, and by	К3	1	6M
		what amount?			
1		OR	I		
_		i) Find the moment of resistance of a beam section 250 mm x 500 mm deep is reinforced with 2-16 mm bars in tension at an effective cover of 40 mm.	К3	1	6M
	١,	Use M20 concrete and Fe 500 grade of steel. ii) A doubly reinforced beam 300 mm x 680 mm effective is reinforced on	K3	1	
	b	tension and compression side with 4 numbers of 25 mm diameter bars.	KJ	ı	
		Compression steel is placed 40 mm from top of the beam. If the beam			6M
		carries a bending moment of 215 x 106N-mm, find the stresses induced in			0111
		steel and concrete. Take $m = 13.33$			
		Unit-II			
		I) A T-beam of flange size 700 mm x 120 mm and web size 350 mm x 680	К3	2	- '
2	a	mm is subjected to factored bending moment of 215 kN-m, factored shear of			103
		150 kN and factored torsion of 105 kN-m. Design the reinforcements by		ĺ	12M
		using Limit state method. Take cover to centre of steel as 50mm.			
		OR			
	b	i) What are the assumptions made in limit state of collapse in flexure	K2	2	6M
		ii) Explain the Analysis and design for flexure of singly reinforced sections	K2	2	6M
		Unit-III			
		I) A simply supported beam with clear span 6 m, width 400 mm and	K3	3	
		effective depth 560 mm carries a limit state load of 175 kN/m inclusive of			
3	a	self-weight, dead load and live load. It is reinforced with 4 bars of 28 mm			12M
3		diameter tension steel which continue right into the support. Take fck = 20			
		N/mm ² , fy= 250 N/mm ² , Design shear reinforcement			
	·I	OR			
	b	i)Explain about development length with sketch	K2	3	6M
		ii)Explain the design concept of bond	K2	3	6M
		Unit-IV			
	a	I) Design a R.C.C. column to carry an axial load of 2000N. The size of the	K3	4	
	a	column is restricted to 600 mm square. The effective height of column is 9 m. Use M20 concrete and Fe 415.			12M
4		OR			
-		ii) Design a rectangular footing of uniform thickness for an axially loaded	V2	<u>, </u>	
		column of size 300 mm x 600 mm. Load on the column is 1150 kN. Safe	K3	4	
l	b	bearing capacity of the soil is 200 kN/m ² . Use M20 concrete and Fe 415		İ	12M
	- 1	steel.		1	

		Unit-V						
5	а	I) Design a R.C slab for a room having inside dimensions 3m X 6m. The thickness of the supporting wall is 300mm, the slab carries 100mm thick at its top. The unit weight of which may be taken as 19000N/m³. The L.L on the slab may be taken as 2500N/m². Assume the slab to the S.S at the ends. Use M20 concrete and Fe 415 steel	К3	5	12M			
	OR							
	b	ii) Design a two way slab of 2m x 3m by Limit state method, simply supported on all four sides. The thickness of wall is 200mm. The corners of the slab are not held down. It has to carry a characteristic live load of 10 kN/m ² .	К3	5	12M			

Sub Code: 19BCE5TH04

SOIL MECHANICS

Time: 3 hours

(CE)

Max. Marks: 60

		All Operations Grant Flux Questions.					
Q.No		All Questions Carry Equal Marks (5 X 12 = 60M) Questions					
		Unit-I	KL	CC	N		
	i) What is geological cycle? Explain the plant of Co.						
	a	ii) Develop a relationship between es=wg	K2	1	6		
1		OR	K3	1	6		
		i) What are the major soil deposits of india? Explain their characteristics	,	_			
	ь	ii) A sample of dry soil weighs 68 gm. Find the volume of voids if the total volume of	K2	1	61		
		sample is 40 ml and specific gravity of solids is 2.65. also determine the void ratio.	K3	1	61		
		The state of the first specific gravity of solids is 2.05. also determine the void ratio.					
		Unit-II		,			
•	a	Briefly explain about the laboratory methods of permeability test with neat sketch	K2	3	12		
2			<u> </u>	İ	l N		
		i) Discuss the construction of kaolinite,montmorrillonite,illite mineral group		,			
	b	ii) Explain Calibration and Correction of Hydrometer method?	K2	2	61		
			K2	2	61		
}		Unit-III					
		i) Explain in detail the construction of Newmark's chart with an influence value of 0.005.	K3	3	6N		
					UN		
	a	ii) A soil profile consists of a surface layer of sand 3.5m thick ρ=1.65Mg/m ³ an intermediated layer of along 3 m thick ρ 1.65Mg/m ³ and 1	K3	3			
	-	intermediate layer of clay 3 m thick $\rho=1.65$ Mg/m ³ and the bottom layer of gravel 3.5m $\rho=1.925$ Mg/m ³ the water table is at the years and the first state of the same of	l				
3		3.5m p=1.925Mg/m³ the water table is at the upper surface of clay layer. Determine the effective pressure at various levels immediately after placement of surcharge load			61		
į		of 58.86 KN/m ² to the ground surface.					
	OR						
ļ		i) What is quicksand condition? Derive the expression for the critical hydraulic		· — -			
	b	gradient.	K2	3	6M		
	_	ii) Explain the effective stress in soils saturated by capillary action.					
		Unit-IV	K2	3	6M		
Ī		i) What are the factors that affect the compaction? Discuss in brief.					
	a	ii) Discuss Terzaghis theory of consolidation?	K1	4	6M		
4		OR	K2	4	6N		
		i) Explain compaction control by using proctor needles					
	b	ii) Explain consolidation test?	K2	4	6M		
		Unit-V	K2	4	6M		
		i) Write a note on the laboratory box shear test.					
		ii) A vane 10cm long and 8 cm in diameter was annual:	K1	5	6M		
		ii) A vane, 10cm long and 8 cm in diameter, was pressed into soft clay at the bottom of a bore hole torque was applied and gradually increased in 4500.	K3	5			
- 1	a	of a bore hole torque was applied and gradually increased to 45N-m when failure took place. Subsequently, the vane rotated rapidly so as to completely remould the soil.					
		The remoulded soil was sheared at a torque of 18N-m. Calculate the cohesion of the			6M		
5		clay in the natural and remoulded state and also the value of the sensitivity?					
L		resident and remodition state and also the value of the sensitivity?		ĺ			
		OR					
[i) Write a note on the laboratory triaxial shear test.	K1	5			
	ь		17.1	اد	6M		
	i	ii) Explain briefly about the Mohr's stress circle.	K2	5	6M		

Sub Code: 19BCE5TH05

CONCRETE TECHNOLOGY

ie: 3 hours

(CE)

Max. Marks: 60

Note: Answer All **FIVE** Questions. All Questions Carry Equal Marks (5 X 12 = 60M)

Q.No		Questions Curry Equal Walks (5 X 12 = 00W)	TZT	00	137		
2.110		Questions Unit-I	KL	СО	M		
		i) Explain in detail the heat of hydration of Bougue's compounds	K2	CO1	6M		
_	a	ii) What are the main compounds in Portland cement along with composition and explain their properties?	K1	CO1	6M		
1		OR		<u> </u>	1		
		i) What is consistency of cement and how it is tested?	K1	CO1	6M		
	b	ii) Explain about the different tests conducted on cement in the laboratory to check its suitability	K1	CO1	6M		
		Unit-II		1	<u> </u>		
	a	i)List out various tests on aggregates in detail.	K1	CO2	12 M		
2		OR			_[
		i) Write about gap graded and well graded aggregate.	K2	CO2	6M		
	b	ii)Explain about alkali aggregate reaction and what precautions are necessary to minimize it.	K2		6M		
		Unit-III		L	<u> </u>		
		i) Explain procedure for determination of workability of concrete using Vee-Bee Consistometer test with neat diagram.	К3	CO4	6M		
3	a	ii) Calculate the Gel/space ratio and the theoretical strength of a sample of concrete made with 500g of cement and 0.6w/c ratio, on i) Full hydration ii) 70% hydration	K4	CO4	6M		
	hydration ii) 70% hydration OR						
		i) What is segregation and bleeding of concrete why they occur, discuss	K5	CO4			
	b	how to prevent them		CO4	6M		
		ii) Write about mineral admixture and chemical admixtures.	K2	CO4	6M		
4	a	i) Design a concrete mix for construction of an elevated water tank. The characteristic compressive strength of concrete is 30MPa at 28days. Assume standard deviation as 4MPa. The specific gravities of coarse and fine aggregates are 2.64 and 2.68 respectively. The dry rodded bulk density of coarse aggregate is 1600Kg/cum, and fineness modulus of sand is 2.80. OPC (Type I) is to be used. A slump of 50mm is required. The water absorption of coarse aggregate is 1% and free surface moisture in sand is 2%. Assume any other data missing suitably. Use ACI method of mix design.	K4	CO3	6M		
		ii) Design a M20 grade concrete mix by BIS method with the following data: specific gravity of cement, coarse aggregate and fine aggregate are: 3.05, 2.60 and 2.62 respectively. Water absorption for coarse aggregate and fine aggregate are 0.70 and 0.60 percentage respectively. Free moisture Nil. Degree of quality control good and exposure moderate. Determine the quantities of ingredients in kg/m3 of concrete	K4	CO3	6M		

		OR						
	b	i) Discuss about the maturity concept of concrete, ii. The strength of sample of fully matured concrete is found to be 40Mpa. Find the strength of identical concrete at the age of 7 days when cured at an average temperature during daytime at 20°C and night time at 10°C	K6	CO3	6M			
		ii) Discuss about the rebound hammer test method on concrete structures and its limitations	K5	CO3	6M			
		Unit-V						
	a	i) What is the need to study fiber reinforced concrete and explain briefly the factors effecting properties of fiber reinforced concrete?	K6	CO6	6M			
		ii) Describe the role of aggregate in creep of concrete.	K3	CO5	6M			
_	OR							
5	b	 i) Write a short note on a) short crete b) self-compacted concrete c) light weight aggregate concrete 	K6	CO6	6M			
		ii) Explain applications of various sulphur-infiltrated concrete	K4	CO5	6M			

Sub Code: 19BCC5OE01

DISASTER MANAGEMENT

Time: 3 hours

(CE)

Max. Marks: 60

All Questions Ca	rry Equal Marks	(5 X 12 = 60M)
------------------	-----------------	------------------

0.17	1	All Questions Carry Equal Marks (5 X 12 = 60M)	TZT	00	3.6		
Q.No	ļ	Questions	KL	CO	M		
		Unit-I	***	~~~			
		i) Describe the areas of flood hazard in India. What causes floods?	K2	CO2	6M		
	a	ii) What are causes for the Tsunami 2004 which causes heavy life and property	K 6	CO2			
1		loss along coastal area of Andhra Pradesh and Tamilnadu. Specify its epicenter			6M		
1		and magnitude					
		OR	······································				
	ь	i) Differentiate between endogenous hazards and exogenous hazards	K3	CO1	6M		
	L	ii) Write down the causes and distribution of earthquake clearly	K2_	CO2	6M		
		Unit-II					
	a	Explain clearly about landscape approach and perception approach of disaster	K1	CO1	12M		
	a	management			12111		
2		OR					
		i) Under what category will you put Bhopal Gas tragedy in India?	K6	CO2	6M		
	b	ii) Discuss in detail about various mechanism implemented by UNFCCC to	K5	CO1	6M		
		reduce and mitigate the global warming?			OIVI		
		Unit-III					
		i) Draw neatly about the fundamental elements of solid waste management	K1	CO3	6M		
	a	ii) Explain briefly about post-disaster stages/steps to be implemented from	K2	CO2	61/		
2		government side for faster recovery.			6M		
3	OR						
		Discuss the key mechanisms to combat bioterrorism and its treat levels in	K6	CO4			
	b	megacities. State your opinion on Covid-19 in your perspective of bioterrorism			12M		
		with justification					
		Unit-IV	1				
		Discuss the need of disease surveillance system in developing countries like	K3	CO4	1014		
	a	India. Justify with any one case study.			12M		
4		OR					
4		i) Define Risk and vulnerability, also state the factors affect risk and	K1	CO4	() (
	١.	vulnerability to disasters?			6M		
	b	ii) Discuss about the role and policies of National disaster management plan in	K1	CO3	O.		
		India?			6M		
		Unit-V	L	l			
	-	i) What are the legal provisions available to ensure fire safety compliance in	K1	CO3	6M		
		public buildings?					
5	a	production of the state of the					
		ii) What is meant by social and environmental vulnerability?	K1	CO4	6M		
_	-						
		OR	122	CO2	1		
	ь	Discuss the role of Environmental impact assessment studies in promoting the	K3	CO3	12M		
		sustainable development. Justify with example.					
			1	1	1		

