

 ESD UNIT-1

 INTRODUCTION

INTRODUCTION:

Computing systems are everywhere. It’s probably no surprise that millions of computing
systems are built every year destined for desktop computers (Personal Computers, or PC’s),
workstations, mainframes and servers. What may be surprising is that billions of computing

systems are built every year for a very different purpose: they are embedded within larger

electronic devices, repeatedly carrying out a particular function, often going completely

unrecognized by the device’s user. Creating a precise definition of such embedded computing
systems, or simply embedded systems, is not an easy task. We might try the following

definition: An embedded system is nearly any computing system other than a desktop, laptop,

or mainframe computer. That definition isn’t perfect, but it may be as close as we’ll get. We
can better understand such systems by examining common examples and common

characteristics. Such examination will reveal major challenges facing designers of such

systems.

APPLICATIONS OF EMBEDDED SYSTEMS:

Embedded systems are found in a variety of common electronic devices, such as:

(a) consumer electronics -- cell phones, pagers, digital cameras, camcorders, videocassette

recorders, portable video games, calculators, and personal digital assistants

 (b) home appliances -- microwave ovens, answering machines, thermostat, home security,

washing machines, and lighting systems

(c) office automation -- fax machines, copiers, printers, and scanners

 (d) business equipment -- cash registers, curb side check-in, alarm systems, card readers,

product scanners, and automated teller machines

(e) automobiles -- transmission control, cruise control, fuel injection, anti-lock brakes, and

active suspension

CHARACTERISTICS OF EMBEDDED SYSTEMS:

Embedded systems have several common characteristics:

1) Single-functioned: An embedded system usually executes only one program,

repeatedly. For example, a pager is always a pager. In contrast, a desktop system

executes a variety of programs, like spreadsheets, word processors, and video games,

with new programs added frequently.

2) Tightly constrained: All computing systems have constraints on design metrics, but

those on embedded systems can be especially tight. A design metric is a measure of

an implementation’s features, such as cost, size, performance, and power. Embedded
systems often must cost just a few dollars, must be sized to fit on a single chip, must

perform fast enough to process data in real-time, and must consume minimum power

to extend battery life or prevent the necessity of a cooling fan.

There are some exceptions. One is the case where an embedded system’s program is
updated with a newer program version. For example, some cell phones can be updated

in such a manner. A second is the case where several programs are swapped in and

out of a system due to size limitations. For example, some missiles run one program

while in cruise mode, then load a second program for locking onto a target.

3) Reactive and real-time: Many embedded systems must continually react to changes

in the system’s environment, and must compute certain results in real time without
delay. For example, a car's cruise controller continually monitors and reacts to speed

and brake sensors. It must compute acceleration or decelerations amounts repeatedly

within a limited time; a delayed computation result could result in a failure to

maintain control of the car. In contrast, a desktop system typically focuses on

computations, with relatively infrequent (from the computer’s perspective) reactions
to input devices. In addition, a delay in those computations, while perhaps

inconvenient to the computer user, typically does not result in a system failure.

There are some exceptions. One is the case where an embedded system’s program is updated
with a newer program version. For example, some cell phones can be updated in such a

manner. A second is the case where several programs are swapped in and out of a system due

to size limitations. For example, some missiles run one program while in cruise mode, then

load a second program for locking onto a target.

EXAMPLE:

For example, consider the digital camera system shown in Figure 1.1. The A2D and D2A

circuits convert analog images to digital and digital to analog, respectively. The CCD pre-

processor is a charge-coupled device pre-processor. The JPEG codec compresses and

decompresses an image using the JPEG 2 compression standard, enabling compact storage in

the limited memory of the camera. The Pixel coprocessor aids in rapidly displaying images.

The Memory controller controls access to a memory chip also found in the camera, while the

DMA controller enables direct memory access without requiring the use of the

microcontroller. The UART enables communication with a PC’s serial port for uploading
video frames, while the ISA bus interface enables a faster connection with a PC’s ISA bus.
The LCD ctrl and Display ctrl circuits control the display of images on the camera’s liquid-

crystal display device. A Multiplier/Accum circuit assists with certain digital signal

processing. At the heart of the system is a microcontroller, which is a processor that controls

the activities of all the other circuits. We can think of each device as a processor designed for

a particular task, while the microcontroller is a more general processor designed for general

tasks. This example illustrates some of the embedded system characteristics described above.

First, it performs a single function repeatedly. The system always acts as a digital camera,

wherein it captures, compresses and stores frames, decompresses and displays frames, and

uploads frames. Second, it is tightly constrained. The system must be low cost since

consumers must be able to afford such a camera. It must be small so that it fits within a

standard-sized camera. It must be fast so that it can process numerous images in milliseconds.

It must consume little power so that the camera’s battery will last a long. JPEG is short for

the Joint Photographic Experts Group. The 'joint' refers to its status as a committee working

on both ISO and ITU-T standards. Their best known standard is for still image compression.

Embedded processor technology:

Processor technology involves the architecture of the computation engine used to implement

a system’s desired functionality. While the term “processor” is usually associated with

programmable software processors, we can think of many other, non-programmable, digital

systems as being processors also. Each such processor differs in its specialization towards a

particular application (like a digital camera application), thus manifesting different design

metrics. We illustrate this concept graphically in Figure 1.5. The application requires a

specific embedded functionality, represented as a cross, such as the summing of the items in

an array, as shown in Figure 1.5(a). Several types of processors can implement this

functionality, each of which we now describe. We often use a collection of such processors to

best optimize our system’s design metrics, as was the case in our digital camera example.

General-purpose processors – software

The designer of a general-purpose processor builds a device suitable for a variety of

applications, to maximize the number of devices sold. One feature of such a processor is a

program memory – the designer does not know what program will run on the processor, so

cannot build the program into the digital circuit. Another feature is a general datapath – the

datapath must be general enough to handle a variety of computations, so typically has a large

register file and one or more general-purpose arithmetic-logic units (ALUs). An embedded

system designer, however, need not be concerned about the design of a general-purpose

processor. An embedded system designer simply uses a general-purpose processor, by

programming the processor’s memory to carry out the required functionality. Many people

refer to this portion of an implementation simply as the “software” portion.

Using a general-purpose processor in an embedded system may result in several design-

metric benefits. Design time and NRE cost are low, because the designer must only write a

program, but need not do any digital design. Flexibility is high, because changing

functionality requires only changing the program. Unit cost may be relatively low in small

quantities, since the processor manufacturer sells large quantities to other customers and

hence distributes the NRE cost over many units. Performance may be fast for computation-

intensive applications, if using a fast processor, due to advanced architecture features and

leading edge IC technology.

However, there are also some design-metric drawbacks. Unit cost may be too high for large

quantities. Performance may be slow for certain applications. Size and power may be large

due to unnecessary processor hardware.

For example, we can use a general-purpose processor to carry out our arraysumming

functionality from the earlier example. Figure 1.5(b) illustrates that a general-purpose covers

the desired functionality, but not necessarily efficiently. Figure 1.6(a) shows a simple

architecture of a general-purpose processor implementing the arraysumming functionality.

The functionality is stored in a program memory. The controller fetches the current

instruction, as indicated by the program counter (PC), into the instruction register (IR). It then

configures the data path for this instruction and executes the instruction. Finally, it determines

the appropriate next instruction address, sets the PC to this address, and fetches again.

Single-purpose processors – hardware

A single-purpose processor is a digital circuit designed to execute exactly one program. For

example, consider the digital camera example . All of the components other than the

microcontroller are single-purpose processors. The JPEG codec, for example, executes a

single program that compresses and decompresses video frames. An embedded system

designer creates a single-purpose processor by designing a custom digital circuit, as discussed

in later chapters. Many people refer to this portion of the implementation simply as the

“hardware” portion (although even software requires a hardware processor on which to run).
Other common terms include coprocessor and accelerator.

Using a single-purpose processor in an embedded system results in several designmetric

benefits and drawbacks, which are essentially the inverse of those for generalpurpose

processors. Performance may be fast, size and power may be small, and unit-cost may be low

for large quantities, while design time and NRE costs may be high, flexibility is low, unit cost

may be high for small quantities, and performance may not match general-purpose processors

for some applications.

For example, Figure 1.5(d) illustrates the use of a single-purpose processor in our embedded

system example, representing an exact fit of the desired functionality, nothing more, nothing

less. Figure 1.6(c) illustrates the architecture of such a single-purpose processor for the

example. Since the example counts from one to N, we add an index register. The index

register will be loaded with N, and will then count down to zero, at which time it will assert a

status line read by the controller. Since the example has only one other value, we add only

one register labelled total to the data path. Since the example’s only arithmetic operation is
addition, we add a single adder to the data path. Since the processor only executes this one

program, we hardwire the program directly into the control logic.

Application-specific processors

An application-specific instruction-set processor (or ASIP) can serve as a compromise

between the above processor options. An ASIP is designed for a particular class of

applications with common characteristics, such as digital-signal processing,

telecommunications, embedded control, etc. The designer of such a processor can optimize

the datapath for the application class, perhaps adding special functional units for common

operations, and eliminating other infrequently used units.

Using an ASIP in an embedded system can provide the benefit of flexibility while still

achieving good performance, power and size. However, such processors can require large

NRE cost to build the processor itself, and to build a compiler, if these items don’t already
exist. Much research currently focuses on automatically generating such processors and

associated retargetable compilers. Due to the lack of retargetable compilers that can exploit

the unique features of a particular ASIP, designers using ASIPs often write much of the

software in assembly language.

Digital-signal processors (DSPs) are a common class of ASIP, so demand special mention. A

DSP is a processor designed to perform common operations on digital signals, which are the

digital encodings of analog signals like video and audio. These operations carry out common

signal processing tasks like signal filtering, transformation, or combination. Such operations

are usually math-intensive, including operations like multiply and add or shift and add. To

support such operations, a DSP may have specialpurpose datapath components such a

multiply-accumulate unit, which can perform a computation like T = T + M[i]*k using only

one instruction. Because DSP programs often manipulate large arrays of data, a DSP may

also include special hardware to fetch sequential data memory locations in parallel with other

operations, to further speed execution.

Figure 1.5(c) illustrates the use of an ASIP for our example; while partially customized to the

desired functionality, there is some inefficiency since the processor also contains features to

support reprogramming. Figure 1.6(b) shows the general architecture of an ASIP for the

example. The datapath may be customized for the example. It may have an auto-incrementing

register, a path that allows the add of a register plus a memory location in one instruction,

fewer registers, and a simpler controller.

IC technology:

Every processor must eventually be implemented on an IC. IC technology involves the

manner in which we map a digital (gate-level) implementation onto an IC. An IC (Integrated

Circuit), often called a “chip,” is a semiconductor device consisting of a set of connected
transistors and other devices. A number of different processes exist to build semiconductors,

the most popular of which is CMOS (Complementary Metal Oxide Semiconductor). The IC

technologies differ by how customized the IC is for a particular implementation. For lack of a

better term, we call these technologies “IC technologies.” IC technology is independent from
processor technology; any type of processor can be mapped to any type of IC technology.

To understand the differences among IC technologies, we must first recognize that

semiconductors consist of numerous layers. The bottom layers form the transistors. The

middle layers form logic gates. The top layers connect these gates with wires. One way to

create these layers is by depositing photo-sensitive chemicals on the chip surface and then

shining light through masks to change regions of the chemicals. Thus, the task of building the

layers is actually one of designing appropriate masks. A set of masks is often called a layout.

The narrowest line that we can create on a chip is called the feature size, which today is well

below one micro-meter (sub-micron). For each IC technology, all layers must eventually be

built to get a working IC.

Full-custom/VLSI:

In a full-custom IC technology, we optimize all layers for our particular embedded system’s
digital implementation. Such optimization includes placing the transistors to minimize

interconnection lengths, sizing the transistors to optimize signal transmissions and routing

wires among the transistors. Once we complete all the masks, we send the mask

specifications to a fabrication plant that builds the actual ICs. Full-custom IC design, often

referred to as VLSI (Very Large Scale Integration) design, has very high NRE cost and long

turnaround times (typically months) before the IC becomes available, but can yield excellent

performance with small size and power. It is usually used only in high-volume or extremely

performance-critical applications.

Semi-custom ASIC (gate array and standard cell):

In an ASIC (Application-Specific IC) technology, the lower layers are fully or partially built,

leaving us to finish the upper layers. In a gate array technology, the masks for the transistor

and gate levels are already built (i.e., the IC already consists of arrays of gates). The

remaining task is to connect these gates to achieve our particular implementation. In a

standard cell technology, logic-level cells (such as an AND gate or an AND-OR-INVERT

combination) have their mask portions pre-designed, usually by hand. Thus, the remaining

task is to arrange these portions into complete masks for the gate level, and then to connect

the cells. ASICs are by far the most popular IC technology, as they provide for good

performance and size, with much less NRE cost than full-custom IC’s.

PLD:

In a PLD (Programmable Logic Device) technology, all layers already exist, so we can

purchase the actual IC. The layers implement a programmable circuit, where programming

has a lower-level meaning than a software program. The programming that takes place may

consist of creating or destroying connections between wires that connect gates, either by

blowing a fuse, or setting a bit in a programmable switch. Small devices, called programmers,

connected to a desktop computer can typically perform such programming. We can divide

PLD's into two types, simple and complex. One type of simple PLD is a PLA (Programmable

Logic Array), which consists of a programmable array of AND gates and a programmable

array of OR gates. Another type is a PAL (Programmable Array Logic), which uses just one

programmable array to reduce the number of expensive programmable components. One type

of complex PLD, growing very rapidly in popularity over the past decade, is the FPGA (Field

Programmable Gate Array), which offers more general connectivity among blocks of logic,

rather than just arrays of logic as with PLAs and PALs, and are thus able to implement far

more complex designs. PLDs offer very low NRE cost and almost instant IC availability.

