M NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE FILE

SUBJECT : EMBEDDED SYSTEM DESIGN
FACULTY 3 J. SRAVANTHI

REGULATION : R16

BATCH : 2017
YEAR : v
SEMESTER :]

A
Signa;t%; the staff Head of the Department

HIEAT OF THE DEPARTMENT
DEPLOF ELECTRONICS AND COMMUNICATION
i ENGG.
NABASARANPETA ENGINEERING COLLEGE

NARASARAOPET.522 601

MM NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CONTENTS

n
Z
e

Institute, Department Vision and Mission

Programme Educational Objectives and Programme Specific Outcomes

Program Outcomes

Bloom’s Taxonomy levels

Course Objectives & Course Outcomes

Course Information Sheet

Academic calendar

Time tables

Syllabus copy

Lesson Plan

CO-PO& PSO Mapping and assessment

Web references & other pedagogical initiates details

Student’s Roll list

Hand Written / Printed Lecture Notes / Material given to the Students

N S R I R = R R I S

Power Point Presentation Slides

Mid & Assignment Examination Question Papers with scheme and

o solutions (for problems)

17 | Unit wise important questions

18 | Previous University Question Papers

19 | Missing Topics(Course gaps) and Topics beyond Syllabus
20 | Remedial/corrective actions

E»(y/
Submitted By e Approved By

A=A O TiHE i'\'—"‘ \RTMENT

DEFILOF ELECIRONICS AND COMBIUNICA ON

i * r| ERING COLLEGE

ﬁi"l "\-.l.' L
NA hf;An\hUr’Lf 522 601

2

Institute Vision
and
Mission

Mz NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)

Department of Electronics and Communication Engineering

Institute Vision and Mission

VYision

To emerge a Centre of excellence in technical education with a blend of effective student
centric teaching learning practices as well as rescarch for the transformation of lives and
community,

Mission
M 1:Provide the best class infra- structure to explore the field of engineering and research

M2:Build a passionate and a determined team of faculty with student centric teaching,
imbibing experiential, innovative skills

M3:Imbibe lifelong leamning skills, entrepreneurial skills and ethical values in students for
addressing societal problems

M‘”’l&)
PRINCIB.Ai,
PRINCIPAL
NARASARAGPETA ELGIIZERINC TN I ERE
(AUTONOLOU S
NARASARAQPET - 427 601
Guutur (Dist), A H

R

3 —“j&\\'\““‘l‘\\ S

L S TR

B S R

i T g 2 G P G S A &

Department Vision and
Mission

& L S ur

S NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)

Department of Electronics and Communication Engineering

Vision and Mission of the Department

DEPARTMENT VISION

To emerge as a centre of excellence in Electronics and Communication Engineering
through student centric education and research focus to cater the current and future needs
of society.

DEPARTMENT MISSION

MI: To provide best infrastructure for empowering the students with quality education to
motivate them towards higher studies and research

M2: To provide qualified and experienced faculty for student centric teaching in order to
mould the students as successful professionals in modern Electronics industry

M3: To inculcate leadership qualities, professional etiquette, ethical values and social
responsibilities

4
Head of the Department
HEAD OF THE DEPARTMENT

DEPT.OF ELECTRONICS AND COMMUNICATION

iy

Mz NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)

Department of Electronics and Communication Engineering

PROGRAM EDUCATIONAL OBJECTIVES:

PEO1: To train the students to design and analyze the electronic circuits and equipment for
societal benefits.

PEO2: To inculcate in the students the desire for lifclong learning to obtain thorough
knowledge in their chosen fields and also to motivate them for higher studies/research.

PEQ3: To train the students so that they can effectively perform the duties assigned to them

as team leaders or project managers in the industry/organization with ethical and moral
values.

PROGRAM SPECIFIC OUTCOMES:

PSO1: Analyze and Design Analog and Digital circuits for a given specification and
function.

PSO2: Design a variety of ‘Electronic Systems for applications including Signal
Processing, Communications, Computer Networks and Control Systems.