Sub Code: 19BEE5TH01

CONTROL SYSTEMS

Time: 3 hours (EEE) Max. Marks: 60

		All Questions Carry Equal Marks (5 X 12 = 60M)			
Q.No		Questions	KL	CO	M
		Unit-I		 1	
		i) Distinguish open loop and closed loop systems by giving suitable examples and			6M
		also highlight their merits and demerits.			
		ii) Obtain the transfer function Y(s)/R(s) from block diagram shown below figure			
		by using the signal flow graph method.			
		H ₂ (x)			
	a				C) A
		$R(x) \xrightarrow{\frac{1}{x}} \xrightarrow{\frac{1}{x}} \xrightarrow{\frac{1}{x}} \xrightarrow{\frac{1}{x}} \xrightarrow{\sigma_1(x)} \xrightarrow{\sigma_2(x)} \xrightarrow{\sigma_2(x)} \xrightarrow{\frac{1}{x}} \xrightarrow{\tau_2(x)} r(x)$			6M
		H ₃ (s)			
1		$H_{i}(\mathcal{G})$			
		OR			
		i) Calculate the transfer function of the system given below			
		111111111111111111111111111111111111111			
		8 K,			
	L	M, V,			6M
•	b	K, & K, 8			
		B∟ ↓v₂			
	į	M ₂ TV ₃			
		ii) When is a control system said to be robust? Explain with suitable example.			6M
2		Unit-II			
	a	Evaluate the position velocity and acceleration error coefficients of the unity			6M
	_ u	feedback system having forward loop transfer function as G(S)=50/(1+S)(1+0.25S)	<u> </u>		0111
		The open-loop transfer function of a unity feedback control system is given by			
		G(s)=50/s(s+5). Find the natural frequency of response, damping ratio, damped			6M
		frequency and time constant.			
	_	OR		11	
	b	i) Convert this block diagram into signal flow graph and determine its transfer function C/R			
		Tuncuon C/R			
		_ - G			
		R + O + O + O + O + O + O + O			6M
		<u> </u>			
		FI.			
		ii) The open-loop transfer function of a unity feedback control system is given by			6M
		G(s)=10/s(s+2). Find the natural frequency of response, damping ratio, damped			
	1	5(5) 25.5(5.2). This are factal frequency of response, damping ratio, damped			

		frequency and time constant.			
		Unit-III			
		i) Determine the stability of the closed loop system whose open loop transfer is	CNA		
		G(S)=10(1+2.5S)/S(S+1)(3S+1)(0.5S+1) using Routh-Hurwitz criterion	6M		
	a	ii) Sketch the root locus for unity feedback system whose open loop transfer	03.5		
3		function is G(S)=K(S+0.5)/S(S+1.5)(S+2.5)	6M		
		OR			
		i) Using R-H criterion comment on stability for given characteristic equation	GM		
	b	$S^7+9S^6+24S^4+24S^3+24S^2+23S+15=0$, and determine the location of roots in S-plane	6M		
		ii) Develop the root locus of the open-loop transfer function as given below $G(s)H(s)=K/S(S+2)(S^2+2S+5)$	6M		
		Unit-IV			
		i) Damping factor and natural frequency of the system are 0.12 and 84.2 rad/sec			
		respectively. Determine the rise time (tr), peak time (tp), maximum peak overshoot	6M		
		(m _p) and settling time (ts).			
	a	ii) Determine the range of K for which closed loop system is stable and the Nyquist			
		Plot for the system whose open loop transfer function is $G(S)H(S)=K/S(S+2)$	6M		
4		(S+10)			
	OR				
		i) With the help of Nyquist plot assess the stability of a system $G(s) = 5/S(S+2)$.			
		What happens to stability if the numerator of the function is changed from 5 to 50?	6M		
	Ъ	ii) Determine K so that the system is stable with gain margin is 2db and phase			
		margin is 45degrees for the system given $G(S)=Ke^{0.2S}/S(S+2)(S+8)$ and Draw its	6M		
		Bode Plot			
		Unit-V			
		i) Determine the state and output equations in vector matrix form for the system			
5		whose transfer function is given by	6M		
	a				
		G (s)=(S+2)/S(S ² +5S+6) ii) Discuss the concept of controllability and observability with an example	6M		
	-	OR	I I I I I I		
	<u> </u>	i) Consider the matrix A=[1 2 3;2 7 4;5 7 9]. Compute e ^{At} ?	6M		
	b	ii) Discuss about the properties of state transition matrix and prove those properties	6M		

Sub Code: 19BEE5TH02

POWER ELECTRONICS

Time: 3 hours

(EEE)

Max. Marks: 60

All Ouestions Carry Equal Ma	rks (5 X 12 = 60M)
------------------------------	--------------------

		All Questions Carry Equal Marks (5 X 12 = 60M)	KL	CO	M
Q.N		Questions	176-		
0		Unit-I			
		i) Discuss the transfer, output and switching	K2	1	12M
	а	characteristics of IGBT.			
		• OR			
1		i) Compare the performance characteristics of	K4	1 1	5M
		MOSFET with BJT.			
	b	ii) Highlight on the need of series and	K4	1 1	7M
		parallel operation of SCRs.			
		Unit-II		т :	
		i) Describe the working principle of operation			
	а	of single phase half wave controlled converter	K3	2	12M
		with RL load with neat waveforms.			
2		OR			
		i) Describe with a neat sketch the working			
	١.	principle of operation of Fully Controlled	К3	2	12M
	b	Converters with RLE load and freewheeling	1(3		1211
		diode.			
		Unit-III			
		i) Describe the effect of source inductance in			
		the operation of three phase converter,	1/4	3	124
	a	indicating clearly the conduction of various	K4		12M
3					
٦		thyristors during one cycle. OR	ļ		<u>'</u>
	-	i) Explain the working of single phase dual			
	b	converter with neat circuit diagram and	K2	3	12M
	ט				
	 	necessary waveforms. Unit-IV	1		<u> </u>
		i) Explain the operation of Single Phase AC			
	а	Voltage Controllers with R-load with neat	К3	4	12M
4					
4	-	waveforms. OR		_1	<u> </u>
	b	i) Discuss on the operation of bridge	K3	4	8M
		configuration of Single phase mid-point Cyclo-			
L		Contradiction of Striges phase mita potite system			

		Converters with inductive load.			
		<pre>ii) Write short notes on bidirectional converters.</pre>	K2	4	4M
		Unit-V		<u> </u>	
	а	i) Describe the working principle of buck-boost converter with necessary circuit and waveforms.	K2	5	121
		OR		1	<u></u>
5		i) Illustrate the principle of operation of 3			
		phase voltage source inverter with			
	b	180°conduction mode with necessary waveforms	K4	5	12M
		and circuits. Also obtain the expression for			
		line to line voltage.			

Sub Code: 19BEE5TH03

ELECTRICAL TRANSMISSION SYSTEM

Time: 3 hours

(EEE)

Max. Marks: 60

Note: Answer All **FIVE** Questions.

All Questions Carry Equal Marks (5 X 12 = 60M)

Q.No		Questions Questions	KL	CO	M
Q.110	1	Unit-I			
		i) Derive the expression for the capacitance per km of a single phase line without ground effect.	3	1	6M
		ii) A single phase transmission line has two parallel conductors 3m apart.			
	a	The radius of each conductor being 1 cm. Calculate the loop inductance per			6M
		km length of the line if the material of the conductor is i) Copper with μr=1	4	1	6M
1		and ii) Steel with μr=100.			
_		OR			
		i) Explain the necessity of transposition in transmission lines.	2	1	6M
		ii) Find the capacitance of a single phase transmission line 40km long			
	b	consisting of two parallel lines each 4mm in diameter and 2m apart.			6M
		Determine the capacitance of the same line taking into account effect of	5	1	OIVI
		ground. The height of conductors above ground is 5m?			
		Unit-II			·
		Derive the ABCD constants for a medium transmission line which can be			12M
	a	analysed using i) Nominal-π line ii) Nominal-τ line?	3	2_	12111
		· OR	T		
2		i) Derive an expression for voltage regulation of a short transmission line.	3	2	6M
	b	ii) A single phase transmission line delivers 2 MW of power at the receiving end at a voltage of 33 kV and 0.9 pf lagging. The total resistance of the line is 10Ω and the total inductive reactance is 18Ω . Evaluate: (i) Percentage voltage regulation. (ii) Sending end power factor.	5	2	6M
		, Unit-III	1		1
		i) Discuss the phenomenon of wave reflection and refraction.	2	3	6M
	a	ii) A 200 KV, 3 µs, rectangular surge travels on a line of surge impedance of	5	3	
		400Ω . The line is terminated in a capacitance of 3000 pf. Find an expression			6M
3		for voltage across the capacitance.	<u></u>		<u> </u>
		OR	1		Τ
		i) Derive an expression for the reflection and refraction coefficients of			6M
	b	travelling waves in a transmission line.	3	3	
		ii) Explain Bewley's Lattice diagram and give it's uses.	2	3	6M

		Unit-IV						
		i) Derive mathematical expression for voltage distribution over a string of suspension insulators.	3	4	8M			
	a	ii) Discuss the advantages of suspension type insulators over pin type insulators.	2	4	6M			
		OR			·			
4		i) A string of six suspension insulators is to be graded to obtain uniform						
	b	distribution of voltage across the string. If the pin to earth capacitors are			8M			
		equal to C, and the self-capacitance of the top insulator is 10 C, find the						
		mutual capacitance of each unit in terms of C.	5	4				
		ii) Explain why the potential distribution is not uniform over a string of						
		suspension insulators?	4	4	4M			
	Unit-V							
		i) What are the properties of insulating materials for cables?	4	5	4M			
_	a	ii) What is corona? Discuss various factors affecting corona.	2	5	8M			
5	OR							
		i) Discuss briefly about the electrostatic stress in a single-core cables.	2	5	4M			
	b	ii) Distinguish between disruptive critical voltage and visual critical voltage.	4	5	8M			
	l	Give expressions for the same.	•					

Sub Code: 19BEE5TH04

ELECTRICAL MEASUREMENTS

Time: 3 hours

(EEE)