However, they are typically bigger than ASICs, may have higher unit cost, may consume

more power, and may be slower (especially FPGAs). They still provide reasonable

performance, though, so are especially well suited to rapid prototyping.

The choice of an IC technology is independent of processor types. For example, a general-

purpose processor can be implemented on a PLD, semi-custom, or full-custom IC. In fact, a

company marketing a commercial general-purpose processor might first market a semi-

custom implementation to reach the market early, and then later introduce a full-custom

implementation. They might also first map the processor to an older but more reliable

technology, like 0.2 micron, and then later map it to a newer technology, like 0.08 micron.

These two evolutions of mappings to a large extent explain why a processor’s clock speed
improves on the market over time.

 Design technology:

Design technology involves the manner in which we convert our concept of desired system

functionality into an implementation. We must not only design the implementation to

optimize design metrics, but we must do so quickly. As described earlier, the designer must

be able to produce larger numbers of transistors every year, to keep pace with IC technology.

Hence, improving design technology to enhance productivity has been a focus of the software

and hardware design communities for decades.

To understand how to improve the design process, we must first understand the design

process itself. Variations of a top-down design process have become popular in the past

decade, an ideal form of which is illustrated in Figure 1.9. The designer refines the system

through several abstraction levels. At the system level, the designer describes the desired

functionality in some language, often a natural language like English, but preferably an

executable language like C; we shall call this the system specification. The designer refines

this specification by distributing portions of it among chosen processors (general or single

purpose), yielding behavioral specifications for each processor. The designer refines these

specifications into register-transfer (RT) specifications by converting behavior on general-

purpose processors to assembly code, and by converting behavior on single-purpose

processors to a connection of register-transfer components and state machines. The designer

then refines the register-transfer-level specification of a single-purpose processor into a logic

specification consisting of Boolean equations. Finally, the designer refines the remaining

specifications into an implementation, consisting of machine code for general-purpose

processors, and a gate-level netlist for single-purpose processors.

There are three main approaches to improving the design process for increased productivity,

which we label as compilation/synthesis, libraries/IP, and test/verification. Several other

approaches also exist. We now discuss all of these approaches. Each approach can be applied

at any of the four abstraction levels.

Compilation/Synthesis:

Compilation/Synthesis lets a designer specify desired functionality in an abstract manner, and

automatically generates lower-level implementation details. Describing a system at high

abstraction levels can improve productivity by reducing the amount of details, often by an

order of magnitude, that a design must specify.

A logic synthesis tool converts Boolean expressions into a connection of logic gates (called a

netlist). A register-transfer (RT) synthesis tool converts finite-state machines and register-

transfers into a datapath of RT components and a controller of Boolean equations. A

behavioral synthesis tool converts a sequential program into finite-state machines and register

transfers. Likewise, a software compiler converts a sequential program to assembly code,

which is essentially register-transfer code. Finally, a system synthesis tool converts an

abstract system specification into a set of sequential programs on general and single-purpose

processors.

 Libraries/IP:

Libraries involve re-use of pre-existing implementations. Using libraries of existing

implementations can improve productivity if the time it takes to find, acquire, integrate and

test a library item is less than that of designing the item oneself.

A logic-level library may consist of layouts for gates and cells. An RT-level library may

consist of layouts for RT components, like registers, multiplexors, decoders, and functional

units. A behavioral-level library may consist of commonly used components, such as

compression components, bus interfaces, display controllers, and even generalpurpose

processors. The advent of system-level integration has caused a great change in this level of

library. Rather than these components being IC’s, they now must also be available in a form,
called cores, that we can implement on just one portion of an IC. This change from

behavioral-level libraries of IC’s to libraries of cores has prompted use of the term

Intellectual Property (IP), to emphasize the fact that cores exist in a “soft” form that must be

protected from copying. Finally, a system-level library might consist of complete systems

solving particular problems, such as an interconnection of processors with accompanying

operating systems and programs to implement an interface to the Internet over an Ethernet

network.

Test/Verification:

Test/Verification involves ensuring that functionality is correct. Such assurance can prevent

time-consuming debugging at low abstraction levels and iterating back to high abstraction

levels.

Simulation is the most common method of testing for correct functionality, although more

formal verification techniques are growing in popularity. At the logic level, gatelevel

simulators provide output signal timing waveforms given input signal waveforms. Likewise,

general-purpose processor simulators execute machine code. At the RT-level, hardware

description language (HDL) simulators execute RT-level descriptions and provide output

waveforms given input waveforms. At the behavioral level, HDL simulators simulate

sequential programs, and co-simulators connect HDL and generalpurpose processor

simulators to enable hardware/software co-verification. At the system level, a model

simulator simulates the initial system specification using an abstract computation model,

independent of any processor technology, to verify correctness and completeness of the

specification. Model checkers can also verify certain properties of the specification, such as

ensuring that certain simultaneous conditions never occur, or that the system does not

deadlock.

Other productivity improvers:

There are numerous additional approaches to improving designer productivity. Standards

focus on developing well-defined methods for specification, synthesis and libraries. Such

standards can reduce the problems that arise when a designer uses multiple tools, or retrieves

or provides design information from or to other designers. Common standards include

language standards, synthesis standards and library standards.

Languages focus on capturing desired functionality with minimum designer effort. For

example, the sequential programming language of C is giving way to the objectoriented

language of C++, which in turn has given some ground to Java. As another example, state-

machine languages permit direct capture of functionality as a set of states and transitions,

which can then be translated to other languages like C.

Frameworks provide a software environment for the application of numerous tools

throughout the design process and management of versions of implementations. For example,

a framework might generate the UNIX directories needed for various simulators and

synthesis tools, supporting application of those tools through menu selections in a single

graphical user interface.

ESD UNIT-2

CUSTOM SINGLE PURPOSE PROCESSORS: HARDWARE

INTRODUCTION:

A single-purpose processor is a digital system intended to solve a specific computation task.

While a manufacturer builds a standard single-purpose processor for use in a variety of

applications, we build a custom single- purpose processor to execute a specific task within

our embedded system. An embedded system designer choosing to use a custom single-

purpose, rather than a general-purpose, processor to implement part of a system’s
functionality may achieve several benefits, similar to some of those of the previous chapter.

First, performance may be fast, due to fewer clock cycles resulting from a customized data

path, and due to shorter clock cycles resulting from simpler functional units, less

multiplexors, or simpler control logic. Second, size may be small, due to a simpler data path

and no program memory. In fact, the processor may be faster and smaller than a standard one

implementing the same functionality, since we can optimize the implementation for our

particular task.

However, because we probably won't manufacture as many of the custom processor as a

standard processor, we may not be able to invest as much NRE, unless the embedded system

we are building will be sold in large quantities or does not have tight cost constraints. This

fact could actually penalize performance and size.

COMBINATIONAL LOGIC:

Transistors and Logic Gates:

A transistor is the basic electrical component of digital systems. Combinations of transistors

form more abstract components called logic gates, which designers primarily use when

building digital systems. Thus, we begin with a short description of transistors before

discussing logic design.

A transistor acts as a simple on/off switch. One type of transistor (CMOS -- Complementary

Metal Oxide Semiconductor) is shown in Figure 4.1(a). The gate (not to be confused with

logic gate) controls whether or not current flows from the source to the drain. When a high

voltage (typically +5 Volts, which we'll refer to as logic 1) is applied to the gate, the

transistor conducts, so current flows. When low voltage (which we'll refer to as logic 0,

typically ground, which is drawn as several horizontal lines of decreasing width) is applied to

the gate, the transistor does not conduct. We can also build a transistor with the opposite

functionality, illustrated in in Figure 4.1(b). When logic 0 is applied to the gate, the transistor

conducts, and when logic 1 is applied, the transistor does not conduct. Given these two basic

transistors, we can easily build a circuit whose output inverts its gate input, as shown in in

Figure 4.1(c). When the input x is logic 0, the top transistor conducts (and the bottom does

not), so logic 1 appears at the output F. We can also easily build a circuit whose output is

logic 1 when at least one of its inputs is logic 0, as shown in Figure 4.1(d). When at least one

of the inputs x and y is logic 0, then at least one of the top transistors conducts (and the

bottom transistors do not), so logic 1 appears at F. If both inputs are logic 1, then neither of

the top transistors conducts, but both of the bottom ones do, so logic 0 appears at F. Likewise,

we can easily build a circuit whose output is logic 1 when both of its inputs are logic 0, as

illustrated in Figure 4.1(e). The three circuits shown implement three basic logic gates: an

inverter, a NAND gate, and a NOR gate.

Digital system designers usually work with logic gates, not transistors. Figure 4.2 describes 8

basic logic gates. Each gate is represented symbolically, with a Boolean equation, and with a

truth table. The truth table has inputs on the left, and output on the right. The AND gate

outputs 1 if and only if both inputs are 1. The OR gate outputs 1 if and only if at least one of

the inputs is 1. The XOR (exclusive-OR) gate outputs 1 if and only if exactly one of its two

inputs is 1. The NAND, NOR, and XNOR gates output the complement of AND, OR, and

XOR, respectively. As you might have noticed from our transistor implementations, the

NAND and NOR gates are actually simpler to build than AND and OR gates.

Figure 4.1: CMOS transistor implementations of some basic logic gates: (a) nMOS

transistor, (b) pMOS transistor, (c) inverter, (d) NAND gate, (e) NOR gate.

source

Conducts

+5V +5V +5V

gate

gate

drain

(a)

source

 F = x’
F = (xy)’ y

x F = (x+y)’

y
if gate=0V

drain

(b)

(c) (d) (e)

Basic Combinational Logic Design:

A combinational circuit is a digital circuit whose output is purely a function of its current

inputs; such a circuit has no memory of past inputs. We can apply a simple technique to

design a combinational circuit using our basic logic gates, as illustrated in Figure 4.3. We

start with a problem description, which describes the outputs in terms of the inputs. We

translate that description to a truth table, with all possible combinations of input values on the

left, and desired output values on the right. For each output column, we can derive an output

equation, with one term per row. However, we often want to minimize the logic gates in the

circuit. We can minimize the output equations by algebraically manipulating the equations.

Alternatively, we can use Karnaugh maps, as shown in the figure. Once we’ve obtained the
desired output equations (minimized or not), we can draw the circuit diagram.

R-T Level Combinational Components:

Although we can design all combinational circuits in the above manner, large circuits would

be very complex to design. For example, a circuit with 16 inputs would have 2 16 , or 64K,

rows in its truth table. One way to reduce the complexity is to use components that are more

abstract than logic gates. Figure 4.4 shows several such combinational components. We now

describe each briefly

A multiplexor, sometimes called a selector, allows only one of its data inputs Im to pass

through to the output O. Thus, a multiplexor acts much like a railroad switch, allowing only

one of multiple input tracks to connect to a single output track. If there are m data inputs, then

there are log2(m) select lines S, and we call this an m-by-1 multiplexor (m data inputs, one

data output). The binary value of S determines which data input passes through; 00...00

means I0 may pass, 00...01 means I1 may pass, 00...10 means I2 may pass, and so on. For

example, an 8x1 multiplexor has 8 data inputs and thus 3 select lines. If those three select

lines have values of 110, then I6 will pass through to the output. So if I6 is 1, then the output

would be 1; if I6 is 0, then the output would be 0. We commonly use a more complex device

called an n-bit multiplexor, in which each data input, as well as the output, consists of n lines.

Suppose the previous example used a 4-bit 8x1 multiplexor. Thus, if I6 is 0110, then the

output would be 0110. Note that n does not affect the number of select lines.

. A decoder converts its binary input I into a one-hot output O. "One-hot" means that exactly

one of the output lines can be 1 at a given time. Thus, if there are n outputs, then there must

be log2(n) inputs. We call this a log2(n)xn decoder. For example, a 3x8 decoder has 3 inputs

and 8 outputs. If the input is 000, then the output O0 will be 1. If the input is 001, then the

output O1 would be 1, and so on. A common feature on a decoder is an extra input called

enable. When enable is 0, all outputs are 0. When enable is 1, the decoder functions as before.

An adder adds two n-bit binary inputs A and B, generating an n-bit output sum along with an

output carry. For example, a 4-bit adder would have a 4-bit A input, a 4-bit B input, a 4-bit

sum output, and a 1-bit carry output. If A is 1010 and B is 1001, then sum would be 0011 and

carry would be 1.

A comparator compares two n-bit binary inputs A and B, generating outputs that indicate

whether A is less than, equal to, or greater than B. If A is 1010 and B is 1001, then less would

be 0, equal would be 0, and greater would be 1.

An ALU (arithmetic-logic unit) can perform a variety of arithmetic and logic functions on its

n-bit inputs A and B. The select lines S choose the current function; if there are m possible

functions, then there must be at least log2(m) select lines. Common functions include

addition, subtraction, AND, and OR.