PROGRAM OUTCOMES

Mz NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)

Department of Electronics and Communication Engineering

Narasaraopeta Engineering College follows the Program Outcomes (PO) as defined by NBA
Engineering Graduates will be able to:

PO1 1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.

PO2 2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences

PO3 3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

PO4 4.Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions

POS5 5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6 6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice

PO7 7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

POS 8. Ethies: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice

PO9 9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings

PO10 10. Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions

PO11 11. Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own work,
as a member and leader in a team, to manage projects and in multidisciplinary
environments

PO12 12. Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest context of
technological change.

&

Head of the Department

ELECTRONICS AND COMMUNICATION

NARASARANPETA ERGINEERING COLLEGE

NARASARAOPET-522 601

BLOOMS TAXONOMY
LEVELS

: Emﬁcm: ‘Jo88s ‘Lodsl ‘ez1ubooe)
Em@ b;cmn_ ‘ue|dxa wmjumﬁ“mﬁ:umwv b_wwm_u

5120102 10 seap) uieidxy.

co“oxm ‘9|npayos ‘ajesado
.&ﬁmco_&mu ‘asn. mgam ‘Juawajduw mSouxu

188] ‘uonsanb Juswsdxs ‘suLEXS
‘ysinBunsip Isesuco ‘esedwoo ‘slefel ‘ezauebio * slenusuayp

seapl Buowe suoI}PaUL0d MBI(]

ybrom ‘enbruo ‘anjea ‘woddns ‘1osjes ‘ebpnl 'puajep ‘anbie ‘asjeidde
UoIsIoap Jo pue)s e Asnp

Wﬁmm:mw...c_ oyine 8jEINuULOj ‘dojaaep ‘einpsluon 1onnsuco ‘sjquesse'ufisan

~iom _mc_mco 10 Mau 39npoid

>Eo:oxm | s,woo|g

COURSE OBJECTIVES
AND
OUTCOMES

Mz NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)

Department of Electronics and Communication Engineering

COURSE OBJECTIVES:

1. The method of designing a real time systems
2. Implementation and testing an embedded system

3. Summarize special concerns that real-time systems present and how these concerns are addressed

COURSE OUTCOMES: Students are able to

COl: Recall the fundamentals of Core of the Embedded System. [K1]

CO2: Define Process model and technologies to design an Embedded system. [K1]

CO3: Demonstrate the customization of Hardware/Software. [K2]

CO4: Delineate the unique Characteristics of Embedded Systems. [K2]

CO5: Make use of system design techniques to develop Hardware/Software for Embedded systems [K3]
CO6: Develop an Embedded system with real time constraints. [K3]

Faculty Signature

e

COURSE
INFORMATION
SHEET

24 Narasaraopeta Engineering College

NEC (Autonomous)

Yallmanda(Post), Narasaraopet- 522601
Department of Electronics and Communication Engineering

COURSE INFORMATION SHEET

PROGRAMME: B.Tech Electronics and Communication Engineering

COURSE: EMBEDDED SYSTEM Semester : VIII CREDITS: 3
DESIGN '

| COURSE CODE: R16EC4211 COURSE TYPE (CORE /ELECTIVE / BREADTH/ S&H): CORE
REGULATION: R16

COURSE AREA/DOMAIN: PERIODS: 6 Per Week.
ELECTRONIC CIRCUITS

C(_)ERSE PRE-REQUISITES:

C.CODE | COURSE NAME DESCRIPTION SEM

RIGEC4102 | Microcontrollers | Know the building blocks of typical embedded system, memory devices and VIl

and Embedded supporting devices,
Systems

COURSE OUTCOMES:

SNO

Course Outcome Statement

COl1

Recall the fundamentals of Core of the Embedded System. [K1]

CO2

Define Process model and technologies to design an Embedded system. [K1]

CO3

Demonstrate the customization of Hardware/Software. [K2]

CO4

Delineate the unique Characteristics of Embedded Systems. [K2]

COs5

Make use of system design techniques to develop Hardware/Software for Embedded systems
(K3]

CO6

Develop an Embedded system with real time constraints. [K3]

SYLLABUS:

UNIT

DETAILS

INTRODUCTION

Embedded systems overview, Design Challenges, Processor Technology, IC Technology,
Design Technology, Trade-offs.