Max. Marks: 60

Q.No	TT	Ouestions Ouestions	T/T	CO	1/	
Q.1VO		Questions Unit-I	KL	CO	M	
	i)	Recall the principle of working of a PMMC instrument with neat diagram.	K1	1	7 M	
) Distinguish control torque and deflecting torque	K2	1	5M	
1		OR				
	n	It is desired to extend the range of a DC milliammeter of the range 0 to 100 nA, to measure up to 1 A. The meter resistance R is 1 kW. Determine the value f shunt to be used and its multiplying power.	К3	1	6M	
	ii	Explain the principle of working of a Moving iron instrument with neat iagram	K1	1	6M	
		Unit-II				
		Oraw neat circuit of single phase Dynamometer type Wattmeter and explain the vorking. Also derive the equation for deflection torque.	K1	2	12M	
2		OR OR	***			
	b d	Explain with neat diagram Single phase induction type energy meter and iscuss its errors.	K1	2	9M	
	ii) Outline about phantom loading	K2	2	3M	
		Unit-III				
		Construct power factor meter with diagram and explain the working principle	K3	3	8M	
) Illustrate how the Resistance and current can be measured using a D.C otentiometer.	K3	3	4M	
3	OR					
		Vheatstone's bridge and State its limitations.	K3	3	6M	
	11) Determine the unknown resistance and derive the balance conditions with elvin's double bridge and state its limitations	K3	3	6M	
		· Unit-IV				
	<u>i)</u>	Determine the value of inductance using maxwell's inductance bridge	K3	4	6M	
4	a pa	An ac bridge was made up as follows: arm ab, a capacitor of 0.8 mF in arallel with 1 kW resistance, bc a resistance of 3 kW, arm cd an unknown apacitor Cx and Rx in series, arm da a capacitance of 0.4 mF. The supply at 1 Hz is connected across bd and a detector across ac. Determine the value of nknown capacitance Cx, unknown series resistance Rx and dissipation factor	КЗ	4	6M	
		OR		4		
	i)	Experiment the measurement of capacitance with Schering Bridge	K3	4	4M	
) Explain Megger for the measurement of high resistance with diagram and xplain its advantages.	K 1	4	8M	
		Unit-V		,		
	1 3 1	Define Transducer and classify	K1	5	6M	
5	a ii) Compare and contrast Inductive and Capacitive transducers	КЗ	5	6M	
J		OR				
	_ n —	Illustrate the principle and working of LVDT with neat diagram	K3	5	8M	
	_) what is strain gauge and explain the applications	K1	5	4M	

Sub Code: 19BEE5PE05 SPECIAL ELECTRICAL MACHINES Time: 3 hours

(EEE)

Max. Marks: 60

Q.N	0	Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12 = 60M)			
	_	Questions Unit-I	KL	CO	
	a	i) Compare the open loop control and closed loop control of stepper materials		1	T
1		ii) With neat diagrams, explain in detail the constructional details of a stepper motor.	4	1	6
I	<u> </u>	OR	2	1	6
	b	i) Discuss the theory of torque production in steppes			6
		ii) List and explain different types of stepper motors with applications.	2	1	61
	-	Unit-II	2	1	
2	a	Draw the constructional details of an SRM and explain its operating principle. Also list various applications of SRM.	4	2	12
		i) With the help of a peat soborned.	L	L	
	b	i) With the help of a neat schematic diagram, explain the closed loop control of an SRM.	4	2	6N
		ii) What is the need for position sensor in SRM control? Explain. Unit-III	2	2	6N
		i) Explain the working principle of a PMDC motor and derive its torque equation.			
	a	ii) Compare between sensor less control and sensor-based control of BLDC motors.	2	3	6M
3			4	3	6M
		i) What are the advert		<u>-</u>	
	b	i) What are the advantages and disadvantages of permanent magnet machines? Mention the applications of PM DC motors.			6M
		ii) Explain the constructional details of a PM BLDC motor.	2	3	
		Unit-IV	4	3	6M
	a i	i) Explain the working principle of permanent magnet synchronous motors.	2	4	6M
-	s	i) Derive the EMF and Torque equations for permanent magnet ynchronous motor.	2	4	
	i	OR OR			
ł	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Differentiate between permanent magnet synchronous motor and ermanent magnet BLDC motor. Also list few applications of permanent nagnet synchronous motors.		6	M
j	ı		4 4	4	- 1

		ii) Explain the Torque-Speed characteristics of permanent magnet synchronous motor.	3	4	6M
		Unit-V			
	a	i) With neat diagram, explain the constructional details of linear induction motor.	4	5	6M
5		ii) What are the advantages and disadvantages of Repulsion motor and also list few applications.	2	5	6M
1	<u> </u>	OR		.	
	ь	i) Explain the working principle and characteristics of Hysteresis motor.	2	5	6M
		ii) What are the advantages and disadvantages of using linear induction motor for electric traction?	2	5	6M

2

STATE ENGINEERING COLLEGE

III B.Tech I Semester Regular Examinations, February-2022

Sub Code: 19BCC5OE03 NON-CONVENTIONAL ENERGY RESOURCES

Time: 3 hours

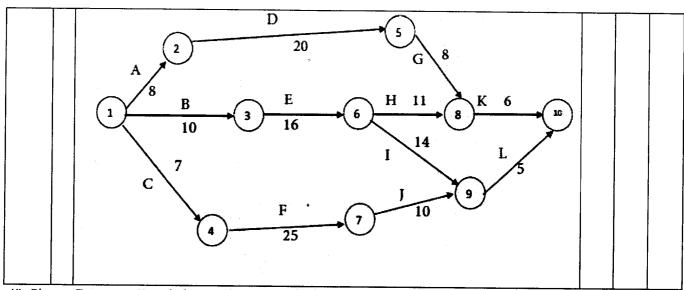
(EEE)

Max. Marks: 60

Note: Answer All **FIVE** Questions.

All Questions Carry Equal Marks (5 X 12 = 60M)

Q.No		Questions	KL	CO	M
		Unit-I			
		i) Summarize energy sources and their availability.	K2	CO1	6M
	a	ii) Explain briefly solar radiation at the earth's surface.	K2	CO1	6M
1		OR	L		
		i)What are the instruments for meaning solar radiation and explain briefly.	K1	CO1	6M
	b	ii) Develop the expression for solar radiation tilted surface.	К3	CO1	6M
	+	Unit-II		<u> </u>	
		i) Demonstrate the factors affecting distribution theof wind energy on the surface of the earth.	K2	CO2	6M
2	a	ii) A HAWT installed at a location having free wind velocity of 15 m/s. The 80-m diameter rotor has three blades attached to the hub. Find the rotational speed of the turbine for optimal energy extraction.	K2	CO2	6M
	- -J	OR	J	JJ	
	b	Show the diagram of HAWT and explain the function of its main components.	K2	CO2	12M
		Unit-III	I.,		
		i) List out the advantages and disadvantages of geothermal energy.	K1	CO3	6M
	a	ii) Anlayze the OTEC dry rock resource.	K3	CO3	6M
3		OR			
		i) Explain the analysis of hot aquifer.	K2	CO3	6M
	b	ii) Discuss about open cycle and closed cycle operation of ocean thermal energy conversion.	К3	CO3	6M
	 	Unit-IV		1	
	a	i) Demonstrate a seebeck, peltier and Thomson effects of thermoelectric power generation.	K2	CO4	6M
4		ii) With a neat sketch explain thermoelectric power generator	K2	CO4	6M
		OR	<u> </u>		l
	b	Explain thermoelectric materials and discuss briefly selection of materials.	K2	CO4	12M
		Unit-V			
	a	Explain the operation of open cycle and closed cycle system MHD systems.	K2	CO5	12M
_		OR		**	•
5	_	ii) Analyze the basic principle of MHD generation and equivalent circuit.	K4	CO5	6M
	b	ii) List out the main advantages and limitations of MHD systems.	K1	CO5	6M


Sub Code: 19BME5TH02 BUSINESS MANAGEMENT CONCEPTS FOR ENGINEERS

Time: 3 hours

(ME)

Max. Marks: 60

		All Questions Carry Equal Marks (5 X 12 = 60M)			
Q.No		Questions	KL	CO	M
		Unit-I			
	а	 i) Define Managerial Economics. Explain the nature and scope of ME. 	K1	1	6M
1	"	ii) Discuss the Law of Demand along with exceptions.	K2	1	6M
-		OR OR			
	.	i) Explain elasticity of demand with examples.	K2	1	6M
	b	ii) Describe CVP analysis with pros and cons	.K3	1	6M
		· Unit-II			
		Define the term Market. Compare monopoly and	k1	2	12
	a	monopolistic markets with examples			M
2		OR			
		i)Differentiate account and accounting	K3	2	6M
	b	ii)Discuss the process of journal entry system with	K2	2	6M
		necessary information	<u> </u>	<u> </u>	L
		Unit-III		T =	
	а	i) Explain various functions of management	K2	3	6M
3	Ľ	ii) Explain the importance of Espirit de corps	K2	3	6M
3		OR		-	
	Ь	i) Explain scientific management theory	K2	3	6M
	ט	ii) Explain theory X and theory Y	K2	3	6M
		Unit-IV			
	а	i) Explain the statement Human resources are assets to the organisation.	K2	4	6M
		ii) Differentiate marketing from sales	K3	4	6M
4		OR			
		i) Explain 'reduction of cost on every year is mere mandatory even inflation improves.	K2	4	6M
	b	ii) Discuss the important functions of a finance manager	K2	4	6M
5		Unit-V	·	J	
	-	i) Explain the terminology of project management	K2	5	6M
	a	ii) Discuss the basis for a network diagram	K2	5	6M
		OR			
	b	i) Define PERT and CPM. Explain the usage of PERT	K1	5	6M
		ii) Find out the completion time and the critical activities for	k2	5	6M
		the following project:			

2

Sub Code: 19BME5TH03 METAL CUTTING AND MACHINE TOOLS

Time: 3 hours (ME) Max. Marks: 60

Note: Answer All **FIVE** Questions.
All Questions Carry Equal Marks (5 X 12 = 60M)

		All Questions Carry Equal Marks (5 X 12 = 60M)	KL	СО	М
Q.No		Questions Unit-I	NL		
		i) Describe the chip formation in metal cutting and mention the types of chips and the conditions in	K2	1	6M
1	а	which they are formed. ii) Describe the factors influencing the tool life during metal cutting process.	K2	1	6M
		ORi) Draw the single point cutting tool nomenclatureand mention its parts.	K2	1	6M
	b	ii) Explain the different types of cutting tool materials used in metal cutting.	K2	1	6M
	а	Unit-II Explain the functioning of the following lathe parts in detail head stock, carriage, tail stock, bed, four jaw chuck with neat sketches.	K2	2	12M
2		i) Describe the specifications of lathe machine with neat sketches.	К2	2	6M
	b	ii) Differentiate between the Capstan lathe and the Turret lathe.	K2	2	6M
	а	i) Briefly explain the difference between the plain, semi-universal and universal radial drilling	1	3	6M
3		machine. ii) What is a quick return mechanism? Describe the crank and slotted link mechanism in a shaper. OR	K2	3	6M
		i) Describe the parts and functioning of the double housing planar.	K2	3	6M
	b	ii) Briefly discuss about the working and applications of jig boring machine.	K2	3	6M
		Unit-IV			
	а	The state of solumn and	K3	5	6M

		ii) Briefly elaborate about the up milling and down			
		milling process.	K3	5	6M
		OR	<u></u>		<u> </u>
		i) Describe the profile milling, metal slitting,			
	 	straddle milling, T-slot cutting and woodruff key	K3	5	6M
	b	cutting.	1		
		ii) Briefly discuss about the different types of			
4		jigs with neat sketches.	K3	5	6M
		. Unit-V	1	l	
		i) Explain about the center-less cylindrical		T	
	a	grinding process with a neat sketch.	K3	4	6M
		ii) Explain about the grit, grade and structure of			
5		a grinding wheel.	К3	4	6M
		OR			
		i) Explain about the dressing and truing of a			
	b	grinding wheel.	K3	4	6M
		ii) Describe the process of Honing and its			
		applications.	К3	4	6M