SEQUENTIAL LOGIC

FLIP-FLOPS:

A sequential circuit is a digital circuit whose outputs are a function of the current as well as

previous input values. In other words, sequential logic possesses memory. One of the most

basic sequential circuits is the flip-flop. A flip-flop stores a single bit. The simplest type of

flip-flop is the D flip-flop. It has two inputs: D and clock. When clock is 1, the value of D is

stored in the flip-flop, and that value appears at an output Q. When clock is 0, the value of D

is ignored; the output Q maintains its value. Another type of flip-flop is the SR flip-flop,

which has three inputs: S, R and clock. When clock is 0, the previously stored bit is

maintained and appears at output Q. When clock is 1, the inputs S and R are examined. If S is

1, a 1 is stored. If R is 1, a 0 is stored. If both are 0, there’s no change. If both are 1,
behaviour is undefined. Thus, S stands for set, and R for reset. Another flip-flop type is a JK

flip-flop, which is the same as an SR flip-flop except that when both J and K are 1, the stored

bit toggles from 1 to 0 or 0 to 1. To prevent unexpected behaviour from signal glitches, flip-

flops are typically designed to be edgetriggered, meaning they only pay attention to their non-

clock inputs when the clock is rising from 0 to 1, or alternatively when the clock is falling

from 1 to 0.

R-T-Level Sequential Components:

Just as we used more abstract combinational components to implement complex

combinational systems, we also use more abstract sequential components for complex

sequential systems. Figure above illustrates several sequential components, which we now

describe.

A register stores n bits from its n-bit data input I, with those stored bits appearing at its output

O. A register usually has at least two control inputs, clock and load. For a rising-edge-

triggered register, the inputs I are only stored when load is 1 and clock is rising from 0 to 1.

The clock input is usually drawn as a small triangle, as shown in the figure. Another common

register control input is clear, which resets all bits to 0, regardless of the value of I. Because

all n bits of the register can be stored in parallel, we often refer to this type of register as a

parallel-load register, to distinguish it from a shift register.

A shift register stores n bits, but these bits cannot be stored in parallel. Instead, they must be

shifted into the register serially, meaning one bit per clock edge. A shift register has a one-bit

data input I, and at least two control inputs clock and shift. When clock is rising and shift is 1,

the value of I is stored in the (n)’th bit, while the (n)’th bit is stored in the (n-1)’th bit, and
likewise, until the second bit is stored in the first bit. The first bit is typically shifted out,

meaning it appears over an output Q.

A counter is a register that can also increment (add binary 1) to its stored binary value. In its

simplest form, a counter has a clear input, which resets all stored bits to 0 and a count input,

which enables incrementing on the clock edge. A counter often also has a parallel load data

input and associated control signal. A common counter feature is both up and down counting

(incrementing and decrementing), requiring an additional control input to indicate the count

direction.

The control inputs discussed above can be either synchronous or asynchronous. A

synchronous input’s value only has an effect during a clock edge. An asynchronous input’s
value affects the circuit independent of the clock. Typically, clear control lines are

asynchronous.

Sequential Logic Design:

Sequential logic design can be achieved using a straightforward technique, whose steps are

illustrated in Figure 4.1. We again start with a problem description. We translate this

description to a state diagram. We describe state diagrams further in a later chapter. Briefly,

each state represents the current "mode" of the circuit, serving as the circuit’s memory of past
input values. The desired output values are listed next to each state. The input conditions that

cause a transition from one state to another are shown next to each arc. Each arc condition is

implicitly AND with a rising (or falling) clock edge. In other words, all inputs are

synchronous. State diagrams can also describe asynchronous systems, but we do not cover

such systems in this book, since they are not common.

We will implement this state diagram using a register to store the current state, and

combinational logic to generate the output values and the next state. We assign each state

with a unique binary value, and we then create a truth table for the combinational logic. The

inputs for the combinational logic are the state bits coming from the state register, and the

external inputs, so we list all combinations of these inputs on the left side of the table. The

outputs for the combinational logic are the state bits to be loaded into the register on the next

clock edge (the next state), and the external output values, so we list desired values of these

outputs for each input combination on the right side of the table. Because we used a state

diagram for which outputs were a function of the current state only, and not of the inputs, we

list an external output value only for each possible state, ignoring the external input values.

Now that we have a truth table, we proceed with combinational logic design as described

earlier, by generating minimized output equations, and then drawing the combinational logic

circuit.

CUSTOM SINGLE-PURPOSE PROCESSOR DESIGN:

We now have the knowledge needed to build basic processor. A basic processor consists of a

controller and data path shown in below figure. The data path stores and manipulates a

We can apply the above combinational and sequential logic design techniques to build data

path components and controllers. Therefore, we have nearly all the knowledge we need to

build a custom single-purpose processor for a given program, since a processor consists of a

controller and a data path. We now describe a technique for building such a processor.

We begin with a sequential program we must implement. Figure 4.3 provides a example

based on computing a greatest common divisor (GCD). Figure 4.3(a) shows a black-box

diagram of the desired system, having x_i and y_i data inputs and a data output d_i. The

system’s functionality is straightforward: the output should represent the GCD of the inputs.
Thus, if the inputs are 12 and 8, the output should be 4. If the inputs are 13 and 5, the output

should be 1. Figure 4.3(b) provides a simple program with this functionality. The reader

might trace this program’s execution on the above examples to verify that the program does
indeed compute the GCD.

To begin building our single-purpose processor implementing the GCD program, we first

convert our program into a complex state diagram, in which states and arcs may include

arithmetics expressions, and these expressions may use external inputs and outputs or

variables. In contrast, our earlier state diagrams only included boolean expressions, and these

expressions could only use external inputs and outputs, not variables. Thus, these more

complex state diagram looks like a sequential program in which statements have been

scheduled into states.

We can use templates to convert a program to a state diagram, as illustrated in Figure 4.2.

First, we classify each statement as an assignment statement, loop statement, or branch (if-

then-else or case) statement. For an assignment statement, we create a state with that

statement as its action. We add an arc from this state to the state for the next statement,

whatever type it may be. For a loop statement, we create a condition state C and a join state J,

both with no actions. We add an arc with the loop’s condition from the condition state to the

first statement in the loop body. We add a second arc with the complement of the loop’s
condition from the condition state to the next statement after the loop body. We also add an

arc from the join state back to the condition state. For a branch statement, we create a

condition state C and a join state J, both with no actions. We add an arc with the first

branch’s condition from the condition state to the branch’s first statement. We add another
arc with the complement of the first branch’s condition AND with the second branches

condition from the condition state to the branches first statement. We repeat this for each

branch. Finally, we connect the arc leaving the last statement of each branch to the join state,

and we add an arc from this state to the next statement’s state.

Using this template approach, we convert our GCD program to the complex state diagram of

Figure 4.3(c). We are now well on our way to designing a custom single-purpose processor

that executes the GCD program. Our next step is to divide the functionality into a data path

part and a controller part, as shown in Figure 4.4. The data path part should consist of an

interconnection of combinational and sequential components. The controller part should

consist of a basic state diagram, i.e., one containing only boolean actions and conditions.

We construct the datapath through a four-step process:

1. First, we create a register for any declared variable. In the example, these are x and y. We

treat an output port as having an implicit variable, so we create a register d and connect it to

the output port. We also draw the input and output ports.

2. Second, we create a functional unit for each arithmetic operation in the state diagram. In

the example, there are two subtractions, one comparison for less than, and one comparison

for inequality, yielding two subtractors and two comparators, as shown in the figure.

 3. Third, we connect the ports, registers and functional units. For each write to a variable in

the state diagram, we draw a connection from the write’s source (an input port, a functional
unit, or another register) to the variable’s register. For each arithmetic and logical operation,

we connect sources to an input of the operation’s corresponding functional unit. When more
than one source is connected to a register, we add an appropriately-sized multiplexor.

4. Finally, we create a unique identifier for each control input and output of the data path

components.

Now that we have a complete data path, we can build a state diagram for our controller. The

state diagram has the same structure as the complex state diagram. However, we replace

complex actions and conditions by boolean ones, making use of our data path. We replace

every variable write by actions that set the select signals of the multiplexor in front of the

variable’s register’s such that the write’s source passes through, and we assert the load signal

of that register. We replace every logical operation in a condition by the corresponding

functional unit control output.

We can then complete the controller design by implementing the state diagram using our

sequential design technique described earlier. Figure 4.4 shows the controller implementation

model, and Figure 4.5 shows a state table.

Note that there are 7 inputs to the controller, resulting in 128 rows for the table. We reduced

rows in the state table by using don’t cares for some input combinations, but we can still see

that optimizing the design using hand techniques could be quite tedious. For this reason,

computer-aided design (CAD) tools that automate the combinational as well as sequential

logic design can be very helpful.

Also, note that we could perform significant amounts of optimization to both the data path

and the controller. For example, we could merge functional units in the data path, resulting in

fewer units at the expense of more multiplexors. We could also merge states in the data path.

Remember that we could alternatively implement the GCD program by programming a

microcontroller, thus eliminating the need for this design process, but possibly yielding

slower and bigger design.

ESD UNIT-3

GENERAL PURPOSE PROCESSORS: SOFTWARE

BASIC ARCHITECHTURE:

A general-purpose processor, sometimes called a CPU (Central Processing Unit) or a

microprocessor, consists of a data path and a controller, tightly linked with a memory. We

now discuss these components briefly. Figure 2.1 illustrates the basic architecture.

Datapath: The data path consists of the circuitry for transforming data and for storing

temporary data. The data path contains an arithmetic-logic unit (ALU) capable of

transforming data through operations such as addition, subtraction, logical AND, logical OR,

inverting, and shifting. The ALU also generates status signals, often stored in a status register

(not shown), indicating particular data conditions. Such conditions include indicating whether

data is zero, or whether an addition of two data items generates a carry. The data path also

contains registers capable of storing temporary data. Temporary data may include data

brought in from memory but not yet sent through the ALU, data coming from the ALU that

will be needed for later ALU operations or will be sent back to memory, and data that must

be moved from one memory location to another. The internal data bus is the bus over which

data travels within the data path, while the external data bus is the bus over which data is

brought to and from the data memory.

We typically distinguish processors by their size, and we usually measure size as the bit-

width of the data path components. A bit, which stands for binary digit, is the processor’s
basic data unit, representing either a 0 (low or false) or a 1 (high or true), while we refer to 8

bits as a byte. An N-bit processor may have N-bit wide registers, an N-bit wide ALU, an N-

bit wide internal bus over which data moves among data path components, and an N-bit wide

external bus over which data is brought in and out of the data path. Common processor sizes

include 4-bit, 8-bit, 16-bit, 32-bit and 64-bit processors. However, in some cases, a particular

processor may have different sizes among its registers, ALU, internal bus, or external bus, so

the processor-size definition is not an exact one. For example, a processor may have a 16-bit

internal bus, ALU and registers, but only an 8-bit external bus to reduce pins on the

processor's IC.

CONTROLLER: The controller consists of circuitry for retrieving program instructions,

and for moving data to, from, and through the data path according to those instructions. The

controller contains a program counter (PC) that holds the address in memory of the next

program instruction to fetch. The controller also contains an instruction register (IR) to hold

the fetched instruction. Based on this instruction, the controller’s control logic generates the
appropriate signals to control the flow of data in the data path. Such flows may include

inputting two particular registers into the ALU, storing ALU results into a particular register,

or moving data between memory and a register. Finally, the next-state logic determines the

next value of the PC. For a non-branch instruction, this logic increments the PC. For a branch

instruction, this logic looks at the data path status signals and the IR to determine the

appropriate next address.

The PC’s bit-width represents the processor’s address size. The address size is independent of

the data word size; the address size is often larger. The address size determines the number of

directly accessible memory locations, referred to as the address space or memory space. If the

address size is M, then the address space is 2 M. Thus, a processor with a 16-bit PC can

directly address 2 16 = 65,536 memory locations. We would typically refer to this address

space as 64K, although if 1K = 1000, this number would represent 64,000, not the actual

65,536. Thus, in computer-speak, 1K = 1024.

For each instruction, the controller typically sequences through several stages, such as

fetching the instruction from memory, decoding it, fetching operands, executing the

instruction in the data path, and storing results. Each stage may consist of one or more clock

cycles. A clock cycle is usually the longest time required for data to travel from one register

to another. The path through the data path or controller that results in this longest time (e.g.,

from a data path register through the ALU and back to a data path register) is called the

critical path. The inverse of the clock cycle is the clock frequency, measured in cycles per

second, or Hertz (Hz). For example, a clock cycle of 10 nanoseconds corresponds to a

frequency of 1/10x10 -9 Hz, or 100 M Hz. The shorter the critical path, the higher the clock

frequency. We often use clock frequency as one means of comparing processors, especially

different versions of the same processor, with higher clock frequency implying faster

program execution (though this isn’t always true).

MEMORY: While registers serve a processor’s short term storage requirements, memory
serves the processor’s medium and long-term information-storage requirements. We can

classify stored information as either program or data. Program information consists of the

sequence of instructions that cause the processor to carry out the desired system functionality.

Data information represents the values being input, output and transformed by the program.

We can store program and data together or separately. In a Princeton architecture, data and

program words share the same memory space. In a Harvard architecture, the program

memory space is distinct from the data memory space. Figure 2.2 illustrates these two

methods. The Princeton architecture may result in a simpler hardware connection to memory,

since only one connection is necessary. A Harvard architecture, while requiring two

connections, can perform instruction and data fetches simultaneously, so may result in

improved performance. Most machines have a Princeton architecture. The Intel 8051 is a

well-known Harvard architecture.

Memory may be read-only memory (ROM) or readable and writable memory (RAM). ROM

is usually much more compact than RAM. An embedded system often uses ROM for

program memory, since, unlike in desktop systems, an embedded system’s program does not
change. Constant-data may be stored in ROM, but other data of course requires RAM.

Memory may be on-chip or off-chip. On-chip memory resides on the same IC as the

processor, while off-chip memory resides on a separate IC. The processor can usually access

on-chip memory must faster than off-chip memory, perhaps in just one cycle, but finite IC

capacity of course implies only a limited amount of on-chip memory.