Il

CUSTOM SINGLE PURPOSE PROCESSORS: HARDWARE
Combinational logic, Sequential logic, Custom single-purpose processor Design, RT-level
Custom single-purpose processor Design, Optimizing Custom single-purpose processor.

11

sENERAL PURPOSE PROCESSORS: SOFTWARE
Basic Architecture, Operation, Programmer's view, Development Environment, Application
specific Instruction st processors, Selecting a processor, General purpose processor design.

MEMORY

anced communication principles.

IV | Common memory types, composing memory, memory hicrarchy and cache.
INTERFACING: Arbitration, Multilevel bus architectures, ady
STATE MACHINE AND CONCURRENT PROCESS MODELS

\Y/ Models vs Languages, Basic state machine model, 1iC FSM

| . and state charts language, program
state_ machine_model, Role of appropriate model and lan

——°C language, concurrent process model,

communication among, processes, Synchronization among processes, Implementation, Real time
systems,

ICTECHNOLOGY

VI Full custom IC technology, Semi-custom IC technology, PLD IC technology.

DESIGN TECHNOLOGY: Automation: Synthesis, Verification: Hardware/Software co-
simulation, Reusce: Intellectual property cores, Design process models,

TEXT BOOKS

T BOOK TITLE/AUTHORS/PUBLISHER

Tl Frank Vahid, Tony D. Givargis “Embedded System Design: A Unified Hardware/Software
Introduction”, Wiley India Edition, 2002,

REFERENCE BOOKS

R BOOK TITLE/AUTHORS/PUBLISHER

R] KVKK Prasad, “Embedded / Real Time Systems”, Dreamtech Press, 2005.

R2 Shibu K.V, “Introduction to Embedded Systems “, Tata Mc Graw Hill, 2009.

R3 David E. Simon, “An Embedded Software Primer”, Pearson Education, Eighth Impression 2009,

WEB SOURCE REFERENCES:

S.No. | Name URL

| Embedded System Design and | https://drive.google.com/file/d/1 98vyRnbtwdRRnSiVoO9Ip3Cxviwey
Foundations HzhM/view

2 Modern Embedded Computing | https://drive google.com/file/d/10MeikTTCrPZy TLXyY idxpQuFEtX
Designing Zolallview

3 Embedded Systems httpe://drive google.com/file/d/1 IMTauyswel IHbAWNFAZILzim7bBh

4 Embedded System Design: A http:/ldap-book narod ru/ESDUA pdf
Unified Hardware/Software

Approzch
5 Introduction to Embedded https://pwolemy. berkeley eduwbooks/leeseshialreleases/] £eSeshia_Digi
Systems V1 07 pdf

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CChalk & Talk O PPT OActive Learning
OWeb Resources OJ Students Seminars OCase Study
OBlended Leamning O Quiz OTutorials

CProject based learning CONPTEL/MOOCS O Simulation
OFlipped Learning Olndustrial Visit OModel Demonstration
CJBrain storming ORole Play OVirtual Labs