Sub Code: 19BME5TH04

HEAT POWER ENGINEERING

Time: 3 hours

(ME)

Max. Marks: 60

All Questions Carry Equal Marks (5 X	12 = 60M)	
--------------------------------------	-----------	--

Q.No		Questions Questions	KL	CO	M		
		Unit-I					
	a	i) In a single heater regenerative cycle steam enters the turbine at 30 bar and 400°C and the exhaust pressure is 0.01 bar. The feed water heater is a direct contact type which operates at 5 bar. Find the efficiency and steam rate, the increase in mean temperature of heat addition, efficiency, and steam rate as compared to Rankine cycle without regeneration. Neglect pump work.	К3	CO1	8M		
1		ii) What is a Vapour Power Cycle? Can a Carnot cycle be used for a steam power plant? Mention the reasons to justify your answer.	К3	CO1	4M		
	-	OR	~~~	1			
		i) Illustrate the working of Orsat's flue gas analyzer apparatus.	K2	CO1	6M		
	b	ii) In a steam power cycle, the steam supply is at 15 bar and dry and saturated. The condenser pressure is 0.4 bar. Calculate the Carnot and Rankine efficiencies of the cycle. Neglect pump work.	К3	CO1	6M		
		Unit-II					
2	a	With neat sketches describe various accessories normally used in a steam generating plant.	K2	CO2	12M		
		OR					
	ь	i) Explain the working of various types of draughts used in usual practice.	K2	CO2	6M		
L		ii) What are the advantages of artificial draught over natural draught?	K2	CO2	6M		
	Unit-III						
		i) Derive the expression for critical pressure ratio in a flow through a nozzle.	K 3	CO3	6M		
3	a	ii) Steam enters a group of nozzles of a steam turbine at 12 bar and 220°C and leaves at 1.2 bar. The steam turbine develops 220 kW with a specific steam consumption of 13.5 kg/kWh. If the diameter of nozzles at throat is 7 mm, then calculate the number of nozzles.	К3	CO3	6M		
		OR					
		i) Derive the expression for maximum discharge for a flow through a Nozzle	K 3	CO3	6M		
	b	ii) In a steam nozzle, the steam expands from 4 bar to 1 bar. The initial velocity is 60 m/s and the initial temperature is 200°C. Determine the exit velocity if the nozzle efficiency is 92%.	К3	CO3	6M		
		Unit-IV					
4	a	Derive the condition for optimum blade speed ratio for a single stage impulse turbine and find the maximum blade (diagram) efficiency.	К3	CO4	12M		
-		OR					
	b	Illustrate the methos of compounding an impulse turbine and discuss their merits and demerits.	К3	CO4	12M		
5		•					

	Unit-V			
	i) With the help of a T-s diagram briefly explain the process of inter cooled gas turbine cycle.	K3	CO5	4M
a	ii) In gas turbine plant, working on Brayton cycle with a regenerator of 75% effectiveness, the air at the inlet to the compressor is at 1 bar and 30°C. The pressure ratio is 6 and the maximum cycle temperature is 900°C. If the turbine and compressor have each an efficiency of 80%, find the percentage increase in the cycle efficiency due to regeneration.	К3	CO5	8M
	OR			
b	Illustrate the working of Solid, liquid and hybrid propulsion rockets and write their applications.	К3	CO5	12N

* * *

(AUTONOMOUS)

III B.Tech I Semester Regular Examinations, February-2022

Sub Code: 19BME5TH05

DESIGN OF MACHINE ELEMENTS -I

Time: 3 hours

(ME)

Max. Marks: 60

Note: Answer All **FIVE** Questions.
All Questions Carry Equal Marks (5 X 12 = 60M)
Design data book required for solving the problems.

Q.No		Questions	KL	CO	M		
		Unit-I					
		i)List the Steps involved in general design procedure?	K3	CO 1	6M		
	а	Define Resilience? How it is different from toughness?	K 1	CO 1	6M		
		OR	<u> </u>	1			
		i)Explain about theories of failures under static load?	K2	CO 1	6M		
1		ii) The load on a bolt consists of an axial pull of 10kN together with a transverse shear force of 5kN. Find the diameter of bolt required according to	К3	CO 1			
:	b	i. Maximum principal stress theory; ii. Maximum shear stress theory;					
		iii. Maximum principal strain theory;			6M		
		iv. Maximum strain energy theory; and v. Maximum distortion energy theory. Take permissible tensile stress at elastic limit= 100MPa and Poisson's ratio=0.3.					
		11-4-17					
		Unit-II A hot rolled steel shaft is subjected to a torsional moment that varies	K5	CO			
2	а	from 330 N-m clockwise to 110 N-m counterclockwise and an applied bending moment at a critical section and no keyway is present at the critical section. Determine the required shaft diameter. The material has an ultimate strength of 550 MN/m ² and yield strength of 410 MN/m ² . Take the endurance limit as half the ultimate strength, factor of safety of 2, size factor of 0.85 and a surface finish factor of 0.62.		2	12M		
		OR		<u>L</u>			
		i)Explain about Goodman method for combination of stresses?	K4	CO 2	6M		
	b	A 50 mm diameter shaft is made from carbon steel having ultimate tensile strength of 630MPa. It is subjected to a torque which fluctuates between 2000 Nm to -800 Nm. Using Soderberg method, calculate the factor of safety. Assume suitable values for any other data needed.	K5	CO 2	6M		
3		Unit-III					
	а	A plate of 100 mm wide and 12.5 mm thick is to be welded to another plate bymeans of parallel fillet welds. The plates are subjected to a load of 50kN. Determine the length of the weldso that the maximum stress does not exceed 56MPa. Consider the joint first under static loading andthen under	K5	CO 3	12M		

		fatigue loading.						
	-	OR			, '			
	b	A double riveted lap joint is made between 15 mm thick plates. The rivet diameter and pitch are 25 mm and 75 mm respectively. If the ultimate stresses are 400 MPa in tension, 320 MPa in shear and 640 MPa in crushing, find the minimum force per pitch which will rupture the joint. If the above joint is subjected to a load such that the factor of safety is 4, find out the actual stresses developed in the plates and the rivets.	K5	CO 3	12M			
		Unit-IV						
4	а	Design a typical cotter joint to transmit a load of 50 kN in tension or compression. Consider that the rod, socket and cotter are all made of a material with the following allowable stresses: Allowable tensile stress (σ y) = 150 MPa, Allowable crushing stress (σ c) = 110 MPa, Allowable shear stress (τ y) = 110 MPa.	K4	CO 4	12M			
	OR							
		i) Explain about varioustypes of keys.	K2	CO 4	6M			
	b	ii) What are the design considerations of keys?	K1	CO 4	6M			
		Unit-V			•			
	а	Design an auto mobile transmission shaft which is required to transmit 45kW at 500rpm. The outside diameter must not exceed 50mm and maximum shear stress should not exceed 84MPa. Compare the weight of the solid and hollow shafts which would just meet their requirements.	K5	CO 5	12M			
		OR						
5		i)Write the design procedure for flange coupling with neat sketch?	K2	CO 5	6M			
	b	ii)Design a clamp coupling to transmit 30 kW at 100r.p.m. The allowable shear stress for the shaft and key is 40MPa and the number of bolts connecting the two halves are six. The permissible tensile stress for the bolts is 70MPa. The coefficient of friction between the muff and the shaft surface may be taken as 0.3.	K4	CO 5	6М			

Sub Code: 19BCC5OE10

OOPS THROUGH JAVA

Time: 3 hours

(ME)

Max. Marks: 60

Note: Answer All FIVE Questions.

	Note: Answer All FIVE Questions.				
Q.No	All Questions Carry Equal Marks $(5 \times 12 = 60M)$				
Qaro	Questions	I	ζL	CO	M
	Unit-1				4
	a i) Briefly explain about Java Virtual Machine?		4	1	6N
1	ii) What are the Principles of Object-Oriented Languages? Exp	1 .	1	$\frac{1}{1}$	6N
ļ	OP				01.
,	b i) Explain the procedure for Execution of Java Program?		4	1	6N
	ii) What are the applications of OOP?		1	1	6N
- 1	Unit-II		=		011
1	a i) Describe about different data types?		3	2	12N
2	ii) Explain the syntax of 'for' loop with an example?		4	2	121
}	OR				
	b i)Write a short note on ternary operator?		2	2	6M
	ii) Explain the syntax of 'while' loop with an example?		4	2	6M
ŀ	Unit-III		<u>-</u>		OIV
	a i) Explain the usage of 'super' keyword?		3	3	6M
3	ii) Write a short note on Interface?	2		3	6M
-	OR OR				0171
ŀ	b i) Explain the usage of 'final' keyword?	3	3	3	6M
	ii) Explain the process of defining and creating a package with e	example? 4		3	6M
-	Unit-IV				OIVI
	a ii) Explain the concept of Exception handling?	4		3	6M
4	ii) Write a short note on Flow Layout and Border Layout?	2		4	6M
<u> </u>	OP.				OIVI
	b i) What is meant by user defined exception? Explain.	1		3	6M
	ii) Write a short note on Text field and Text area?	2		4	6M
F	Unit-V				
	a i) Write a short note on Adapter classes?	2		4	6M
5	ii) Write a program to create a frame window that responds to m	nouse clicks? 5		4	6M
-	OR			-	OIVI
	b i) Write a short note on Inner classes?	2		4	6M
Bloom	ii) Write a program to create a frame window that responds to Kons Taxonomy Knowledge Level CO: Course Outcome.	ey Strokes? 5		4	6M
DIOONS	13 I dXUITOTTV KNOWledge Level CO: Course Outer	<u> </u>		T	OIAT

Sub Code: 19BEC5TH02 LINEAR AND DIGITAL IC APPLICATIONS

Time: 3 hours

(ECE)

Max. Marks: 60

Note: Answer All **FIVE** Questions. All Questions Carry Equal Marks (5 X 12 = 60M)