To reduce the time needed to access (read or write) memory, a local copy of a portion of

memory may be kept in a small but especially fast memory called cache, as illustrated in

Figure 2.3. Cache memory often resides on-chip, and often uses fast but expensive static

RAM technology rather than slower but cheaper dynamic RAM (see Chapter 5). Cache

memory is based on the principle that if at a particular time a processor accesses a particular

memory location, then the processor will likely access that location and immediate

neighbours of the location in the near future. Thus, when we first access a location in

memory, we copy that location and some number of its neighbours (called a block) into

cache, and then access the copy of the location in cache. When we access another location,

we first check a cache table to see if a copy of the location resides in cache. If the copy does

reside in cache, we have a cache hit, and we can read or write that location very quickly. If

the copy does not reside in cache, we have a cache miss, so we must copy the location’s
block into cache, which takes a lot of time. Thus, for a cache to be effective in improving

performance, the ratio of hits to misses must be very high, requiring intelligent caching

schemes. Caches are used for both program memory (often called instruction cache, or I-

cache) as well as data memory (often called D-cache).

Figure 2.2: Two memory architectures: (a) Harvard, (b) Princeton.

(a) (b)

Memory

(program and data)

Data

memory

Program

memory

Processor Processor

OPERATION:

Instruction execution: We can think of a microprocessor’s execution of instructions as
consisting of several basic stages:

 1. Fetch instruction: the task of reading the next instruction from memory into the instruction

register.

2. Decode instruction: the task of determining what operation the instruction in the instruction

register represents (e.g., add, move, etc.).

 3. Fetch operands: the task of moving the instruction’s operand data into appropriate
registers.

 4. Execute operation: the task of feeding the appropriate registers through the ALU and back

into an appropriate register.

 5. Store results: the task of writing a register into memory. If each stage takes one clock

cycle, then we can see that a single instruction may take several cycles to complete.

Pipelining: Pipelining is a common way to increase the instruction throughput of a

microprocessor. We first make a simple analogy of two people approaching the chore of

washing and drying 8 dishes. In one approach, the first person washes all 8 dishes, and then

the second person dries all 8 dishes. Assuming 1 minute per dish per person, this approach

requires 16 minutes. The approach is clearly inefficient since at any time only one person is

working and the other is idle. Obviously, a better approach is for the second person to begin

drying the first dish immediately after it has been washed. This approach requires only 9

minutes -- 1 minute for the first dish to be washed, and then 8 more minutes until the last dish

is finally dry. We refer to this latter approach as pipelined.

Each dish is like an instruction, and the two tasks of washing and drying are like the five

stages listed above. By using a separate unit (each akin a person) for each stage, we can

pipeline instruction execution. After the instruction fetch unit fetches the first instruction, the

decode unit decodes it while the instruction fetch unit simultaneously fetches the next

instruction. The idea of pipelining is illustrated in Figure 2.4. Note that for pipelining to work

well, instruction execution must be decomposable into roughly equal length stages, and

instructions should each require the same number of cycles.

Branches pose a problem for pipelining, since we don’t know the next instruction until the
current instruction has reached the execute stage. One solution is to stall the pipeline when a

branch is in the pipeline, waiting for the execute stage before fetching the next instruction.

An alternative is to guess which way the branch will go and fetch the corresponding

instruction next; if right, we proceed with no penalty, but if we find out in the execute stage

that we were wrong, we must ignore all the instructions fetched since the branch was fetched,

thus incurring a penalty. Modern pipelined microprocessors often have very sophisticated

branch predictors built in.

PROGRAMMER’S VIEW:

A programmer writes the program instructions that carry out the desired functionality on the

general-purpose processor. The programmer may not actually need to know detailed

information about the processor’s architecture or operation, but instead may deal with an
architectural abstraction, which hides much of that detail. The level of abstraction depends on

the level of programming. We can distinguish between two levels of programming. The first

is assembly-language programming, in which one programs in a language representing

processor-specific instructions as mnemonics. The second is structured-language

programming, in which one programs in a language using processorindependent instructions.

A compiler automatically translates those instructions to processor-specific instructions.

Ideally, the structured-language programmer would need no information about the processor

architecture, but in embedded systems, the programmer must usually have at least some

awareness, as we shall discuss.

Actually, we can define an even lower-level of programming, machine-language

programming, in which the programmer writes machine instructions in binary. This level of

programming has become extremely rare due to the advent of assemblers. Machinelanguage

programmed computers often had rows of lights representing to the programmer the current

binary instructions being executed. Today’s computers look more like boxes or refrigerators,
but these do not make for interesting movie props, so you may notice that in the movies,

computers with rows of blinking lights live on.

Instruction set: The assembly-language programmer must know the processor’s instruction
set. The instruction set describes the bit-configurations allowed in the IR, indicating the

atomic processor operations that the programmer may invoke. Each such configuration forms

an assembly instruction, and a sequence of such instructions forms an assembly program

An instruction typically has two parts, an opcode field and operand fields. An opcode

specifies the operation to take place during the instruction. We can classify instructions into

three categories. Data-transfer instructions move data between memory and registers,

between input/output channels and registers, and between registers themselves.

Arithmetic/logical instructions configure the ALU to carry out a particular function, channel

data from the registers through the ALU, and channel data from the ALU back to a particular

register. Branch instructions determine the address of the next program instruction, based

possibly on data path status signals.

Branches can be further categorized as being unconditional jumps, conditional jumps or

procedure call and return instructions. Unconditional jumps always determine the address of

the next instruction, while conditional jumps do so only if some condition evaluates to true,

such as a particular register containing zero. A call instruction, in addition to indicating the

address of the next instruction, saves the address of the current instruction 1 so that a

subsequent return instruction can jump back to the instruction immediately following the

most recent invoked call instruction. This pair of instructions facilitates the implementation

of procedure/function call semantics of high-level programming languages.

An operand field specifies the location of the actual data that takes part in an operation.

Source operands serve as input to the operation, while a destination operand stores the output.

The number of operands per instruction varies among processors. Even for a given processor,

the number of operands per instruction may vary depending on the instruction type.

The operand field may indicate the data’s location through one of several addressing modes,
illustrated in Figure 2.5. In immediate addressing, the operand field contains the data itself. In

register addressing, the operand field contains the address of a data path register in which the

data resides. In register-indirect addressing, the operand field contains the address of a

register, which in turn contains the address of a memory location in which the data resides. In

direct addressing, the operand field contains the address of a memory location in which the

data resides. In indirect addressing, the operand field contains the address of a memory

location, which in turn contains the address of a memory location in which the data resides.

Those familiar with structured languages may note that direct addressing implements regular

variables, and indirect addressing implements pointers. In inherent or implicit addressing, the

particular register or memory location of the data is implicit in the opcode; for example, the

data may reside in a register called the "accumulator." In indexed addressing, the direct or

indirect operand must be added to a particular implicit register to obtain the actual operand

address. Jump instructions may use relative addressing to reduce the number of bits needed to

indicate the jump address. A relative address indicates how far to jump from the current

address, rather than indicating the complete address – such addressing is very common since

most jumps are to nearby instructions.

Ideally, the structured-language programmer would not need to know the instruction set of

the processor. However, nearly every embedded system requires the programmer to write at

least some portion of the program in assembly language. Those portions may deal with low-

level input/output operations with devices outside the processor, like a display device. Such a

device may require specific timing sequences of signals in order to receive data, and the

programmer may find that writing assembly code achieves such timing most conveniently. A

driver routine is a portion of a program written specifically to communicate with, or drive,

another device. Since drivers are often written in assembly language, the structured-language

programmer may still require some familiarity with at least a subset of the instruction set.

Figure 2.6 shows a (trivial) instruction set with 4 data transfer instructions, 2 arithmetic

instructions, and 1 branch instruction, for a hypothetical processor. Figure 2.7(a) shows a

program, written in C, that adds the numbers 1 through 10. Figure 2.7(b) shows that same

program written in assembly language using the given instruction set.

Program and data memory space: The embedded systems programmer must be aware

of the size of the available memory for program and for data. For example, a particular

processor may have a 64K program space, and a 64K data space. The programmer must not

exceed these limits. In addition, the programmer will probably want to be aware of on-chip

program and data memory capacity, taking care to fit the necessary program and data in on-

chip memory if possible.

Registers: The assembly-language programmer must know how many registers are

available for general-purpose data storage. He/she must also be familiar with other registers

that have special functions. For example, a base register may exist, which permits the

programmer to use a data-transfer instruction where the processor adds an operand field to

the base register to obtain an actual memory address.

Other special-function registers must be known by both the assembly-language and the

structured-language programmer. Such registers may be used for configuring built-in timers,

counters, and serial communication devices, or for writing and reading external pins.

I/O: The programmer should be aware of the processor’s input and output (I/O) facilities,
with which the processor communicates with other devices. One common I/O facility is

parallel I/O, in which the programmer can read or write a port (a collection of external pins)

by reading or writing a special-function register. Another common I/O facility is a system

bus, consisting of address and data ports that are automatically activated by certain addresses

or types of instructions.

Interrupts: An interrupt causes the processor to suspend execution of the main program,

and instead jump to an Interrupt Service Routine (ISR) that full fills a special, short-term

processing need. In particular, the processor stores the current PC, and sets it to the address of

the ISR. After the ISR completes, the processor resumes execution of the main program by

restoring the PC. The programmer should be aware of the types of interrupts supported by the

processor (we describe several types in a subsequent chapter), and must write ISRs when

necessary. The assembly-language programmer places each ISR at a specific address in

program memory. The structured-language programmer must do so also; some compilers

allow a programmer to force a procedure to start at a particular memory location, while

recognize pre-defined names for particular ISRs.

For example, we may need to record the occurrence of an event from a peripheral device,

such as the pressing of a button. We record the event by setting a variable in memory when

that event occurs, although the user’s main program may not process that event until later.
Rather than requiring the user to insert checks for the event throughout the main program, the

programmer merely need write an interrupt service routine and associate it with an input pin

connected to the button. The processor will then call the routine automatically when the

button is pressed.

Example: Assembly-language programming of device drivers

This example provides an application of assembly language programming of a low-level

driver, showing how the parallel port of an x86 based PC (Personal Computer) can be used to

perform digital I/O. Writing and reading three special registers accomplishes parallel

communication on the PC. Those three register are actually in an 8255A Peripheral Interface

Controller chip. In unidirectional mode, (default power-on-reset mode), this device is capable

of driving 12 output and five input lines. In the following table, we provide the parallel port

(known as LPT) connector pin numbers and the corresponding register location.

A switch is connected to input pin number 13 of the parallel port. An LED (lightemitting

diode) is connected to output pin number 2. Our program, running on the PC, should monitor

the input switch and turn on/off the LED accordingly.

Figure 2.8 gives the code for such a program, in x86 assembly language. Note that the in and

out assembly instructions read and write the internal registers of the 8255A. Both instructions

take two operands, address and data. Address specifies the the register we are trying to read

or write. This address is calculated by adding the address of the device, called the base

address, to the address of the particular register as given in Figure 2.8. In most PCs, the base

address of LPT1 is at 3BC hex (though not always). The second operand is the data. For the

in instruction, the content of this eight-bit operand will be written to the addressed register.

For the out instruction, the content of the addressed eight-bit register will be read into this

operand

The program makes use of masking, something quite common during low-level I/O. A mask

is a bit-pattern designed such that ANDing it with a data item D yields a specific part of D.

For example, a mask of 00001111 can be used to yield bits 0 through 3, e.g., 00001111 AND

10101010 yields 00001010. A mask of 00010000, or 10h in hexadecimal format, would yield

bit 4.

In Figure 2.8, we have broken our program in two source files, assembly and C. The

assembly program implements the low-level I/O to the parallel port and the C program

implements the high-level application. Our assembly program is a simple form of a device

driver program that provides a single procedure to the high-level application. While the trend

is for embedded systems to be written in structured languages, this example shows that some

small assembly program may still need to be written for low-level drivers.

Operating system: An operating system is a layer of software that provides low-level

services to the application layer, a set of one or more programs executing on the CPU

consuming and producing input and output data. The task of managing the application layer

involves the loading and executing of programs, sharing and allocating system resources to

these programs, and protecting these allocated resources from corruption by non-owner

programs. One of the most important resource of a system is the central processing unit

(CPU), which is typically shared among a number of executing programs. The operating

system, thus, is responsible for deciding what program is to run next on the CPU and for how

long. This is called process/task scheduling and is determined by the operating system’s
preemption policy. Another very important resource is memory, including disk storage,

which is also shared among the applications running on the CPU.

In addition to implementing an environment for management of high-level application

programs, the operating system provides the software required for servicing various

hardware-interrupts, and provides device drivers for driving the peripheral devices present in

the system. Typically, on startup, an operating system initializes all peripheral devices, such

as disk controllers, timers and input/output devices and installs hardware interrupt (interrupts

generated by the hardware) service routines (ISR) to handle various signals generated by

these devices 2. Then, it installs software interrupts (interrupts generated by the software) to

process system calls (calls made by high-level applications to request operating system

services) as described next.

A system call is a mechanism for an application to invoke the operating system. This is

analogous to a procedure or function call, as in high-level programming languages. When a

program requires some service from the operating system, it generates a predefined software

interrupt that is serviced by the operating system. Parameters specific to the requested

services are typically passed from (to) the application program to (from) the operating system

through CPU registers. Figure 2.9 illustrates how the file “open” system call may be invoked,
in assembly, by a program. Languages like C and Pascal provide wrapper functions around

the system-calls to provide a high-level mechanism for performing system calls.