MAPPING CO'S WITH POs & PSOs

coi POs
PO1 PO2 PO3 PO4 POS PO6 PO7 PO8 PO9 PO10 pO11 PO12 PSO1 PS02
c423.1 2]
c423.2 2 3 1 3 2|
ca23.3 3 3 3 2 3 2|
C423.4 2 2 2 3 3 2
c4a23.5 2 2 3 2
C423.6 2 3 3 2
C423 22 24 2.25 25 3 2
ATTAINING COURSE WITH POs & PSOs
Course 1po1 |po2 |Po3 |Poa |pos pos | po7 | pos |Pos |Polo |Po11 [PO12 | PSO1 | pso2
c423 | 22 | 24 | 225 | 25 2
COURSE OUTCOME RUBRIC (ASSESMENT PER STUDENT):
ASSESMENT ATTAINMENT | ATTAINMENT | ATTADNMENT | ATTAINMENT
TOOL WITH | METHOD LEVEL3 LEVEL 2 LEVEL1 LEVEL 0
WEIGHTAGE (EXCELLEND (GOOD) (AVERAGE) (POOR)
Student secured St;xg;::t !:::I:d Sm)d ;rstoze::;ed Student secured
Int p 2 2 60% = 509 i
Smalteaty Direct |2 00%emamksof | o 0 hsof | <10%marksof | <*0%emarksof
(40%) allocated marks 5 allocated marks
for that CO allocated marks allocated marks for that CO
forthat CO forthat CO
Student secured | Student secured Stu;l;l:}t:e;u‘;ed Student secured
Assignments — > 80%marks | > 70% and <80% 50%‘;1 ks | <60% of marks
(20%) allocated for marks allocated ilbearad faz thiak allocated for that
that CO for that CO co co
End Semester Sm?:n;izid Student secured Student secured Student secured
Examimnation Direct gri; I-"_i:t 1 grades C*&B*in | grades D*&E* n grades F* in
(30%) Fxam Extemal Exam Extemal Exam External Exam
Course end . Student selected | Student selected | Student selected | Student selected
Indirect : . i .
Survey (10%) option option option option
* Grade Defimtion: S: >= 90%; A- 80%6-89%; B: 70%-79%; C: 60%-69%; D: 50%-359%; E: 40%-19%; F: <40%
% : s
Coursé Coordinator Module Coordinator Head of the Department

HE%D QF THE DEPARTMENT
DEPT.OF ELECTRONICS /ND COMMUNICATION

fNipaean

FRAG
Jneie-—

j\‘h:‘-_.-.-_ W e

o]

SN ERE

ACADEMIC
CALENDAR

INarasaraopeta kngineering College

ACADEMIC CALENDAR

l\ii{'_-_‘[‘ Pegy Korappakonda Roead. Yellamanda (P.O) Narasaraopet- 522
i - - ' : |

AT LT R

(Autonomous)

ol

(B.Tech. 2019, 2018 and 2017 admitted batches, Academic Year 2020-21)

2019 Batch 2™ Year 1*' Semester,
2018 Batch 3" Year 1% Semester and
2017 Batch 4™ Year 1% Semester

Description From Date To Date Duration
Commencement of Class Work 02-11-2020
4 Weeks
1'' Spell of Instructions 02-11-2020 30-11-2020
I Mid examinations 01-12-2020 05-12-2020 1 Week
2" Spell of Instructions 07-12-2020 20-02-2021 11 Weeks
I Mid examinations 22-02-2021 27-02-2021 1 Week
Preparation & Practicals 01-03-2021 06-03-2021 1 Week
Semester End Examinations 08-03-2021 20-03-2021 2 Weeks
2019 Batch 2™ Year 2" semester,
2018 Batch 3™ Year 2™ Semester and
2017 Batch 4" Year 2" Semester
Commencement of Class Work 22-03-2021
1** Spell of Instructions 22-03-2021 08-05-2021
7 Weeks
I Assignment Test 12-04-2021 17-04-2021
II Assignment Test ; 26-04-2021 30-04-2021
1 Mid examinations 10-05-2021 15-05-2021 1 Week
2" Spell of Instructions 17-05-2021 03-07-2021
[T Assignment Test 31-05-2021 05-06-2021 7 Weeks
IV Assignment Test 21-06-2021 26-06-2021
II Mid examinations 05-07-2021 10-07-2021 1 Week
Preparation & Practicals 12-07-2021 17-07-2021 1 Week
Semester End Examinations 19-07-2021 31-07-2021 2 Weeks
P AL