-		All Questions Carry Equal Marks (5 X 12 = 60M)	T	Τ	
Q.No		Questions	KL	СО	M
1		Unit-I			
	a	i) Explain any one of the frequency compensation technique in connection with Op-amp.	KL2	1	6M
		ii) An IC op-amp 741 used as an inverting amplifier with a gain of 100. The voltage gain vs frequency characteristic is flat up to 12 kHz. Find the maximum peak to peak input signal that can be feed without causing any distortion to the output.	KL3	1	6M
:		OR		1.	· · · · · · · · · · · · · · · · · · ·
	b	i) Compare and contrast an ideal Op-amp and practical Op-amp.	KL3	1	6M
		ii) Explain the working of Non-inverting amplifier and derive the equation of its Gain.	KL2	1	6M
2	Unit-II				
	а	i) Which is the fastest ADC? Explain the operation and discuss its merits and de-merits.	KL3	2	6M
		ii) Design a 4-bit weighted resistor DAC whose full-scale output voltage is 10Volts. Assume $R_{\rm f}$ = 10K Ω and logic '1' level as + 5volts and logic '0' level as 0volts. What is the output voltage when the input is 1101?	KL3	2	6M
		OR	1	· · · · · · · · · · · · · · · · · · ·	
	b	i) Explain the operation of a multiplying DAC and mention its applications.	KL2	2	6M
		ii) What is the conversion time of a 10-bit successive approximation ADC if its input clock is 10 MHz?	KL3	2	6M
3	_	Unit-III		<u>-</u>	
	a	i) Draw the first order low-pass Butterworth filter and	KL1	3	6M

			analyze the same by deriving the gain and phase angle equation.							
		ii)	An ideal low pass filter having f_{H} = 5kHz is cascaded with high pass filter having f_{L} = 4.8kHz. Sketch the frequency response of the cascaded filter.	KL3	3	6M				
			OR							
	b	i)	Draw the functional block diagram of IC 565 and explain its working	KL1	3	6M				
		ii)	Design a narrow band bandpass filter using op-amp. The resonant frequency is 100HZ and Q = 2. Assume $c = 0.1 \mu f$.	KL3	3	6M				
4			Unit-IV							
	а	i)	Explain noise margin and propagation delay with respect to CMOS logic.	KL1	4	6M				
		ii)	Explain sinking current and sourcing current of TTL output. Which of the above parameters decide the fan-out and how?	KL2	4	6M				
	OR									
	b	i)	With neat sketch explain the operation of TTL NAND gate.	KL1	4	6M				
		ii)	Distinguish between static and dynamic power dissipation of a CMOS circuit?	KL3	4	6M				
5	Unit-V									
	a	i)	Write short notes on parity generator and checker?	KL1	5	6M				
		ii)	Implement the following Boolean expression using 74×151 IC F = AB + BC + AC.	KL3	5	6M				
		<u> </u>	OR	.,,						
	b	i)	Design a 5-to-32-line decoder using 3-to-8-line decoder, active low outputs with 2 active low and one active high enable.	KL3	5	6M				
		ii)	Design an 8:1 multiplexer using two 4:1 multiplexer? Write the truth table and draw the logic diagram?	KL2	5	6M				
		<u> </u>	nomy Knowledge Level CO: Course Outcome: M:Marks		·	·				

Sub Code: 19BEC5TH03

PULSE AND DIGITAL CIRCUITS

Time: 3 hours

(ECE)

Max. Marks: 60

Note: Answer All **FIVE** Questions.

All Questions Carry Equal Marks $(5 \times 12 = 60 \text{M})$

Q.No		Questions KL CO					
		Unit-I					
		i) Explain the response of High-pass RC circuit for square wave input	K5	1	6M		
	а	ii) A pulse is applied to low-pass RC circuit. Prove that area under the pulse	K5	1	6M		
1		is same as area under the output waveform across the capacitor			OIVI		
		OR					
	b	i) Explain the response of Low-pass RC circuit for exponential input	K5	1	6 M		
	ט	ii) When does high pass circuit act as a differentiator?	K5	1	6M		
		Unit-II					
		i) Draw the circuit of transistor clipper and explain its operation	K2	2	6M		
		ii) Design a diode clamper to restore a dc level of +5 V to an input signal of	K2	2			
	a	peak to-peak value 15 V. Assume the drop across the diode is 0.7 V and the			6M		
2		signal frequency is 1 kHz OR					
		i) Draw the basic circuit of diode clipper and explain its operation with the	K3	2			
					6M		
	b	help of transfer characteristics		_			
	~	ii) Draw the circuit diagram of emitter coupled clipper and explain its	K3	2	6M		
		operation			OIVI		
		Unit-III					
	2	i) Discuss about breakdown voltages of a transistor	K4	3	6M		
3	а	ii) Explain about design of transistor switch	K4	3	6M		
٥	OR			<u></u> 8			
	b	i) write short notes on Emitter coupled Logic families in detail	K3	3	6M		
		ii)List out few comparisons of TTL and CMOS Logic Families	K3	3	6M		
		Unit-IV	T	1 .	ı		
		i) Explain how an astable multivibrator can be used as a voltage to	K3	4	6M		
	a	frequency convertor			0111		
4		ii) Design an astable multivibrator to generate a square wave of 1 kHz	K3	4	6M		
4		OR			,		
		i) Derive the expression for gate width of a monostable multivibrator	K4	4	CNA		
	b	neglecting the reverse saturation current I_{CBO} .			6M		
		ii) Explain the operation of Schmitt trigger along with circuit diagram	K4	4	6M		
		Unit-V	- 	•			
		i) Explain the basic principle behind sampling gate	K5	5	6M		
:	a	ii) Explain the basic principles behind miller time base generator	K5	5	6M		
5		OR					
		i) What is meant by time base signal? What are the K general features of	K2	5			
	b	time base signal? Explain			6M		
		ii) Explain the operation of four diode sampling gate	K2	5	6M		
	l	1 1) Explain the operation of four choice sampling gate			1 0111		

Sub Code: 19BEC5TH04

CONTROL SYSTEMS

Time: 3 hours

(ECE)

Max. Marks: 60

	Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12 = 60M)			
Q.No	Questions Questions	KL	СО	M
	Unit-I			
	i) Explain the properties of closed loop system	K1	CO 1	6N
	ii) Develop the transfer function for the electrical system shown in Fig 1-a	K4	CO 1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6N
	OR	77.1	1 00	
1	i) Explain the effect of feedback on the noise and sensitivity of the system	K1	CO 1	6N
	ii) Draw the signal flow graph and derive the closed loop transfer function of system whose block diagram is given in Fig 1-b Fig:1-b	the K3	CO 1	
	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			6N
2	Unit-II			
	A unity feedback control system is characterized by an open loop transfer fun G(s)=K/s(s+10). Determine the gain K so that the system will have a damping		CO 2	
	a of 0.5. For this value of K, determine settling time, peak overshoot, and time to			121
	peak overshoot for a unit step input.			
	OR		•	
	b i) Define the terms transient response and steady state response. Explain in de about different time domain specifications.	tail K1	CO 2	6N
	acout dinotont time domain specifications.		<u>l</u>	<u> </u>

r			· · · · · · · · · · · · · · · · · · ·	1	
		ii) A unity feedback system has $G(s)=10/s(s+2)$. Find the generalized error	K2	СО	(M
		constants and steady state error.		2	6M
		Unit-III	l		
		i) With the help of Routh stability criterion find the stability of the system represented by the characteristic equation s ⁵ +s ⁴ +2s ³ +2s ² +3s+5=0	K2	CO 3	6M
	a	ii) Sketch the Root locus of the system whose open loop transfer function is	K3	CO 3	6M
	\vdash	G(s)=K/[s(s+2)(s+4)] OR			
3		i) A unity negative feedback control system has an open loop transfer function consisting of two poles, two zeros and a variable gain K. The zeros are located at	K4	CO 3	
	b	-2 and -1; and the poles at 0.1 and +1. Using Routh stability criterion, determine			6M
		the range of values of K for which the system is stable.			
		ii) Explain the general rules for construction of Root Locus plot.	K1	CO 3	6M
		Unit-IV			
		i) Explain the concept of gain margin and phase margin.	K1	CO 4	6M
	a	ii) Sketch the Nyquist plot and determine the gain margin and phase margin of the given open loop transfer function and comment on its stability.	K2	CO 4	6M
		$G(s)H(s) = (1+4s)/s^2(1+s)(1+2s).$			01/1
4		OR	T	T ~~	ı
	:	i) Derive the expressions for the frequency domain specifications of a prototype second order system.	K2	CO 4	6M
	b	ii) Sketch the magnitude and phase Bode plots of the given system and comment on its stability.	К3	CO 4	6M
		G(s)=10/s(s+0.5s)(1+0.05s)			
		Unit-V			
	9	i) Write the basis for selection of a particular compensation.	K1	CO 5	6M
5	a	ii) With physical example explain the concepts of controllability and observability.	K2	CO 5	6M
		OR	T	T ===	
	Ь	i) Explain the procedure for design of a Lag compensator in frequency domain.	K2	CO 5	6M
		ii) Explain various methods of evaluation of state transition matrix.	K1	CO 5	6M

Sub Code: 19BEC5TH05 COMPUTER ORGANIZATION AND MICROPROCESSORS

Time: 3 hours

(ECE)

Max. Marks: 60

		Note: Answer All FIVE Questions. All Questions Carry Equal Marks (5 X 12 = 60M)			
Q.No		Questions	KL	CO	M
	_	Unit-I			1/1
1	a	i) Explain the concept of basic Bus Structures of Computer system along with diagrams	K1	1	6M
1		ii) write short notes on RISC processor	K1	1	6M
	-	OR			
	b	i) List out different Functional units of computer system and explain	K3	1	6M
		11) write short notes on CISC processor	K3	1	6M
		Unit-II			
	a	i) Explain the Address Translation in Virtual Memory	K2	2	6M
2		ii) Write short notes on Direct memory Access in detail	K2	2	6M
		OR			OIVI
	b	i) Explain the concept of Cache memory organization in detail	K3	2	6M
		ii) write short notes on Asynchronous data transfer with example	K3	2	6M
		Unit-III	113		OIVI
	a	i) With the help of functional diagram explain the operation of 8086 microprocessor	K5	3	6M
3		ii) What is meant by an addressing mode? Explain the different addressing modes supported by 8086 with suitable examples	K5	3	6M
		OR			
	b	i) Draw the Register organisation of 8086 microprocessor and explain its operation	K2	3	6M
		ii) Explain the logical rotate instructions of 8086 with examples.			6M
		Unit-IV	K2	3	OIVI
	a	i) Explain the minimum mode operation of 8086 with the help of a PIN diagram	К3	4	6M
4		ii) Develop an assembly language program to multiply two BCD numbers of 2-digits each.	К3	4	6M
-		OR			
	b	i) Draw the timing diagram for the memory write cycle operation in the minimum mode of 8086 processor	K1	4	6M
		ii) write short notes on Pentium processor	K1	4	6M
		Unit-V			
5	a	i) Draw the internal block diagram of 8255 PPI and explain its operation	K3	5	6M
		ii) Describe the important features of 8257 DMA.	К3	5	6M
		OR			
	b	i) Discuss about the operational command words of 8259 and draw its frame format	K4	5	6M
		ii) write short notes on 8251 USART	K4	5	6M

Sub Code: 19BCC5OE08

CONSUMER ELECTRONICS

Time: 3 hours

(ECE)

Max. Marks: 60

Note: Answer All **FIVE** Questions.
All Ouestions Carry Equal Marks (5 X 12 = 60M)