DEVELOPMENT ENVIRNORNMENT:

Several software and hardware tools commonly support the programming of general-purpose

processors. First, we must distinguish between two processors we deal with when developing

an embedded system. One processor is the development processor, on which we write and

debug our program. This processor is part of our desktop computer. The other processor is

the target processor, to which we will send our program and which will form part of our

embedded system’s implementation. For example, we may develop our system on a Pentium

processor, but use a Motorola 68HC11 as our target processor. Of course, sometimes the two

processors happen to be the same, but this is mostly a coincidence.

Fig: software development a) desktop, b) embedded system

Assemblers translate assembly instructions to binary machine instructions. In addition to just

replacing opcode and operand mnemonics by binary equivalents, an assembler may also

translate symbolic labels into actual addresses. For example, a programmer may add a

symbolic label END to an instruction A, and may reference END in a branch instruction. The

assembler determines the actual binary address of A, and replaces references to END by this

address. The mapping of assembly instructions to machine instructions is one-to-one. A

linker allows a programmer to create a program in separately-assembled files; it combines the

machine instructions of each into a single program, perhaps incorporating instructions from

standard library routines.

Compilers translate structured programs into machine (or assembly) programs. Structured

programming languages possess high-level constructs that greatly simplify programming,

such as loop constructs, so each high-level construct may translate to several or tens of

machine instructions. Compiler technology has advanced tremendously over the past decades,

applying numerous program optimizations, often yielding very size and performance efficient

code. A cross-compiler executes on one processor (our development processor), but generates

code for a different processor (our target processor). Cross-compilers are extremely common

in embedded system development.

Debuggers help programmers evaluate and correct their programs. They run on the

development processor and support stepwise program execution, executing one instruction

and then stopping, proceeding to the next instruction when instructed by the user. They

permit execution up to user-specified breakpoints, which are instructions that when

encountered cause the program to stop executing. Whenever the program stops, the user can

examine values of various memory and register locations. A source-level debugger enables

step-by-step execution in the source program language, whether assembly language or a

structured language. A good debugging capability is crucial, as today’s programs can be quite
complex and hard to write correctly.

Device programmers download a binary machine program from the development processor’s
memory into the target processor’s memory.

Emulator’s support debugging of the program while it executes on the target processor. An

emulator typically consists of a debugger coupled with a board connected to the desktop

processor via a cable. The board consists of the target processor plus some support circuitry

(often another processor). The board may have another cable with a device having the same

pin configuration as the target processor, allowing one to plug this device into a real

embedded system. Such an in-circuit emulator enables one to control and monitor the

program’s execution in the actual embedded system circuit. Incircuit emulators are available

for nearly any processor intended for embedded use, though they can be quite expensive if

they are to run at real speeds.

The availability of low-cost or high-quality development environments for a processor often

heavily influences the choice of a processor.

SELECTING A PROCESSOR:

The embedded system designer must select a microprocessor for use in an embedded system.

The choice of a processor depends on technical and non-technical aspects. From a technical

perspective, one must choose a processor that can achieve the desired speed within certain

power, size and cost constraints. Non-technical aspects may include prior expertise with a

processor and its development environment, special licensing arrangements, and so on.

Speed is a particularly difficult processor aspect to measure and compare. We could compare

processor clock speeds, but the number of instructions per clock cycle may differ greatly

among processors. We could instead compare instructions per second, but the complexity of

each instruction may also differ greatly among processors -- e.g., one processor may require

100 instructions, and another 300 instructions, to perform the same computation. One attempt

to provide a means for a fairer comparison is the Dhrystone benchmark. A benchmark is a

program intended to be run on different processors to compare their performance. The

Dhrystone benchmark was developed in 1984 by Reinhold Weicker specifically as a

performance benchmark; it performs no useful work. It focuses on exercising a processor’s
integer arithmetic and string-handling capabilities. It is written in C and in the public domain.

Since most processors can execute it in milliseconds, it is typically executed thousands of

times, and thus a processor is said to be able to execute so many Dhrystones per second.

Another commonly-used speed comparison unit, which happens to be based on the

Dhrystone, is MIPS. One might think that MIPS simply means Millions of Instructions Per

Second, but actually the common use of the term is based on a somewhat more complex

notion. Specifically, its origin is based on the speed of Digital’s VAX 11/780, thought to be
the first computer able to execute one million instructions per second. A VAX 11/780 could

execute 1,757 Dhrystones/second. Thus, for a VAX 11/780, 1 MIPS = 1,757

Dhrystones/second. This unit for MIPS is the one used today. So if a machine today is said to

run at 750 MIPS, that actually means it can execute 750*1757 = 1,317,750

Dhrystones/second.

The use and validity of benchmark data is a subject of great controversy. There is also a clear

need for benchmarks that measure performance of embedded processors. Numerous general-

purpose processors have evolved in the recent years and are in common use today. In Figure

2.10, we summarize some of the features of several popular processors.

ESD UNIT-4

MEMORY&INTERFACING

COMMON MEMORY TYPES: ROM&RAM

READ ONLY MEMORY—ROM:

ROM, or read-only memory, is a memory that can be read from, but not typically written to,

during execution of an embedded system. Of course, there must be a mechanism for setting the

bits in the memory (otherwise, of what use would the read data serve?), but we call this

"programming," not writing. Such programming is usually done off-line, i.e., when the memory

is not actively serving as a memory in an embedded system. We usually program a ROM before

inserting it into the embedded system. Figure 1(b) provides a block diagram of a ROM.

We can use ROM for various purposes. One use is to store a software program for a general-

purpose processor. We may write each program instruction to one ROM word. For some

processors, we write each instruction to several ROM words. For other processors, we may

pack several instructions into a single ROM word. A related use is to store constant data, like

large lookup tables of strings or numbers.

Another common use is to implement a combinational circuit. We can implement any

combinational function of k variables by using a 2k x 1 ROM, and we can implement n

functions of the same k variables using a 2k x n ROM. We simply program the ROM to

implement the truth table for the functions, as shown in Figure 2.

Figure below provides a symbolic view of the internal design of an 8x4 ROM. To the right of

the 3x8 decoder in the figure is a grid of lines, with word lines running horizontally and data

lines vertically; lines that cross without a circle in the figure are not connected. Thus, word

lines only connect to data lines via the programmable connection lines shown. The figure shows

all connection lines in place except for two connections in word 2. To see how this device acts

as a read-only memory, consider an input address of "010." The decoder will thus set word 2’s
line to 1. Because the lines connecting this word line with data lines 2 and 0 do not exist, the

ROM output will read "1010." Note that if the ROM enable input is 0, then no word is read.

Also note that each data line is shown as a wired-OR, meaning that the wire itself acts to

logically OR all the connections to it.

MASK-PROGRAMMED ROM: In a mask-programmed ROM, the connection is made when

the chip is being fabricated (by creating an appropriate set of masks). Such ROM types are

typically only used in high-volume systems, and only after a final design has been determined.

PROGRAMMABLE ROM: PROM, which can be programmed by the chip’s user, well after
the chip has been manufactured. These devices are better suited to prototyping and to low-

volume applications. To program a PROM device, the user provides a file indicating the desired

ROM contents. A piece of equipment called a ROM programmer (note: the programmer is a

piece of equipment, not a person who writes software) then configures each programmable

connection according to the file. A basic PROM uses a fuse for each programmable connection.

The ROM programmer blows fuses by passing a large current wherever a connection should

not exist. However, once a fuse is blown, the connection can never be re-established. For this

reason, basic PROM is often referred to as one-time-programmable device, or OTP.

ERASABLE PROM or EPROM: This device uses a MOS transistor as its programmable

component. The transistor has a "floating gate," meaning its gate is not connected. An EPROM

programmer injects electrons into the floating gate, using higher than normal voltage (usually

12V to 25V) that causes electrons to "tunnel" into the gate. When that high voltage is removed,

the electrons can-not escape, and hence the gate has been charged and programming has

occurred. Standard EPROMs are guaranteed to hold their programs for at least 10 years. To

erase the program, the electrons must be excited enough to escape from the gate. Ultra-violet

(UV) light is used to fulfil this role of erasing. The device must be placed under a UV eraser

for a period of time, typically ranging from 5 to 30 minutes, after which the device can be

programmed again. In order for the UV light to reach the chip, EPROM’s come with a small
quartz window in the package through which the chip can be seen. For this reason, EPROM is

often referred to as a windowed ROM device.

ELECTRICALLY-ERASABLE PROM, or EEPROM: is designed to eliminate the time

consuming and sometimes impossible requirement of exposing an EPROM to UV light to erase

the ROM. An EEPROM is not only programmed electronically, but is also erased

electronically. These devices are typically more expensive the EPROM’s, but far more
convenient to use. EEPROM’s are often called " E square’s " for short. Flash memory is a type
of EEPROM in which reprogramming can be done to certain regions of the memory, rather

than the entire memory at once.

READ WRITE MEMORY – RAM:

RAM, or random-access memory, is a memory that can be both read and written. In contrast to

ROM, a RAM’s content is not "programmed" before being inserted into an embedded system.

Instead, the RAM contains no data when inserted in the embedded system; the system writes

data to and then reads data from the RAM during its execution. Below provides a block diagram

of a RAM. A RAM’s internal structure is somewhat more complex than a ROM’s, as shown in
Figure. which illustrates a 4x4 RAM (note: RAMs typically have thousands of words, not just

4 as in the figure). Each word consists of a number of memory cells, each storing one bit. In

the figure, each input data connects to every cell in its column. Likewise, each output data line

connects to every cell in its column, with the output of a memory cell being OR with the output

data line from above. Each word enable line from the decoder connects to every cell it’s row.

The read/write input (readd/write) is assumed to be connected to every cell. The memory cell

must possess logic such that it stores the input data bit when read/write indicates write and the

row is enabled, and such that it outputs this bit when read/write indicates read and the row is

enabled.

There are two basic types of RAM, static and dynamic. Static RAM is faster but bigger than

dynamic RAM.

STATIC RAM: Static RAM, or SRAM, uses a memory cell consisting of a flip-flop to store

a bit. Each bit thus requires about 6 transistors. This RAM type is called static because it will

hold its data as long as power is supplied, in contrast to dynamic RAM. Static RAM is typically

used for high-performance parts of a system.

DYNAMIC RAM: Dynamic RAM, or DRAM, uses a memory cell consisting of a MOS

transistor and capacitor to store a bit. Each bit thus requires only 1 transistor, resulting in more

compact memory than SRAM. However, the charge stored in the capacitor leaks gradually,

leading to discharge and eventually to loss of data. To prevent loss of data, each cell must

regularly have its charge "refreshed." A typical DRAM cell minimum refresh rate is once every

15.625 microseconds. Because of the way DRAMs are designed, reading a DRAM word

refreshes that word’s cells. In particular, accessing a DRAM word results in the word’s data

being stored in a buffer and then being written back to the word’s cells. DRAMs tend to be
slower to access than SRAMs.

PSRAM: Pseudo-Static RAMs, or PSRAMs, are DRAMs with a refresh controller built-in.

Thus, since the RAM user need not worry about refreshing, the device appears to behave much

like an SRAM. However, in contrast to true SRAM, a PSRAM may be busy refreshing itself

when accessed, which could slow access time and add some system complexity. Nevertheless,

PSRAM is a popular low-cost alternative to SRAM in many embedded systems.

NONVOLATILE RAM: Non-volatile RAM, or NVRAM, is another RAM variation. Non-

volatile storage is storage that can hold its data even after power is no longer being supplied.

Note that all forms of ROM are non-volatile, while normal forms of RAM (static or dynamic)

are volatile. One type of NVRAM contains a static RAM along with its own permanently

connected battery. A second type contains a static RAM and its own (perhaps flash) EEPROM.

This type stores RAM data into the EEPROM just before power is turned off (or whenever

instructed to store the data), and reloads that data from EEPROM into RAM after power is

turned back on. NVRAM is very popular in embedded systems. For example, a digital camera

must digitize, store and compress an image in a fraction of a second when the camera’s button
is pressed, requiring writes to a fast RAM (as opposed to programming of a slower EEPROM).

But it also must store that image so that the image is saved even when the camera’s power is
shut off, requiring EEPROM. Using NVRAM accomplishes both these goals, since the data is

originally and quickly stored in RAM, and then later copied to EEPROM, which may even take

a few seconds.

COMPOSING MEMORY:

An embedded system designer is often faced with the situation of needing a particular-sized

memory (ROM or RAM), but having readily available memories of a different size. For

example, the designer may need a 2k x 8 ROM, but may have 4k x 16 ROMs readily available.

Alternatively, the designer may need a 4k x 16 ROM, but may have 2k x 8 ROMs available for

use.

 The case where the available memory is larger than needed is easy to deal with. We simply

use the needed lower words in the memory, thus ignoring unneeded higher words and their

high-order address bits, and we use the lower data input/output lines, thus ignoring unneeded

higher data lines. (Of course, we could use the higher data lines and ignore the lower lines

instead).

 The case where the available memory is smaller than needed requires more design effort. In

this case, we must compose several smaller memories to behave as the larger memory we need.

Suppose the available memories have the correct number of words, but each word is not wide

enough. In this case, we can simply connect the available memories side-by-side. For example,

Figure 5(a) illustrates the situation of needing a ROM three-times wider than that available.

We connect three ROMs side-by-side, sharing the same address and enable lines among them,

and concatenating the data lines to form the desired word width.

Suppose instead that the available memories have the correct word width, but not enough

words. In this case, we can connect the available memories top-to-bottom. For example, Figure

5(b) illustrates the situation of needing a ROM with twice as many words, and hence needing

one extra address line, than that available. We connect the ROMs top-to-bottom, the

corresponding data lines of each. We use the extra high-order address line to select the higher

or lower ROM (using a 1x2 decoder), and the remaining address lines to offset into the selected

ROM. Since only one ROM will ever be enabled at a time, the data lines never actually in

volves more than one 1.