AT AT AT AT AT AL AT AT AT A

TIME TABLES

¢ (

T

MM NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IV B.Tech., II Semester, ECE-A Class Time Table for the A.Y. 2020-21

Room No.: 3317 w.e.f: 24-03-2021
1 2 3 4 5 6 7
DAY | 9:10t0 | 10:00t0 | 10:50t0 | 11:00t0 | N0 | 1240 1300 |0 o 1301000
10:00 10:50 11:00 11:50 12:40 30 2:20 4:90
MON | CMC ESD WSN ESD ¢ Project Work/ Pracrical Training
m TUE | WSN ESD WSN | CMC g Project Work/ Pracrical Training
WED | ESD WSN CMC WSN E[Project Work/ Pracrical Training
BREAK D : T
THU | ESD CMC WSN ESD u Project Work/ Pracrical Training
R
FRI | WSN CMC ' ESD CMC i Project Work/ Pracrical Training
SAT | CMC | ESD WSN | cMc | ¥ | Project Work/ Pracrical Training
ESD : Embedded System Design Ms. J. Sravanthi
WSN : Wireless Sensor Networks Ms. SK. Ayesha
CMC : Cellular and Mobile Communications Dr. Sk. Bajid Vali
Project Work/ Pracrical Training : Ms. J. Sravanthi Ms. SK. Ayesha Dr. Sk. Bajid Vali, Dr V.Venkat Rao
P
o -
HEAD OF THE DEPARTMENT PRINCI
(Dr. V. VENKATA RAOQO) _ (Dr. M. SREEN SA KUMAR)
NARASARADPE A £1.0. -7 NG OLLEGE

' L3) (AUTONCIDUS)
BV e : AN NARASARAOPET - 522 601.
Guntur (Dist.), A.P.

\9z,
%

NARASARAOPETA

NEC ENGINEERING COLLEGE

(AUTONOMOUS)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

1V B.Tech., II Semester, ECE-B Class Time Table for the A.Y. 2020-21

)
Project Work/ Pracrical Training

o/

HEAD OF THE DEPARTMENT
(Dr. V. VENKATA RAO)

HEAD OF THE DERPARTMENT
DEPT.OF Eiswsini, NICATION

L Gl

MARARAREDRT! wETRIRG COLLEGE
NARASARAUPET-522 601

Dr V.Venkat Rao

Mr. P. Shankar, Dr. Ayesha, Dr. SK. SD.Basha

: J.V.K.Ratnam, Dr. Ayesha, Mr. Ch. Adi Babu,

Room No.: 3319 w.e.f: 24-03-2021
1 2 3 4 5 6 7
DAY | 9:10to | 10:00to | 10:50 to | 11:00 to | 11:50 to 1“2,“1‘? 1530 0 2:20 | 2:2010 3;(1)"
10:00 10:50 11:00 11:50 12:40 4 s i 3:10
30 4:00
A '"MON | WSN CMC ESD WSN Ilj Project Work/ Pracrical Training
TUE CMC WSN CcMC ESD N Project Work/ Pracrical Training
WED | CMC CMC WSN ESD 1({: Project Work/ Pracrical Training
THU WSN ESD BREAK CcCMC WSN Pl‘Oj ect WOl’k/ Pr acricaI Trammg
FRI ESD WSN CMC ESD E Project Work/ Pracrical Training
E Project Work/ Pracrical Training
SAT ESD WSN CMC ESD A
K
ESD : Embedded System Design Mr. P. Shankar
WSN : Wireless Sensor Networks Mr. Ch. Adi Babu
CMC : Cellular and Mobile Communications Mr. J.V.K.Ratnam

PRINCIPAL
NARASARAOPETA EIGINEERING COLLEGE
AUTONORMOUS)
NARASARAQFET - 522 601
Guntur (Dist.), AP

MMz NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IV B.Tech., IT Semester, ECE-C Class Time Table for the A.Y. 2020-21