	Luesione]] / / / / / / / / / / / / / / / / / /		
	Questions Unit-I	KL	СО	M		
	Unit-1					
а	i) Draw the setup diagram of crystal microphone and explain the working	K1	1	6M		
۵	ii) Draw the setup diagram of Dynamic Headphones and explain the working	K1	1	6M		
	OR			I		
	i)With the help of block diagram explain the working of handset of			6M		
b	cordless phone			OIVI		
	ii)Explain the need of Baffles	K2	1	6M		
	Unit-II					
a	Explain in detail about Sound Reflection, Sound Refraction	K2	2	12 M		
	OR		1			
	i) With the help of block diagram explain the working of Hi-fi system	К3	2	6M		
D	ii)Explain in detail about Video reproduction using magnetic tape	K2	2	6M		
Unit-III						
	i) Describe the Elements of a Television System	K3	3	6M		
a	ii) Explain in detail about Monochrome TV camera	K2	3	6M		
	OR					
h	i) Explain three Color theories of Color TV	K2	3	6M		
	ii) Explain in detail about Monochrome Picture tubes.	K2	3	6M		
	Unit-IV					
a	i) Discuss the Common Operating controls of Monochrome TV receiver.	K2	4	6M		
	ii) Write short notes on Digital TV System.	K1	4	6M		
····	OR		1.			
	i) Write short notes on Remote controls	K 1	4	6M		
b	• •	V2	1	6M		
		K2	4	<u> </u>		
			Т			
a	Microwave oven	K 1	5	6M		
"	ii) Write a short note on Xerography	K 1	5	6M		
****	OR		•	r		
L	i) Explain the working of digital clock	K2	5	6M		
υ	ii) Write a short note on Washing Machine	K1	5	6M		
	a b b	ii) Draw the setup diagram of Dynamic Headphones and explain the working OR i)With the help of block diagram explain the working of handset of cordless phone ii)Explain the need of Baffles Unit-II a Explain in detail about Sound Reflection, Sound Refraction OR i) With the help of block diagram explain the working of Hi-fi system ii)Explain in detail about Video reproduction using magnetic tape Unit-III a i) Describe the Elements of a Television System ii) Explain in detail about Monochrome TV camera OR b i) Explain three Color theories of Color TV ii) Explain in detail about Monochrome Picture tubes. Unit-IV i) Discuss the Common Operating controls of Monochrome TV receiver. ii) Write short notes on Digital TV System. OR i) Write short notes on Remote controls ii) Explain in detail about Common service controls of Color TV receivers Unit-V i) Draw the setup diagram of Microwave oven and explain its working of Microwave oven ii) Write a short note on Xerography OR i) Explain the working of digital clock	a ii) Draw the setup diagram of Dynamic Headphones and explain the working	a ii) Draw the setup diagram of Dynamic Headphones and explain the working OR ii) With the help of block diagram explain the working of handset of cordless phone ii) Explain the need of Baffles Unit-II a Explain in detail about Sound Reflection, Sound Refraction OR ii) With the help of block diagram explain the working of Hi-fi system ii) Explain in detail about Video reproduction using magnetic tape COR Unit-III ii) Describe the Elements of a Television System iii) Explain in detail about Monochrome TV camera OR ii) Explain three Color theories of Color TV iii) Explain in detail about Monochrome Picture tubes. COR ii) Discuss the Common Operating controls of Monochrome TV receiver. iii) Write short notes on Digital TV System. COR ii) Write short notes on Remote controls iii) Explain in detail about Common service controls of Color TV receivers COR ii) Draw the setup diagram of Microwave oven and explain its working of iii) Write a short note on Xerography FOR Ii) Explain the working of digital clock K2 5		

Sub Code: 19BCS5TH03

COMPUTER NETWORKS

Time: 3 hours

(CSE)

Max. Marks: 60

Note: Answer All **FIVE** Questions.

All Questions Carry Equal Marks $(5 \times 12 = 60M)$

0 1-	All Questions Carry Equal Marks (5 X 12 = 60M)			
Q.No	Questions	KL	CO	М
	Unit-I			
	a i) Write about OSI reference model with critical review.	2	2	6M
1	ii) What are the key features of Novel Netware?	2	1	6M
	OR			01/1
	b i) Explain features of TCP/IP reference model.	4	2	6M
	ii) Compare LAN and WAN.	4	1	6M
	Unit-II		1	OIVI
	a Present design issues of Data Link layer.	2	2	1014
•	OR		3	12M
2	i)Illustrate with example use of Parity bit in error detection.	1		
	b ii) Illustrate with example use of Hamming code in error detection and	4	3	6M
		4	3	6M
	correction.			OIVI
	Unit-Ⅲ	9		
	i) Explain sender and receiver modules of simplex stop and wait	4	3	
	protocol.			6M
	ii) Discuss about CSAM/CD protocol for collision less carrier			
3		2	3	<i>-</i>
	transmission.			6M
	° OR			
	b Discuss features of any two sliding window protocols.	2	3	12M
	Unit-IV			
	i)Illustrate with example shortest path routing algorithm.			
	a ii) Compare and contrast Connection Oriented and Connection Less	4	4	6M
		4	4	CM.
4	Services.			6M
	OR	1		
	i) Illustrate with example Distance Vector Routing algorithm.	4	4	6M
	b ii) Discuss IP Address formats.	2	4	OIVI
			7	6M
	TT!. X7			
F	i) What are the service primitives of simple transport layer?	1		
_	a ii) Explain the features of TCP protocol.	2	5	6M
5		4	5	6M
-	i) Exploin the wee of DNG:			
	i) Explain the use of DNS in internet web browsing.ii) What is URL? Explain HTTP.	4	6	6M

Sub Code: 19BCS5TH04

OOAD THROUGH UML

Time: 3 hours

(CSE)

Max. Marks: 60

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 12 = 60M)

		All Questions Carry Equal Marks (5 X 12 = 60M)	TZT	CO.	3.4		
Q.No		Questions	KL	CO	M		
		Unit-I		1 2 1			
		i) What are the building blocks of UML? Explain	2	1	6M		
1	a	ii)Explain modeling of relationships in UML with examples	3	1	6M		
1		OR					
		I) Present Software Development Life Cycle in UMLand Explain	3	1	6M		
	ь	ii)List out Structural Diagrams and Behavioral diagrams and give their	3	1	6M		
		significance in Modeling			OIVI		
		Unit-II					
		What are the various classifiers of UML? Briefly explain with appropriate	2	2	12M		
	a	representation.			1 2101		
2	<u> </u>	OR			· · · · · · · · · · · · · · · · · · ·		
	-	i) Illustrate Modelling of Logical Database Schema	3	2	6M		
	b		3	2	6M		
	<u> </u>	ii) Explain Object Diagram with example.]		OIVI		
	<u> </u>	Unit-III	2	3	1		
	1	i) What are the properties of Sequence diagrams? Explain modeling of time	2	3	6M		
	a	ordering of events using a sequence diagram with example.	 	1 2			
	"	ii) Explain modeling of a context of a system using use case diagram with	2	3	6M		
3		example.	<u> </u>		L		
3	OR						
		i) Explain modeling of structural organization of the objects using	2	3	6M		
	ь	collaboration diagram with example.		-			
		ii) Distinguish between Action State and Activity State. Illustrate with	3	3	6M		
	-	erxamples	1				
		Unit-IV			1		
		i) What is an event? Explain different types of events used in modeling using	2	4	6M		
	a	UML					
4		ii) Explain modeling of concurrent states with example	2	4	6M		
		OR					
		i)Explain Modeling Flow of Control in UML with example	2	4	6M		
	b	ii) Explain Modeling Timing Constraint in UML with example	2	4	6M		
		Unit-V					
		i) Define a component. Demonstrate relation between Components and	3	5			
	a	Classes			6M		
	a	ii) Explain Modeling of Processors and Devices in UML	3	5	6M		
5	-	OR					
J	-	i) Draw and explain a component diagram to visualize the static aspect of	3	5			
		physical components.			6M		
	b	ii) Explain modeling of an Embedded system using Deployment diagram in	3	5	 		
					\int 6M		
		Toyonomy Knowledge Level CO: Course Outcome M:Marks			۰ـــــــــــــــــــــــــــــــــــــ		

Sub Code: 19BCS5TH05 ADVANCED JAVA AND WEB TECHNOLOGIES

Time: 3 hours

(CSE)

Max. Marks: 60

Note: Answer All **FIVE** Questions.

All Questions Carry Equal Marks (5 X 12 = 60M)

Q.No	All Questions Carry Equal Marks (5 X 12 = 60M)			
Q.NO	Questions	KL	CO	М
	Unit-I			
	i) Illustrate Lifecycle of a Servlet a ii) Explain how to work with initialization parameters weigh	K4	1	6M
	a ii) Explain how to work with initialization parameters using an example servlet program.	K2	1	6M
1				OPT
1	OR OR			
	i) Develop a web application which demonstrates Session Tracking.	K3	1	6M
	ii) Describing the HttpServlet Request & HttpServletResponse	K1	1	
	interfaces		-	6M
	Unit-II			
	Differentiate Servelts and JSPs and Demonstrate the use of	K2	2	
2	all the three types of scriptlets with example programs.		-	12M
_	OR OR			
	b i) Explain directive Elements in JSP	K2	2	6M
	ii)Develop JSP application design with MVC	K3	2	6M
	Unit-III	11.5		OH
	a i) How to pass data between JSP Pages using session object?	K1	3	6M
3	ii) Demonstrate Error Handling and Debugging in JSPs.	K2	3	6M
J	OR OR			011
	i) How to pass the control between the JSP pages	K1	3	6M
	ii) How to pass the data between the JSP pages	K4	3	6M
	Unit-TV			
	i) Describe how JDBC works and also explain JDBC Architecture	K2	4	6M
	a ii) Develop a JSP page to register a student using	КЗ	4	
4	registration form and student table.	i i		6M
	OR			
	i) Classify IDBC driver types?	K2	1	6M
	ii) Explain how to access database from JSP page?	K5	4	6M 6M
	Unit-V	KO	4	ויוט
	i) How to create and run a PHP script explain with an	K6	5	
		KO	2	6M
	example:			
	ii) List out different types of arrays in PHP	K4	5	6M
5	i) Construct a BUD			
	i) Construct a PHP script to retrieve the data from MySQL database.	K4	6	6M
	b ii Dosign a DND godo to validate the S			
	ii) Design a PHP code to validate the form consisting of a	K6	5	6M
12:	username, password and email fields.			Ol·I
KI	· Blooms Tayonomy Knowledge Level CO. Course C. t.			

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome

M:Marks

Sub Code: 19BCI5TH02

COMPILER DESIGN

Time: 3 hours

(CSE)

Max. Marks: 60

		Note: Answer All FIVE Questions.			
		All Questions Carry Equal Marks (5 X 12 = 60M)	KL	CO	М
.No		Questions	1/1	CO	
		Unit-I	131	7	
		i) Describe the phases of a complier and show the transformation that takes after each	L2	1	
	1	phase in translating the statement:			6M
	1	S=(a+b+c)/2			
		Assume that all variables are double.	L3	1	
ì	a	ii) Write regular expressions & FA for the following informally described languages:		-	C14
		a. All strings of a's and b's with the subsequence abb.			6M
		a. All strings of a's and b's with an even number of a's and an odd number ofb. All strings of a's and b's with an even number of a's and an odd number of			
1		b's			
_]		i) Describe the phases of a complier and show the transformation that takes after each	L2	1	
		i) Describe the phases of a compiler and show the transformation that takes are			6M
		phase in translating the statement:			OPI
		X=25+(b+c/d*e)/(f*g-h*i)			
	b	Assume that all variables are double ii) Show that following grammar in not LL(1)	L3	1	
-		S-> iEtSS ¹ /a			6M
		S¹->eS/ ε			0.
		E->b	<u></u>	<u> </u>	L
	 	Unit-II			
	<u> </u>	i) Consider two binary operators 'T', and '\' with the precedence of operator \to being	L2	2	
		i) Consider two binary operators and 1 with the precedence of operator to be 1			
		lower than that of the operator 11. Operator is right associative while \downarrow is left			61
		associative. Then draw the parse tree for the following expression.		ì	
		(7 ¹³ 11 ⁴ 11 ³¹²)	13	2	
		ii) Consider the following grammar defined over = $\{0, 1\}$.	L3		
	a	S->0S11			
		S->S1			٠,
		S->@	!		61
	1	a. Briefly describe the language generated by this grammar.b. Show that this grammar is ambiguous by giving a string that can be parsed in			
		b. Show that this grammar is ambiguous by giving a string that can be pulsed in two different ways and showing the two corresponding parse trees.			
· ·		c. Rewrite the grammar to eliminate the ambiguity			
2		• OR			
		i) Consider the following grammar defined over = {True, False}.	L3	2	
		BExp->BExp or BExp BExp and BExp not BExp True False		İ	
		a Priofly describe the language generated by this grammar.			6
		b. Show that this grammar is ambiguous by giving a string that can be parsed in	1		"
		two different ways and showing the two corresponding parse trees.			
	١.	c. Rewrite the grammar to eliminate the ambiguity			-
	b	ii) Generate LL(1) and SLR(0) Passing table for grammar	L3	2	
		E->TE ¹			
		$E^1 \rightarrow +TE^1/\epsilon$			6
		T->FT ¹			ľ
		1	1		
		T¹->*FT¹/ ε F->(E)/id		l	1