If we instead needed four times as many words, and hence two extra address lines, we would

instead use four ROMs. A 2x4 decoder having the two high-order address lines as input would

select which of the four ROMs to access. Finally, suppose the available memories have a

smaller word with as well as fewer words than necessary. We then combine the above two

techniques, first creating the number of columns of memories necessary to achieve the needed

word width, and then creating the number of rows of memories necessary, along with a decoder,

to achieve the needed number of words. The approach is illustrated in Figure 5(c).

MEMORY HEIRARCHY AND CACHE:

When we design a memory to store an embedded system’s program and data, we often face the
following dilemma: we want an inexpensive and fast memory, but inexpensive memories tend

to be slow, whereas fast memories tend to be expensive. The solution to this dilemma is to

create a memory hierarchy, as illustrated in Figure 5.6. We use an inexpensive but slow main

memory to store all of the program and data. We use a small amount of fast but expensive

cache memory to store copies of likely-accessed parts of main memory. Using cache is

analogous to posting on a wall near a telephone a short list of important phone numbers rather

than posting the entire phonebook.

 Some systems include even larger and less expensive forms of memory, such as disk and tape,

for some of their storage needs. However, we do not consider these further as they are not

especially common in embedded systems. Also, although the figure shows only one cache, we

can include any number of levels of cache, those closer to the processor being smaller and

faster than those closer to main memory. A two-level cache scheme is common.

CACHE: Cache is usually designed using static RAM rather than dynamic RAM, which is one

reason that cache is more expensive but faster than main memory. Because cache usually

appears on the same chip as a processor, where space is very limited, cache size is typically

only a fraction of the size main memory. Cache access time may be as low as just one clock

cycle, whereas main memory access time is typically several cycles.

 A cache operates as follows. When we want the processor to access (read or write) a main

memory address, we first check for a copy of that location in cache. If the copy is in the cache,

called a cache hit, then we can access it quickly. If the copy is not there, called a cache miss,

then we must first read the address (and perhaps some of its neighbors) into the cache. This

description of cache operation leads to several cache design choices: cache mapping, cache

replacement policy, and cache write techniques. These design choices can have significant

impact on system cost, performance, as well as power, and thus should be evaluated carefully

for a given application.

Cache mapping techniques: Cache mapping is the method for assigning main memory

addresses to the far fewer number of available cache addresses, and for determining whether a

particular main memory address’ contents are in the cache. Cache mapping can be
accomplished using one of three basic techniques:

1. Direct mapping: In this technique, the main memory address is divided into two fields, the

index and the tag. The index represents the cache address, and thus the number of index bits is

determined by the cache size, i.e., index size = log2(cache size). Note that many different main

memory addresses will map to the same cache address. When we store a main memory address’
content in the cache, we also store the tag. To determine if a desired main memory address is

in the cache, we go to the cache address indicated by the index, and we then compare the tag

there with the desired tag.

2. Fully-associative mapping: In this technique, each cache address contains not only a main

memory address’ content, but also the complete main memory address. To determine if a
desired main memory address is in the cache, we simultaneously (associatively) compare all

the addresses stored in the cache with the desired address.

 3. Set-associative mapping: This technique is a compromise between direct and fully-

associative mapping. As in direct-mapping, an index maps each main memory address to a

cache address, but now each cache address contains the content and tags of two or more

memory locations, called a set or a line. To determine if a desired main memory address is in

the cache, we go to the cache address indicated by the index, and we then simultaneously

(associatively) compare all the tags at that location (i.e., of that set) with the desired tag. A

cache with a set of size N is called an N-way set-associative cache. 2-way, 4- way and 8-way

set associative caches are common.

Direct-mapped caches are easy to implement, but may result in numerous misses if two or more

words with the same index are accessed frequently, since each will bump the other out of the

cache. Fully-associative caches on the other hand are fast but the comparison logic is expensive

to implement. Set-associative caches can reduce misses compared to direct-mapped caches,

without requiring nearly as much comparison logic as fully-associative caches. Caches are

usually designed to treat collections of a small number of adjacent mainmemory addresses as

one indivisible block, typically consisting of about 8 address.

Cache replacement policy: The cache-replacement policy is the technique for choosing which

cache block to replace when a fully-associative cache is full, or when a set-associative cache’s
line is full. Note that there is no choice in a direct-mapped cache; a main memory address

always maps to the same cache address and thus replaces whatever block is already there. There

are three common replacement policies. A random replacement policy chooses the block to

replace randomly. While simple to implement, this policy does nothing to prevent replacing

block that’s likely to be used again soon. A least-recently used (LRU) replacement policy

replaces the block that has not been accessed for the longest time, assuming that this means

that it is least likely to be accessed in the near future. This policy provides for an excellent

hit/miss ratio but requires expensive hardware to keep track of the times blocks are accessed.

A first-in-first-out (FIFO) replacement policy uses a queue of size N, pushing each block

address onto the queue when the address is accessed, and then choosing the block to replace

by popping the queue.

Cache Write technique:

When we write to a cache, we must at some point update the memory. Such update is only an

issue for data cache, since instruction cache is read-only. There are two common update

techniques, write-through and write-back.

 In the write-through technique, whenever we write to the cache, we also write to main memory,

requiring the processor to wait until the write to main memory completes. While easy to

implement, this technique may result in several unnecessary writes to main memory. For

example, suppose a program writes to a block in the cache, then reads it, and then writes it

again, with the block staying in the cache during all three accesses. There would have been no

need to update the main memory after the first write, since the second write overwrites this first

write.

 The write-back technique reduces the number of writes to main memory by writing a block to

main memory only when the block is being replaced, and then only if the block was written to

during its stay in the cache. This technique requires that we associate an extra bit, called a dirty

bit, with each block. We set this bit whenever we write to the block in the cache, and we then

check it when replacing the block to determine if we should copy the block to main memory.

INTERFACING:

ARBITARATION: Several situations existed in which multiple peripherals might request

service from a single resource. For example, multiple peripherals might share a single

microprocessor that services their interrupt requests. As another example, multiple peripherals

might share a single DMA controller that services their DMA requests. In such situations, two

or more peripherals may request service simultaneously. We therefore must have some method

to arbitrate among these contending requests, i.e., to decide which one of the contending

peripherals gets service, and thus which peripherals need to wait. Several methods exist, which

we now discuss.

PRIORITY ARBITARATION: One arbitration method uses a single-purpose processor, called

a priority arbiter. We illustrate a priority arbiter arbitrating among multiple peripherals using

vectored interrupt to request servicing from a microprocessor, as illustrated in Figure 6.9. Each

of the peripherals makes its request to the arbiter. The arbiter in turn asserts the microprocessor

interrupt, and waits for the interrupt acknowledgment. The arbiter then provides an

acknowledgement to exactly one peripheral, which permits that peripheral to put its interrupt

vector address on the data bus

Priority arbiters typically use one of two common schemes to determine priority among

peripherals: fixed priority or rotating priority. In fixed priority arbitration, each peripheral has

a unique rank among all the peripherals. The rank can be represented as a number, so if there

are four peripherals, each peripheral is ranked 1, 2, 3 or 4. If two peripherals simultaneously

seek servicing, the arbiter chooses the one with the higher rank.

In rotating priority arbitration (also called round-robin), the arbiter changes priority of

peripherals based on the history of servicing of those peripherals. For example, one rotating

priority scheme grants service to the least-recently serviced of the contending peripherals. This

scheme obviously requires a more complex arbiter.

 We prefer fixed priority when there is a clear difference in priority among peripherals.

However, in many cases the peripherals are somewhat equal, so arbitrarily ranking them could

cause high-ranked peripherals to get much more servicing than low ranked ones. Rotating

priority ensures a more equitable distribution of servicing in this case.

DAISY-CHAIN ARBITARATION: The daisy-chain arbitration method builds arbitration

right into the peripherals. A daisy-chain configuration is shown in Figure 6.10, again using

vectored interrupt to illustrate the method. Each peripheral has a request output and an

acknowledge input, as before. But now each peripheral also has a request input and an

acknowledge output. A peripheral-asserts its request output if it requires servicing, OR if its

request input is asserted; the latter means that one of the "upstream" devices is requesting

servicing. Thus, if any peripheral needs servicing, its request will flow through the downstream

peripherals and eventually reach the microprocessor. Even if more than one peripheral request

servicing, the microprocessor will see only one request. The microprocessor acknowledge

connects to the first peripheral. If this peripheral is requesting service, it proceeds to put its

interrupt vector address on the system bus. But if it doesn’t need service, then it instead passes
the acknowledgement upstream to the next peripheral, by asserting it’s acknowledge output. In

the same manner, the next peripheral may either begin being serviced or may instead pass the

acknowledgement along. Obviously, the peripheral at the front of the chain, i.e., the one to

which the microprocessor acknowledge is connected, has highest priority, and the peripheral

at the end of the chain has lowest priority.

 We prefer a daisy-chain priority configuration over a priority arbiter when we want to be able

to add or remove peripherals from an embedded system without redesigning the system.

Although conceptually we could add as many peripherals to a daisy-chain as we desired, in

reality the servicing response time for peripherals at the end of the chain could become

intolerably slow. In contrast to a daisy-chain, a priority arbiter has a fixed number of channels;

once they are all used, the system needs to be redesigned in order to accommodate more

peripherals. However, a daisy-chain has the drawback of not supporting more advanced priority

schemes, like rotating priority. A second drawback is that if a peripheral in the chain stops

working, other peripherals may lose their access to the processor.

NETWORK-ORIENTED ARBITARATION METHODS: The arbitration methods described

are typically used to arbitrate among peripherals in an embedded system. However, many

embedded systems contain multiple microprocessors communicating via a shared bus; such a

bus is sometimes called a network. Arbitration in such cases is typically built right into the bus

protocol, since the bus serves as the only connection among the microprocessors. A key feature

of such a connection is that a processor about to write to the bus has no way of knowing whether

another processor is about to simultaneously write to the bus. Because of the relatively long

wires and high capacitances of such buses, a processor may write many bits of data before

those bits appear at another processor. For example, Ethernet and I2C use a method in which

multiple processors may write to the bus simultaneously, resulting in a collision and causing

any data on the bus to be corrupted. The processors detect this collision, stop transmitting their

data, wait for some time, and then try transmitting again. The protocols must ensure that the

contending processors don’t start sending again at the same time, or must at least use statistical

methods that make the chances of them sending again at the same time small.

As another example, the CAN bus uses a clever address encoding scheme such that if two

addresses are written simultaneously by different processors using the bus, the higher-priority

address will override the lower-priority one. Each processor that is writing the bus also checks

the bus, and if the address it is writing does not appear, then that processor realizes that a

higher-priority transfer is taking place and so that processor stops writing the bus.

MULTILEVEL BUS ARCHITECHTURES: A microprocessor-based embedded

system will have numerous types of communications that must take place, varying in their

frequencies and speed requirements. The most frequent and high-speed communications will

likely be between the microprocessor and its memories. Less frequent communications,

requiring less speed, will be between the microprocessor and its peripherals, like a UART. We

could try to implement a single high-speed bus for all the communications, but this approach

has several disadvantages.

First, it requires each peripheral to have a high-speed bus interface. Since a peripheral may not

need such high-speed communication, having such an interface may result in extra gates, power

consumption and cost. Second, since a highspeed bus will be very processor-specific, a

peripheral with an interface to that bus may not be very portable. Third, having too many

peripherals on the bus may result in a slower bus.

Therefore, we often design systems with two levels of buses: a high-speed processor local bus

and a lower-speed peripheral bus, as illustrated in Figure 6.11. The processor local bus typically

connects the microprocessor, cache, memory controllers, certain highspeed co-processors, and

is highly processor specific. It is usually wide, as wide as a memory word.

The peripheral bus connects those processors that do not have fast processor local bus access

as a top priority, but rather emphasize portability, low power, or low gate count. The peripheral

bus is typically an industry standard bus, such as ISA or PCI, thus supporting portability of the

peripherals. It is often narrower and/or slower than a processor local bus, thus requiring fewer

gates and less power for interfacing. A bridge connects the two buses.

 A bridge is a single-purpose processor that converts communication on one bus to

communication on another bus. For example, the microprocessor may generate a read on the

processor local bus with an address corresponding to a peripheral. The bridge detects that the

address corresponds to a peripheral, and thus it then generates a read on the peripheral bus.

After receiving the data, the bridge sends that data to the microprocessor. The microprocessor

thus need not even know that a bridge exists -- it receives the data, albeit a few cycles later, as

if the peripheral were on the processor local bus.

 A three-level bus hierarchy is also possible, as proposed by the VSI Alliance. The first level

is the processor local bus, the second level a system bus, and the third level a peripheral bus.

The system bus would be a high-speed bus, but would offload much of the traffic from the

processor local bus. It may be beneficial in complex systems with numerous co-processors.

ADVANCED COMMUNICATION PRINCIPALS:

ESD UNIT-5

STATE MACHINE AND CONCURRENT PROCESS MODELS

BASIC STATE MACHINE MODEL: In a state machine model, we describe system

behaviour as a set of possible states; the system can only be in one of these states at a given

time. We also describe the possible transitions from one state to another depending on input

values. Finally, we describe the actions that occur when in a state or when transitioning between

states.