	_				
	<u> </u>	Unit-III			
		i) Consider the following grammar. Note that id, +, [,], and "," are terminals. E-> E + T T T-> id id[] id[X] \times E-> , \times E E	L4	3	
	а	 a. Eliminate left recursion in the grammar. b. Perform left factoring for the grammar. 			16
3		ii) Consider the grammar and construct LALR Parsing Table. $S' \rightarrow S$, $S \rightarrow XX$, $X \rightarrow aX$, $X \rightarrow b$	L4	3	61
3	<u> </u>	OB	<u> </u>		
		i) Consider the grammar and construct SLR Parsing Table. $S \rightarrow X$	L4	3	T
		$X \rightarrow Yb \mid aa$ $Y \rightarrow a \mid bYa$			61
	b	ii) Consider the grammar and construct CLR (1) Parsing Table.S → Z	L4	3	+-
		$Z \rightarrow aMa \mid bMb \mid aRb \mid bRa$ $M \rightarrow c$			6M
	ļ	$R \rightarrow C$			
ļ	<u> </u>	Unit-IV		-	<u> </u>
	a	i) Describe how three address statements can be represented as records with fields for the operator and operands in compilers.	L2	4	6M
4		ii) Write the quadruples ,triples and indirect triples for the expression -(a+b)*(c+d)-(a+b+c)	L3	4	6M
4		0R			
-		i) Generate three address code for "if A <b 0",="" 1="" else="" method.<="" numerical="" td="" then="" using=""><td>L3</td><td>4</td><td>6M</td>	L3	4	6M
	b	11) What is a syntax free? Write syntax directed definition for construction	L3	4	
		tree for an expression. The grammar for an expression is given below $E \rightarrow E+T$, $E \rightarrow T$, $T \rightarrow T*F$, $T \rightarrow F$, $F \rightarrow id$			6M
i		Construct syntax tree for the expression: a+b*c using above SDD?			Oli
		Unit-V			
5	а	i) Explain peep-hole optimization and loop optimization.	L1		7.014
		OR .	LI	5	12M
	b	i) Describe dead code elimination, constant folding, and strength reduction.	L1	5	12M
KL: B	lloom	s Taxonomy Knowledge Level CO: Course Outcome M:Marks			1411

Sub Code: 19BCI5TH06

DATA WAREHOUSING AND DATA MINING

Time: 3 hours

(CSE&IT)

Max. Marks: 60

Note: Answer All **FIVE** Questions.

All Questions Carry Equal Marks (5 X 12 = 60M)

Q.No		Questions	KL	CO	M
		Unit-I			
		i) Explain how is a data warehouse different from a database? How are they similar?	L1	1	6M
		ii) Discuss whether or not each of the following activities is a data mining	L2	1	
	a	task.			
		a. Predicting the outcomes of tossing a (fair) pair of dice.			6 M
		b. Monitoring the heart rate of a patient for abnormalities.			
1		c. Monitoring seismic waves for earthquake activities.			
		OR		· · · · · · · · · · · · · · · · · · ·	
		i) With an example, describe different types of Data. Describe various Applications of Mining.	L1	1	6M
		ii) Present an example where data mining is crucial to the success of a	L3	1	
	b	business. What data mining functionalities does this business need (e.g.,			
		think of the kinds of patterns that could be mined)? Can such patterns be			6M
		generated alternatively by data query processing or simple statistical			
		analysis?			
		Unit-II			
		i) In real-world data, tuples with missing values for some attributes are a	L1	2	(N/
		common occurrence. Describe various methods for handling this problem.			6M
		ii) Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36,	L4	2	
	a	8):			
		(a) Compute the Euclidean distance between the two objects.			6M
		(b) Compute the Manhattan distance between the two objects.			01/1
2		(c) Compute the Minkowski distance between the two objects, using $h = 3$.			
		(d) Compute the supremum distance between the two objects.			
		OR	T 0		
		i) Explain the various Data pre-processing techniques. How data reduction helps in data pre-processing.	L2	2	6M
		ii) Briefly outline how to compute the dissimilarity between objects	L2	-	
	b	described by the following:	L2	2	
		(a) Nominal attributes (b) Asymmetric binary attributes			6M
		(c) Numeric attributes (d) Term-frequency vectors			
		Unit-III		1	
		i) Illustrate three-tier Data Warehouse Architecture and explain various levels in the architecture.	L2	3	6M
			Τ ./	2	
3	9	ii) Suppose that a data warehouse consists of the three dimensions time,	L4	3	
	a	doctor, and patient, and the two measures count and charge, where charge is the fee that a doctor charges a patient for a visit.			6M
		a. Enumerate three classes of schemas that are popularly used for			OIVI
		modeling data warehouses.			
		5			

				т			
		 b. Draw a schema diagram for the above data warehouse using one of the schema classes listed in (a). OR					
	b	i) A data warehouse can be modelled by either a star schema or a snowflake schema. Briefly describe the similarities and the differences of the two models, and then analyse their advantages and disadvantages with regard to one another. Give your opinion of which might be more empirically useful and state the reasons behind your answer.	L4	3	6M		
		ii) What are the differences between the three main types of data warehouse usage: information processing, analytical processing, and data mining? Discuss the motivation behind OLAP mining (OLAM).	L2	3	6M		
		Unit-IV					
		i) Why is tree pruning useful in decision tree induction? What is a drawback of using a separate set of tuples to evaluate pruning? Explain.	L2	4	6M		
4	a	ii) It is difficult to assess classification accuracy when individual data objects may belong to more than one class at a time. In such cases, comment on what criteria you would use to compare different classifiers modeled after the same data.	L3	4	6M		
	OR						
	b	i) Why is naive Bayesian classification called "naive"? Briefly outline the major ideas of naive Bayesian classification.	L2	4	12M		
	+	Unit-V					
	a	i) The Apriori algorithm makes use of prior knowledge of subset support properties. Prove that all nonempty subsets of a frequent itemset must also be frequent.	L3	5	6M		
_		ii) Use an example to show why the k-means algorithm may not find the global optimum, that is, optimizing the within-cluster variation.	L2	5	6M		
5		OR					
	ь	i) The Apriori algorithm makes use of prior knowledge of subset support properties. Prove that the support of any nonempty subset s' of itemset s must be at least as great as the support of s.	L3	5	6M		
		ii) Prove that in DBSCAN, the density-connectedness is an equivalence relation.	L2	5	6M		

Sub Code: 19BIT5TH02

WEB DEVELOPMENT USING MEAN STACK

Time: 3 hours

(IT)

Max. Marks: 60

Note: Answer All FIVE Questions.

All Questions Carry Equal Marks (5 X 12 = 60M)

0.15	All Questions Carry Equal				
Q.No	Questions		KL	CO	M
		Jnit-I			
	i) What is the Use of Angular 8 and explain	in the Architecture of Angular 8?	K2	1	6M
_	ii) Explain the Components and Template		K2	1	6M
1		OR			
	i) What do you mean by binding and	explain different types of Data	К3	1	614
	b bindings.	W 100 100 100 100 100 100 100 100 100 10			6M
	ii) Explain the elements of directives and	explain with example.	КЗ	1	6M
1		nit-II			
	What is the role of Http Client Programmi	ng in Angular 8 and explain with	КЗ	2	12
	a suitable example?				M
0	surrore coumpie.	OR			141
2	i) What do you mean by Form Validation		T/O	0	
	simple example?	in Angulai o and explain with	K3	2	6M
	ii) What is the purpose of CLI Comma	ands in Wah Davelanment and	77.0	0	
			К3	2	6M
	explain important commands with exa				
		nit-III			
	i) What is the purpose of Node.js and exp	lain feature of Node.js?	K3	3	6M
3	ii) Explain different types of Node.js Process Models with neat diagram.		K3	3	6M
J	i) How to exects a simple No. 1.	OR			
	i) How to create a simple Node.js web se	rver and handle HTTP requests	K3	3	6M
	The state of the s				
	ii) What is NPM and explain the features.		К3	3	6M
		nit-IV			
	i) Define and Differentiate Node js and Ex	press js.	К3	4	6M
	a ii) What is Node.js File System and explai	n Node.js Flags for Read/Write	K3	4	6M
4	with simple example?			e.	OIVI
		OR			
	i) What is Express.js Web App and Wh	at type of web application can	K3	4	6M
	b build using Express js?				OIVI
	ii) What are the ways of Serving Static Re		K3	4	6M
		nit-V			
	i) What is the pupose of MongoDB and E	xplain Advantages of MongoDB	КЗ	5	() (
	a over RDBMS				6M
	^a ii) What is the the relationship of	RDBMS terminology with	K2	5	
5	MongoDB?				6M
		OR			
8	i) How does MongoDB connect to databas		КЗ	5	6M
	b ii) How do I update a single, multiple and	replace document in Mongo DR	K3	5	OIVI
	with example?	accament in Mongobb	RO		6M
VI	· Blooms Tayonomy Knowledge Level CO. Course Out				

DESIGN AND ANALYSIS OF ALGORITHMS Sub Code: 19BIT5TH03 Max. Marks: 60

Time: 3 hours

Note: Answer All FIVE Questions.

(IT)