For example, Figure 8.2 shows a state machine description of the Unit Control part of our

elevator example. The initial state, Idle, sets up and down to 0 and open to 1. The state machine

stays in state Idle until the requested floor differs from the current floor. If the requested floor

is greater, then the machine transitions to state Going Up, which sets up to 1, whereas if the

requested floor is less, then the machine transitions to state Going Down, which sets down to

1. The machine stays in either state until the current floor equals the requested floor, after which

the machine transitions to state Door Open, which sets open to 1. We assume the system

includes a timer, so we start the timer while transitioning to Door Open. We stay in this state

until the timer says 10 seconds have passed, after which we transition back to the Idle state.

Finite-state machines: FSM

We have described state machines somewhat informally, but now provide a more formal

definition. We start by defining the well-known finite-state machine computation model, or

FSM, and then we’ll define extensions to that model to obtain a more useful model for

embedded system design. An FSM is a 6-tuple, where:

S is a set of states {s0, s1, … , si},

I is a set of inputs {i0, i1, …, im},

O is a set of outputs {o0, o1, …, on},

F is a next-state function (i.e., transitions), mapping states and inputs to states (S X I->S)

H is an output function, mapping current states to outputs (S O), and s0 is an initial state.

The above is a Moore-type FSM above, which associates outputs with states. A second type of

FSM is a Mealy-type FSM, which associates outputs with transitions, i.e., H maps S x I -> O.

You might remember that Moore outputs are associated with states by noting that the name

Moore has two o's in it, which look like states in a state diagram. Many tools that support FSM's

support combinations of the two types, meaning we can associate outputs with states,

transitions, or both.

We can use some shorthand notations to simplify FSM descriptions. First, there may be many

system outputs, so rather than explicitly assigning every output in every state, we can say that

any outputs not assigned in a state are implicitly assigned 0. Second, we often use an FSM to

describe a single-purpose processor (i.e., hardware). Most hardware is synchronous, meaning

that register updates are synchronized to clock pulses, e.g., registers are only updated on the

rising (or falling) edge of a clock. Such an FSM would have every transition condition AND

with the clock edge (e.g., clock rising and x and y). To avoid having to add this clock edge to

every transition condition, we can simply say that the FSM is synchronous, meaning that every

transition condition is implicitly AND with the clock edge.

HCFSM AND STATE CHARTS LANGUAGE:

Harel proposed extensions to the state machine model to support hierarchy and concurrency,

and developed State charts, a graphical state machine language designed to capture that model.

We refer to the model as a hierarchical/concurrent FSM, or HCFSM.

The hierarchy extension allows us to decompose a state into another state machine, or

conversely stated, to group several states into a new hierarchical state. For example, consider

the state machine in Figure 8.5(a), having three states A1 (the initial state), A2, and B.

Whenever we are in either A1 or A2 and event z occurs, we transition to state B. We can

simplify this state machine by grouping A1 and A2 into a hierarchical state A, as shown in

Figure 8.5(b). State A is the initial state, which in turn has an initial state A1. We draw the

transition to B on event z as originating from state A, not A1 or A2. The meaning is that

regardless of whether we are in A1 or A2, event z causes a transition to state B.

 As another hierarchy example, consider our earlier elevator example, and suppose that we

want to add a control input fire, along with new behaviour that immediately moves the elevator

down to the first floor and opens the door when fire is true. As shown in Figure 8.6(a), we can

capture this behaviour by adding a transition from every state originally in Unit Control to a

new state called Fire Going Down, which moves the elevator to the first floor, followed by a

state Fire Door Open, which holds the door open on the first floor. When fire becomes false,

we go to the Idle state. While this new state machine captures the desired behaviour, it is

becoming more complex due to many more transitions, and harder to comprehend due to more

states. We can use hierarchy to reduce the number of transitions and enhance understandability.

As shown in Figure 8.6(b), we can group the original state machine into a hierarchical state

called Normal Mode, and group the fire-related states into a state called Fire Mode. This

grouping reduces the number of transitions, since instead of four transitions from each original

state to the fire-related states, we need only one transition, from Normal Mode to Fire Mode.

This grouping also enhances understandability, since it clearly represents two main operating

modes, one normal and one in case of fire

The concurrency extension allows us to use hierarchy to decompose a state into two concurrent

states, or conversely stated, to group two concurrent states into a new hierarchical state. For

example, Figure 8.5 (c), shows a state B decomposed into two concurrent states C and D. C

happens to be decomposed into another state machine, as does D. Figure 8.7 shows the entire

Elevator Controller behaviour captured as a HCFSM with two concurrent states.

Therefore, we see that there are two methods for using hierarchy to decompose a state into

substates. OR-decomposition decomposes a state into sequential states, in which only one state

is active at a time (either the first state OR the second state OR the third state, etc.). AND-

decomposition decomposes a state into concurrent states, all of which are active at a time (the

first state AND the second state AND the third state, etc.).

The State-charts language includes numerous additional constructs to improve state machine

capture. A timeout is a transition with a time limit as its condition. The transition is

automatically taken if the transition source state is active for an amount of time equal to the

limit. Note that this would have simplified the Unit Control state machine; rather than starting

and checking an external timer, we could simply have created a transition from Door Open to

Idle with the condition time out (10). History is a mechanism for remembering the last substate

that an OR-decomposed state A was in before transitioning to another state B. Upon re-entering

state A, we can start with the remembered substate rather than A’s initial state. Thus, the
transition leaving A is treated much like an interrupt and B as an interrupt service routine.

Figure 8.7: Using concurrency in an HCFSM to describe both processes of the Elevator Controller.

PROGRAM STATE MACHINE MODEL:

The program-state machine (PSM) model extends state machines to allow use of sequential

program code to define a state’s actions (including extensions for complex data types and
variables), as well as including the hierarchy and concurrency extensions of HCFSM. Thus,

PSM is a merger of the HCFSM and sequential program models, subsuming both models. A

PSM having only one state (called a program-state in PSM terminology), where that state’s
actions are defined using a sequential program, is the same as a sequential program. A PSM

having many states, whose actions are all just assignment statements, is the same as an

HCFSM. Lying between these two extremes are various combinations of the two models.

For example, Figure 8.8 shows a PSM description of the Elevator Controller behaviour, which

we AND-decompose into two concurrent program-states Unit Control and Request Resolver,

as in the earlier HCFSM example. Furthermore, we OR-decompose Unit Control into two

sequential program-states, Normal Mode and Fire Mode, again as in the HCFSM example.

However, unlike the HCFSM example, we describe Normal Mode as a sequential program

(identical to that of Figure 8.1(c)) rather than a state machine. Likewise, we describe Fire Mode

as a sequential program. We didn’t have to use sequential programs for those program-states,

and could have used state machines for one or both -- the point is that PSM allows the designer

to choose whichever model is most appropriate.

PSM enforces a stricter hierarchy than the HCFSM model used in State charts. In State charts,

transitions may point to or from a substate within a state, such as the transition in Figure 8.6(b)

pointing from the substate of the state to the Normal Mode state. Having this transition start

from Fire Door Open rather than Fire Mode causes the elevator to always go all the way down

to the first floor when the fire input becomes true, even if the input is true just momentarily.

PSM, on the other hand, only allows transitions between sibling states, i.e., between states with

the same parent state. PSM’s model of hierarchy is the same as in sequential program languages
that use subroutines for hierarchy; namely, we always enter the subroutine from one point, and

when we exit the sub-routine we do not specify to where we are exiting.

As in the sequential programming model, but unlike the HCFSM model, PSM includes the

notion of a program-state completing. If the program-state is a sequential program, then

reaching the end of the code means the program-state is complete. If the program-state is OR-

decomposed into substates, then a special complete substate may be added. Transitions may

occur from a substate to the complete substate (but no transitions may leave the complete

substate), which when entered means that the program-state is complete. Consequently, PSM

introduces two types of transitions. A transitionimmediately (TI) transition is taken

immediately if its condition becomes true, regardless of the status of the source program-state

-- this is the same as the transition type in an HCFSM. A second, new type of transition,

transition-on-completion (TOC), is taken only if the condition is true AND the source program-

state is complete. Graphically, a TOC transition is drawn originating from a filled square inside

a state, rather than from the state’s perimeter. We used a TOC transition in Figure 8.8 to
transition from Fire Mode to Normal Mode only after Fire Mode completed, meaning that the

elevator had reached the first floor. By supporting both types of transitions, PSM elegantly

merges the reactive nature of HCFSM models (using TI transitions) with the transformational

nature of sequential program models (using TOC transitions).

CONCURRENT PROCESS MODEL:

In a concurrent process model, we describe system behaviour as a set of processes, which

communicate with one another. A process refers to a repeating sequential program. While many

embedded systems are most easily thought of as one process, other systems are more easily

thought of as having multiple processes running concurrently.

For example, consider the following made-up system. The system allows a user to provide two

numbers X and Y. We then want to write "Hello World" to a display every X seconds, and

"How are you" to the display every Y seconds. A very simple way to describe this system using

concurrent processes is shown in Figure 8.9(a). After reading in X and Y, we call two

subroutines concurrently. One subroutine print’s "Hello World" every X seconds, the other

prints "How are you" every Y seconds. (Note that you can’t call two subroutines concurrently
in a pure sequential program model, such as the model supported by the basic version of the C

language). As shown in Figure 8.9(b), these two subroutines execute simultaneously. Sample

output for X=1 and Y=2 is shown in Figure 8.9(c).

To see why concurrent processes were helpful, try describing the same system using a

sequential program model (i.e., one process). You’ll find yourself exerting effort figuring out

how to schedule the two subroutines into one sequential program. Since this example is a trivial

one, this extra effort is not a serious problem, but for a complex system, this extra effort can be

significant and can detract from the time you have to focus on the desired system behaviour.

Recall that we described our elevator controller using two "blocks." Each block is really a

process. The controller was simply easier to comprehend if we thought of the two blocks

independently.

COMMUNICATION AMONG PROCESSES:

Two common methods for communication among processors are SHARED MEMORY AND

MESSAGE PASSING.

SHARED MEMORY: In the shared data technique, processes read and write variables that

both processes can access, called global variables. For example, in the elevator example above,

the Request Resolver process writes to a variable request, which is also read by the Unit Control

process.

MESSAGE PASSING:

In message passing, communication occurs using send and receive constructs that are part of the

computation model. Specifically, a process P explicitly sends data to another process Q, which must

explicitly receive the data. In the elevator example, Request Resolver would include a statement:

Send(Unit Controller request). Likewise, Unit Control would include statements of the form:

Receive(Request Resolver, uc_request). rr_req and uc_req are variables local to each process.

Message passing may be blocking or non-blocking. In blocking message passing, a sending

process must wait until the receiving process receives the data before executing the statement

following the send. Thus, the processes synchronize at their send/receive points. In fact, a

designer may use a send/receive with no actual message being passed, in order to achieve the

synchronization. In non-blocking message passing, the sending process need not wait for the

receive to occur before executing more statements. Therefore, a queue is implied in which the

sent data must be stored before being received by the receiving process.

Example:

Fig;8.18 procedure consumer example with monitors

IMPLEMENTATION: The most straightforward method for implementing

concurrent processes on processors is to implement each process on its own processor. This

method is common when each process is to be implemented using a single-purpose processor.

CREATING AND TERMINATING PROCESSES:

One method for sharing a processor among multiple processes is to manually rewrite the

processes as a single sequential program. For example, consider our Hello World program from

earlier. We could rewrite the concurrent process model as a sequential one by replacing the

concurrent running of the Print HelloWorld and Print How Are You routines by the following:

Manually rewriting a model may be practical for simple examples, but extremely difficult for

more complex examples. While some automated techniques have evolved to assist with such

rewriting of concurrent processes into a sequential program, these techniques are not very

commonly used.

a second, far more common method for sharing a processor among multiple processes is to rely

on a multi-tasking operating system. An operating system is a lowlevel program that runs on a

processor, responsible for scheduling processes, allocating storage, and interfacing to

peripherals, among other things. A real-time operating system (RTOS) is an operating system

that allows one to specify constraints on the rate of processes, and that guarantees that these

rate constraints will be met. In such an approach, we would describe our concurrent processes

using either a language with processes builtin (such as Ada or Java), or a sequential program

language (like C or C++) using a library of routines that extends the language to support

concurrent processes. POSIX threads were developed for the latter purpose.

A third method for sharing a processor among multiple processes is to convert the processes to

a sequential program that includes a process scheduler right in the code. This method results in

less overhead since it does not rely on an operating system, but also yields code that may be

harder to maintain.

REAL TIME SYSTEMS:

ESD UNIT-6

 DESIGN&IC TECHNOLOGY

IC MANUFACTURING STEPS:

THREE IC TECHNOLOGIES:

AUTOMATION: SYSTHESIS

1 / 7

2 / 7

3 / 7

4 / 7

5 / 7

6 / 7

7 / 7

1 / 12

2 / 12

3 / 12

4 / 12

5 / 12

6 / 12

7 / 12

8 / 12

9 / 12

10 / 12

11 / 12

12 / 12

1 / 11

2 / 11

3 / 11

4 / 11

5 / 11

6 / 11

7 / 11

8 / 11

9 / 11

10 / 11

11 / 11

EMBEDDED SYSTEM DESIGN

PART-A

1.

(a). Examples of Embedded systems are microwave ovens, answering machines, thermostat,

Home security, Washing machines, and Automatic lighting systems, printers, and scanners

and etc.

(b). Combinational components used in embedded system design are Transistors and Logic

Gates, N-bit Multiplexers, decoders, adders, Comparators, ALU (arithmetic-logic

unit),Registers, Shift registers, Counters.

(c). Differences between general purpose processor and application specific instruction

processor

General purpose processor Application specific instruction processor

General purpose processor is a

Programmable device.

Application specific processor have

Programmable memory

Low NRE cost. High NRE Cost

Less Flexibility Good Flexibility

Performance is not high good performance, size, and power

Design cost and time of general-purpose

processor is low.

low cost and low power consumption.

(d).

(e). Basic State machine model: In a state machine model, we describe system behaviour as

a set of possible states; the system can only be in one of these states at a given time. We also

describe the possible transitions from one state to another depending on input values. Finally,

we describe the actions that occur when in a state or when transitioning between states.

(f). Full custom IC technology: In a full-custom IC technology, we optimize all layers for

our particular embedded system’s digital implementation. Such optimization includes placing

the transistors to minimize interconnection lengths, sizing the transistors to optimize signal

transmissions and routing wires among the transistors. Once we complete all the masks, we

send the mask specifications to a fabrication plant that builds the actual ICs. Full-custom IC

design, often referred to as VLSI (Very Large-Scale Integration) design, has very high NRE

cost and long turnaround times (typically months) before the IC becomes available, but can

yield excellent performance with small size and power. It is usually used only in high-volume

or extremely performance-critical applications.

PART-B

2. (a). Classification of Embedded Systems:

Embedded systems are classified based on the applications they used. They are

(a) Consumer electronics --cell phones, pagers, digital cameras, camcorders, videocassette

recorders, portable video games, calculators, and personal digital assistants

(b) Home appliances -- microwave ovens, answering machines, thermostat, home security,

washing machines, and lighting systems

(c) Office automation -- fax machines, copiers, printers, and scanners

(d) Business equipment -- cash registers, curb side check-in, alarm systems, card readers,

product scanners, and automated teller machines

(e) Automobiles – transmission control, cruise control, fuel injection, anti-lock brakes, and

active suspension.

(f) Embedded Systems in Smart Cards, Missiles and Satellites-- Security systems, Telephone

and banking, Defence and aerospace, Communication.

(g) Embedded Systems in Peripherals & Computer Networking-- Displays and Monitors,

Networking Systems, Image Processing, Network cards and printers.

(h) Embedded Systems in Consumer Electronics--Digital Cameras, Set top Boxes, High-

Definition TVs, DVDs.

(i) Environment &agriculture: smart water management, smart irrigation etc.

(j) Military: Intelligence Gathering Operations. Military commanders need correct

information to make the best decisions, Surveillance and Reconnaissance UAVs,

Communication, Computing, Cyber Security, Vehicle Electronics

(b). i. ASIC: In an ASIC (Application-Specific IC) technology, the lower layers are fully

or partially built, leaving us to finish the upper layers. In a gate array technology, the masks

for the transistor and gate levels are already built (i.e., the IC already consists of arrays of

gates). The remaining task is to connect these gates to achieve our particular implementation.

In a standard cell technology, logic-level cells (such as an AND gate or an AND-OR-

INVERT combination) have their mask portions pre-designed, usually by hand. Thus, the

remaining task is to arrange these portions into complete masks for the gate level, and then to

connect the cells. ASICs are by far the most popular IC technology, as they provide for good

performance and size, with much less NRE cost than full-custom IC’s.

ii. PLD: In a PLD (Programmable Logic Device) technology, all layers already exist, so we

can purchase the actual IC. The layers implement a programmable circuit, where

programming has a lower-level meaning than a software program. The programming that

takes place may consist of creating or destroying connections between wires that connect

gates, either by blowing a fuse, or setting a bit in a programmable switch. Small devices,

called programmers, connected to a desktop computer can typically perform such

programming. We can divide PLD's into two types, simple and complex. One type of simple

PLD is a PLA (Programmable Logic Array), which consists of a programmable array of

AND gates and a programmable array of OR gates. Another type is a PAL (Programmable

Array Logic), which uses just one programmable array to reduce the number of expensive

programmable components. One type of complex PLD, growing very rapidly in popularity

over the past decade, is the FPGA (Field Programmable Gate Array), which offers more

general connectivity among blocks of logic, rather than just arrays of logic as with PLAs and

PALs, and are thus able to implement far more complex designs. PLDs offer very low NRE

cost and almost instant IC availability.

3.

(a). We now have the knowledge needed to build basic processor. A basic processor

consists of a controller and data path shown in below figure. The data path stores and

manipulates a

Example: GCD

Figure 4.3 provides a example based on computing a greatest common divisor (GCD). Figure

4.3(a) shows a black-box diagram of the desired system, having x_i and y_i data inputs and a

data output d_i. The system’s functionality is straightforward: the output should represent the

GCD of the inputs. Thus, if the inputs are 12 and 8, the output should be 4. If the inputs are

13 and 5, the output should be 1. Figure 4.3(b) provides a simple program with this

functionality. The reader might trace this program’s execution on the above examples to

verify that the program does indeed compute the GCD.

To begin building our single-purpose processor implementing the GCD program, we first

convert our program into a complex state diagram, in which states and arcs may include

arithmetics expressions, and these expressions may use external inputs and outputs or

variables. In contrast, our earlier state diagrams only included boolean expressions, and these

expressions could only use external inputs and outputs, not variables. Thus, these more

complex state diagram looks like a sequential program in which statements have been

scheduled into states.

We are now well on our way to designing a custom single-purpose processor that executes

the GCD program. Our next step is to divide the functionality into a data path part and a

controller part, as shown in Figure 4.4. The data path part should consist of an

interconnection of combinational and sequential components. The controller part should

consist of a basic state diagram

(b).

4

(a). VLIW ARCHITECHTURE:

The limitations of the Superscalar processor are prominent as the difficulty of scheduling

instruction becomes complex. The intrinsic parallelism in the instruction stream,

complexity, cost, and the branch instruction issue get resolved by a higher instruction set

architecture called the Very Long Instruction Word (VLIW) or VLIW Machines. VLIW

uses Instruction Level Parallelism, i.e. it has programs to control the parallel execution of

the instructions. In other architectures, the performance of the processor is improved by

using either of the following methods: pipelining (break the instruction into subparts),

superscalar processor (independently execute the instructions in different parts of the

https://www.geeksforgeeks.org/instruction-level-parallelism/

processor), out-of-order-execution (execute orders differently to the program) but each of

these methods add to the complexity of the hardware very much. VLIW Architecture deals

with it by depending on the compiler. The programs decide the parallel flow of the

instructions and to resolve conflicts. This increases compiler complexity but decreases

hardware complexity by a lot.

Features of VLIW: The processors in this architecture have multiple functional units, fetch

from the Instruction cache that have the Very Long Instruction Word.

 Multiple independent operations are grouped together in a single VLIW

Instruction. They are initialized in the same clock cycle.

 Each operation is assigned an independent functional unit.

 All the functional units share a common register file.

 Instruction words are typically of the length 64-1024 bits depending on the

number of execution unit and the code length required to control each unit.

 Instruction scheduling and parallel dispatch of the word is done statically by the

compiler.

 The compiler checks for dependencies before scheduling parallel execution of

the instructions.

Fig. Block Diagram of VLIW Architecture

(b).

Testing and debugging: Test/Verification involves ensuring that functionality is correct.

Such assurance can prevent time-consuming debugging at low abstraction levels and iterating

back to high abstraction levels.

Debuggers help programmers evaluate and correct their programs. They run on the

development processor and support stepwise program execution, executing one instruction

and then stopping, proceeding to the next instruction when instructed by the user. They

permit execution up to user-specified breakpoints, which are instructions that when

encountered cause the program to stop executing. Whenever the program stops, the user can

examine values of various memory and register locations. A source-level debugger enables

step-by-step execution in the source program language, whether assembly language or a

structured language. A good debugging capability is crucial, as today’s programs can be quite

complex and hard to write correctly. Device programmers download a binary machine

program from the development processor’s memory into the target processor’s memory.

Emulator’s support debugging of the program while it executes on the target processor. An

emulator typically consists of a debugger coupled with a board connected to the desktop

processor via a cable. The board consists of the target processor plus some support circuitry

(often another processor). The board may have another cable with a device having the same

pin configuration as the target processor, allowing one to plug this device into a real

embedded system. Such an in-circuit emulator enables one to control and monitor the

program’s execution in the actual embedded system circuit. Incircuit emulators are available

for nearly any processor intended for embedded use, though they can be quite expensive if

they are to run at real speeds. The availability of low-cost or high-quality development

environments for a processor often heavily influences the choice of a processor.

5. Cache mapping Techniques:

Cache is usually designed using static RAM rather than dynamic RAM, which is one reason

that cache is more expensive but faster than main memory. Because cache usually appears on

the same chip as a processor, where space is very limited, cache size is typically only a

fraction of the size main memory. Cache access time may be as low as just one clock cycle,

whereas main memory access time is typically several cycles.

A cache operates as follows. When we want the processor to access (read or write) a main

memory address, we first check for a copy of that location in cache. If the copy is in the

cache, called a cache hit, then we can access it quickly. If the copy is not there, called a cache

miss, then we must first read the address (and perhaps some of its neighbors) into the cache.

This description of cache operation leads to several cache design choices: cache mapping,

cache replacement policy, and cache write techniques. These design choices can have

significant impact on system cost, performance, as well as power, and thus should be

evaluated carefully for a given application.

 Cache mapping techniques: Cache mapping is the method for assigning main memory

addresses to the far fewer number of available cache addresses, and for determining whether

a particular main memory address’ contents are in the cache. Cache mapping can be

accomplished using one of three basic techniques:

1. Direct mapping: In this technique, the main memory address is divided into two fields, the

index and the tag. The index represents the cache address, and thus the number of index bits

is determined by the cache size, i.e., index size = log2(cache size). Note that many different

main memory addresses will map to the same cache address. When we store a main memory

address’ content in the cache, we also store the tag. To determine if a desired main memory

address is in the cache, we go to the cache address indicated by the index, and we then

compare the tag there with the desired tag.

2. Fully-associative mapping: In this technique, each cache address contains not only a main

memory address’ content, but also the complete main memory address. To determine if a

desired main memory address is in the cache, we simultaneously (associatively) compare all

the addresses stored in the cache with the desired address.

3. Set-associative mapping: This technique is a compromise between direct and

fullyassociative mapping. As in direct-mapping, an index maps each main memory address to

a cache address, but now each cache address contains the content and tags of two or more

memory locations, called a set or a line. To determine if a desired main memory address is in

the cache, we go to the cache address indicated by the index, and we then simultaneously

(associatively) compare all the tags at that location (i.e., of that set) with the desired tag. A

cache with a set of size N is called an N-way set-associative cache. 2-way, 4- way and 8-way

set associative caches are common.

6.

(a). Concurrent process model:

In a concurrent process model, we describe system behaviour as a set of processes, which

communicate with one another. A process refers to a repeating sequential program. While

many embedded systems are most easily thought of as one process, other systems are more

easily thought of as having multiple processes running concurrently.

For example, consider the following made-up system. The system allows a user to provide

two numbers X and Y. We then want to write "Hello World" to a display every X seconds,

and "How are you" to the display every Y seconds. A very simple way to describe this system

using concurrent processes is shown in Figure 8.9(a). After reading in X and Y, we call two

subroutines concurrently. One subroutine print’s "Hello World" every X seconds, the other

prints "How are you" every Y seconds. (Note that you can’t call two subroutines concurrently
in a pure sequential program model, such as the model supported by the basic version of the

C language). As shown in Figure 8.9(b), these two subroutines execute simultaneously.

Sample output for X=1 and Y=2 is shown in Figure 8.9(c).

To see why concurrent processes were helpful, try describing the same system using a

sequential program model (i.e., one process). You’ll find yourself exerting effort figuring out
how to schedule the two subroutines into one sequential program. Since this example is a

trivial one, this extra effort is not a serious problem, but for a complex system, this extra

effort can be significant and can detract from the time you have to focus on the desired

system behaviour. Recall that we described our elevator controller using two "blocks." Each

block is really a process. The controller was simply easier to comprehend if we thought of the

two blocks independently.

(b). Program state machine model: The program-state machine (PSM) model extends

state machines to allow use of sequential program code to define a state’s actions (including
extensions for complex data types and variables), as well as including the hierarchy and

concurrency extensions of HCFSM. Thus, PSM is a merger of the HCFSM and sequential

program models, subsuming both models. A PSM having only one state (called a program-

state in PSM terminology), where that state’s actions are defined using a sequential program,
is the same as a sequential program. A PSM having many states, whose actions are all just

assignment statements, is the same as an HCFSM. Lying between these two extremes are

various combinations of the two models. For example, Figure 8.8 shows a PSM description

of the Elevator Controller behaviour, which we AND-decompose into two concurrent

program-states Unit Control and Request Resolver, as in the earlier HCFSM example. PSM

enforces a stricter hierarchy than the HCFSM model used in State charts. In State charts,

transitions may point to or from a substate within a state, such as the transition pointing from

the substate of the state to the Normal Mode state. As in the sequential programming model,

but unlike the HCFSM model, PSM includes the notion of a program-state completing. If the

program-state is a sequential program, then reaching the end of the code means the program-

state is complete. If the program-state is OR-decomposed into substates, then a special

complete substate may be added. Transitions may occur from a substate to the complete

substate (but no transitions may leave the complete substate), which when entered means that

the program-state is complete. Consequently, PSM introduces two types of transitions. A

transitionimmediately (TI) transition is taken immediately if its condition becomes true,

regardless of the status of the source program-state -- this is the same as the transition type in

an HCFSM. A second, new type of transition, transition-on-completion (TOC), is taken only

if the condition is true AND the source program-state is complete.

7.

(a).

Fig. Standard cell

(b).

Rectangle

Rectangle

Rectangle