Questions Questions			All Questions Carry Equal Marks (5 X 12 = 60M)			
i) What are the different mathematical notations used for algorithm analysis? Explain them. ii) Give the algorithm for transpose of a matrix of size mxn and determine the time complexity of the algorithm by frequency—count method. OR i) Write different pseudo code conventions used to represent an algorithm. ii) What do you mean by performance analysis? Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step—count method. Unit-II Illustrate the tracing of quick sort algorithm for the following set of numbers and find the time complexity of algorithm for the following set of numbers and find the time complexity of algorithm: 25, 10, 72, 18, 40, 11, 64, 58, 32, 9. OR i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4	No.		Ouestions	KL	C0	М
i) What are the different mathematical notations used for algorithm analysis? 2 1 1 Explain them. ii) Give the algorithm for transpose of a matrix of size mxn and determine the time complexity of the algorithm by frequency—count method. OR i) Write different pseudo code conventions used to represent an algorithm. ii) What do you mean by performance analysis? Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step—count method. Unit-II Illustrate the tracing of quick sort algorithm? For the following set of numbers and find the time complexity of algorithm? Tor the following set of numbers and find the time complexity of algorithm? OR i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 4	INO		Unit-I			
ii) Give the algorithm for transpose of a matrix of size mxn and determine the time complexity of the algorithm by frequency – count method. i) Write different pseudo code conventions used to represent an algorithm. 3 1 1 1 1 1 1 1 1 1			i) What are the different mathematical notations used for algorithm analysis?	2	1	6M
i) Write different pseudo code conventions used to represent an algorithm. ii) What do you mean by performance analysis? Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step-count method. Unit-II Illustrate the tracing of quick sort algorithm? To the following set of numbers and find the time complexity of algorithm? 25, 10, 72, 18, 40, 11, 64, 58, 32, 9. OR i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 4		a	Explain them. ii) Give the algorithm for transpose of a matrix of size mxn and determine the time	3	1	6M
i) Write different pseudo code conventions used to represent an algorithm. ii) What do you mean by performance analysis? Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step-count method. Unit-II Illustrate the tracing of quick sort algorithm? To the following set of numbers and find the time complexity of algorithm? 25, 10, 72, 18, 40, 11, 64, 58, 32, 9. OR i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 4			complexity of the algorithm by frequency – count method.			
i) Write different pseudo code conventions used to represent an agostating ii) What do you mean by performance analysis? Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step—count method. Unit-II	1		OR	,		
ii) What do you mean by performance analysis? Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step-count method. Unit-II		\vdash	i) Write different pseudo code conventions used to represent an algorithm.		1	6M
multiplication and find the time complexity of the algorithm using step-count method. Unit-II Illustrate the tracing of quick sort algorithm for the following set of numbers and find the time complexity of algorithm: 25, 10, 72, 18, 40, 11, 64, 58, 32, 9. OR		-	ii) What do you mean by performance analysis? Give the algorithm for matrix	3	1	
Unit-II a lillustrate the tracing of quick sort algorithm for the following set of numbers and find the time complexity of algorithm: 25, 10, 72, 18, 40, 11, 64, 58, 32, 9. OR i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. Junit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4		1 1				6M
Unit-II a lillustrate the tracing of quick sort algorithm for the following set of numbers and find the time complexity of algorithm: 25, 10, 72, 18, 40, 11, 64, 58, 32, 9. OR i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. Juit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4			method.			
a find the time complexity of algorithm: 25, 10, 72, 18, 40, 11, 64, 58, 32, 9. OR i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 3 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4		\vdash	Unit-II	,	1 -	
i) Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. b n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 3 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4				3	2	12M
i) Discuss the working strategy of merge sort and illustrate the process of merge b sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13. ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), a and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4		a	find the time complexity of algorithm: 25, 10, 72, 18, 40, 11, 64, 58, 32, 9.	<u> </u>	<u></u>	<u> </u>
b Solve the following instance of knapsack problem using greedy method. i) Solve the following instance of knapsack problem using greedy method. ii) Discuss the working strategy of flietge soft and mustate the process of knapsack problem using Dynamic ii) Discuss the working strategy of flietge soft and mindstance the process of knapsack problem using Dynamic ii) Discuss the single-source shortest paths algorithm with a suitable example. Indicate the process of knapsack problem using process of knapsack problem using Dynamic ii) Solve the following instance of 0/1 KNAPSACK problem using Dynamic Output: I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic Output: I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic Output: I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic Output:			OR	1 2	1 2	
ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. b n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 3 - Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4	2		i) Discuss the working strategy of merge sort and illustrate the process of merge	3	2	6M
ii) Describe binary search in detail and provide time complexity analysis with an example. Unit-III i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. b n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 3 - Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4			sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.			
i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. b n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. J Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4		b	ii) Describe binary search in detail and provide time complexity analysis with an	3	2	6M
i) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 3 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4			example.		<u> </u>	<u></u>
profits to generate the solution when n=7, (p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30), and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. J Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4				1 3	1 2	
a and (d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2). ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. OR Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4			i) Use the greedy algorithm for sequencing unit time jobs with deadlines and	3	3	
ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 3 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4			profits to generate the solution when $n=7$, $(p1, p2,p7)=(3, 5, 20, 18, 1, 6, 30)$,			6N
ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 3 3 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4		a	and $(d1, d2,, d7)=(1, 3, 4, 3, 2, 1, 2)$.			
spanning tree algorithm with a suitable example. OR i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. OR 1			ii) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost	$\frac{3}{2}$	3	6M
i) Solve the following instance of knapsack problem using greedy method. b	3					
i) Solve the following instance of knapsack problem using greedy method. n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 1) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3		-	OR			
n=7(objects), m=15, profits are (P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3) and its corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4		\vdash		3	3	
corresponding weights are (W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1). ii) Discuss the single-source shortest paths algorithm with a suitable example. 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4			n=7 (objects), $m=15$, profits are $(P1,P2,P3,P4,P5,P6,P7)=(10,5,15,7,6,18,3)$ and its			61
ii) Discuss the single-source shortest paths algorithm with a suitable example. 4 Unit-IV I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4 4 (P1 P2 P3) = (1 2 5), and m = 6.		t	corresponding weights are $(W1,W2,W3,W4,W5,W6,W7) = (2,3,5,7,1,4,1)$.			
I) Solve the following instance of 0/1 KNAPSACK problem using Dynamic 3 4			ii) Discuss the single-source shortest paths algorithm with a suitable example.	3	3	61
(2.001, 302, 302) = (2.3.4) (P1 P2 P3) = (1.2.5), and m = 6.		+	· Unit-IV			
(2.001, 302, 302) = (2.3.4) (P1 P2 P3) = (1.2.5), and m = 6.		\vdash	1) Solve the following instance of 0/1 KNAPSACK problem using Dynamic	3	4	
4 programming $n = 3$, (w1, w2, w3) = (2, 3, 4), (11, 12, 13)	4		programming $n = 3$, $(W1, W2, W3) = (2, 3, 4)$, $(P1, P2, P3) = (1, 2, 5)$, and $m = 6$.			6]

	ii) Construct an optimal travelling sales person tour using Dynamic Programmin	- 1 2	T 4	
	for the given data:	ng 3	4	
	0 10 9 3			
	5 0 6 2			6M
	9607			
	7 3 5 0			
	OR			
	i) Write and explain an algorithm to compute the all pairs shortest path using	3	4	Т
	dynamic programming and prove that it is optimal			6M
	b ii) Design a three stage system with device types D1, D2, D3. The costs are \$30,		4	
	\$15, \$20 respectively. The cost of the system is to be not more than \$105 and the	e		6M
	reliability of each device type is 00.9, 0.8 and 0.5 respectively.			
	Unit-V			
	i) Explain the Graph-Coloring problem and draw the state space tree for m= 3		5	6M
	colors and n=4 vertices graph. Discuss the time and space complexity.			6M
	a ii) Draw the portion of the state space tree generated by LC branch and bound of	3	5	
	knapsack problem for an instance n=4, $(P1, P2, P3, P4) = (10, 10, 12, 18)$,			6M
	(w1, w2, w3, w4) = (2, 4, 6, 9), and m=15.			j
	OR			<u> </u>
	i) Find all possible subsets of w that sum to m. Let $w = \{5,7,10,12,15,18,20\}$ and	3	5	
5	m=35 and draw the portion of the state space tree that is generated using			6M
	backtracking.		ĺ	01,1
	ii) Explain the Travelling sales person problem using LCBB procedure with the	3	5	
	following instance and draw the portion of the state space tree and find an optimal	,		
	tour.	`		
				O.I.
	∞ 20 30 10		į	6M
	15 ∞ 16 4			
	3 5 0 2			
	19 6 18 ∞			

Sub Code: 19BIT5TH04 SOFTWARE ENGINEERING

Time: 3 hours (IT) Max. Marks: 60

Note: Answer All **FIVE** Questions.
All Questions Carry Equal Marks (5 X 12 = 60M)

		All Questions Carry Equal Marks (5 A 12 - 601VI)	IZI	CO	M					
Q.No_		Questions	KL	CO						
1	Unit-I i) Discuss Software Engineering Challenges? K6 CO1 6M									
		i) Discuss Software Engineering Challenges?		CO1	6M					
	a	ii) Illustrate Software Process Model?	K2	CO1	6M					
	OR									
	b	i) Explain Boehm's Spiral Model with a neat diagram.	K2	CO1	6M					
		ii) Distinguish between process and methods.	K4	CO1	6M					
	Unit-II									
2					12					
	a	Difference between Functional and Non-Functional requirements?			M					
	OR									
		i) Explain user requirements in detail.	K2	CO2	6M					
	b	ii) Explain requirement validation.	K2	CO2	6M					
	Unit-III									
	-	i) Write short notes on coupling?		CO3	6M					
	a	ii) List and explain the Design Principles?	K5	CO3	6M					
3	-	OR	ł							
3	-	i) Compare function oriented and object oriented design?	K4	CO3	6M					
	b	ii) What is the purpose of Data Flow diagram? Give an example with neat	K 1	CO3	6M					
		diagram.		L						
		Unit-IV	K4	CO4	6M					
	a	a i) Differentiate between Testing and Debugging? ii) Discuss black box testing in a detailed view?		CO4	6M					
4				CO4	OIVI					
		OR	V/	CO4	6M					
	b i) Compare validation testing and system testing?	i) Compare validation testing and system testing?	K4		6M					
		ii) List and explain different types of testing done during the testing phases?	K2	CO4	OIVI					
5		Unit-V	T TT 4	1 004	T () (
	a i) List and explain different Effort Estimation Techniques? ii) Explain in detail ISO 9000 quality standards?		K1	CO4	6M					
			K5	CO4	6M					
		OR	K2							
	Ι,	i) Write short note on the various estimation techniques?		CO4	6M					
	b	ii) What is COCOMO model? Give the procedure of the Delphi method.	K3	CO4	6M					
		Washington Co. Course Outcome M. Marks								

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M: Marks

Sub Code: 19BIT5TH05 CRYPTOGRAPHY AND NETWORK SECURITY

Time: 3 hours

(IT)

Max. Marks: 60

All Questions	Carry Equal	Marks ($5 \times 12 = 60M$

Q.No		Questions	KL	CO	М					
1	Unit-I									
		entiate between Active attacks and Passive Attacks	K2	C01	6M					
		ain the operations, requirements, components of Network	K4	C02	6M					
	security mo	security model.								
	OR									
		aesar cipher with key =15 to encrypt the message "Hello".	K2	C01	6M					
		uss the various principles involved in private and public key	K2	C05	6M					
	cryptograp	<u> </u>								
	Unit-II									
		general structure of DES. Explain the encryption and decryption	K3	C03	12					
2	process.Discuss in detail block cipher modes of operation OR				M					
	i) Fl-:	144	6-3	CM						
		n in detail Feistel Block Cipher structure with neat sketch.	K4	Co2	6M					
	TT) WILL	e a note on Block Cipher Design Principle	K2	C01	6M					
	i\ Ctata a	Unit-III	1	1	CM					
		and explain Euler's theorem.	1/2	602	6M					
		m decryption and encryption using RSA algorithm with p=3,	K3	C03	6M					
3	q=11, e=7 and N=5.									
	i) Users	K2	C04							
	common ni	A and B use the Diffie Hellman key exchange technique, a rime $q=11$ and a primitive root alpha=7.	112	CU4	6M					
		man in middle attack can be performed in Diffie Hellman								
	algorithm	man in middle attack can be performed in Diffie Heimian	1\2	200	6M					
	Unit-IV									
	i) Describe HMAC algorithm. Comment on the security of HMAC.		K2	C04	6M					
	ii) Differentiate digital signature from digital certificate.	K2	C05	6M						
4			1 000	<u> </u>						
4	i) Illustrate in detail about the message authentication code and its			C06	GM					
	. requiremen		K2		6M					
	b ii) Desc	ii) Describe the steps in finding the message digest using SHA-512	К3	C03	CM					
	algorithm.				6M					
		Unit-V								
	i) Write about Kerberos in detail	K2	C01	6M						
		e methodology involved in computing the keys in SSL/TLS	K3	C03	6M					
_	protocol				Uri					
5	OR									
		about Secure Electronic Transaction(SET) in detail with neat	K2	C01	6M					
	b diagram				OI I					
	ii) What is Firewall? What are	Firewall? What are the various Types of Firewalls? Explain each	K4	C02	6M					
	firewall pu	rpose	L							