Room No.: 3322 _ w.e.f: 24-03-2021
1 2 3 4 5 6 7
DAY | 9:10t0 | 10:00t0 | 10:50t0 | 11:00t0 | 'A20 |12 20010 | 3310
10:00 10:50 11:00 11:50 12:40 30' - ' 3:10 4:00
~MON | CMC ESD WSN CMC L | Project Work/ Pracrical Training
TUE | WSN ESD WSN CMC g Project Work/ Pracrical Training
WED | ESD CMC WSN CMC ﬁ Project Work/ Pracrical Training
THU ESD CMC R WSN CMC B Project Work/ Pracrical Training
FRI CMC ESD ESD WSN % Project Work/ Pracrical Training
SAT ESD WSN WSN ESD 2 Project Work/ Pracrical Training
ESD : Embedded System Design Dr. N. Veda Kumar
WSN : Wireless Sensor Networks Dr. S. MeghaSyam Reddy
CMC : Cellular and Mobile Communications Dr. K. Anjaneyulu

AProj ect Work/ Pracrical Training :Dr. K. Anjaneyulu Dr. N. Veda Kumar , Dr. D. Subba Rao,
Dr. R. Siva Kumar, Dr. J. Narendra Babui Dr V.Venkat Rao
Dr. S. MeghaSyam Reddy

o

HEAD OF THE DEPARTMENT PRINC
(Dr. V. VENKATA RAO) | (Dr. M. SREENIVASA KUMAR)
= TUE AEPARTAENT PRIME AL
HEAD OF THE RFEn e TN NARASARAOPETA ENGILEERIG COLLEGE
DEPT.UF & - (AUTONOMOUS)
AR SEFRING COLLEGE NARASARAOPET - 522 601,
1L Guntur {Dist.), AR

NARASHRADPET-024 601

Mz NARASARAOPETA
NEC ENGINEERING COLLEGE

(AUTONOMOUS)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IV B.Tech., Il Semester, ECE-D Class Time Table for the A.Y. 2020-21

Room No.: 3323 w.e.f: 24-03-2021

1 2 3 “ 5 6 7
DAY | 9:10to | 10:00to | 10:50to | 11:00 to | 11:50 to | 12:40 to | 1:30 to 2:20to | 3:10 to
10:00 10:50 11:00 11:50 12:40 1: 30 2:20 3:10 4:00
MON| WSN | CcMC ESD WSN L | Project Work/ Pracrical Training|
U]
TUE | CMC WSN ESD ESD N Project Work/ Pracrical Training
MWED | WSN ESD CMC ESD E[Project Work/ Pracrical Training
THU | CMC WSN BREAK ESD WSN B Project Work/ Pracrical Training
R
FRI ESD CMC WSN CMC E Project Work/ Pracrical Training|
A ;
SAT | WSN CMC ESD CMC K Project Work/ Pracrical Training
ESD : Embedded System Design Mr. N. Rajeev Reddy
WSN : Wireless Sensor Networks Dr. S. MeghaSyam Reddy
CMC : Cellular and Mobile Communications Dr. K. Laxma Reddy

Project Work/ Pracrical Training

Dr. G. Lakshmi Narayana

-
HEAD OF THE DEPARTMENT
(Dr. V. VENKATA RAO)

HEAD OF THE PEPARTMENT
DEPT.CE Fl. i NICATION

MABE S o v o RINGCOLLEGE

NARASARAOPET-522 601

PRIN

: Dr. K. Laxma Reddy Mr. N. Rajeev Reddy ., Dr V.Venkat Rao

(Dr. M. SREENIVASA KUMAR)

O

NAHAS;\R;\O; C

(AUTORGH DU

NARASARAOPE
Guntur (Dist.), A.P.

~ AN e
| =1

/

A

T-522 601

SYLLABUS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

INTERNAL | EXTERNAL | TOTAL
IV B.TECH- LiT|P CREDITS
MARKS RKS - | MARKS
[I-SEMESTER MA
alo0lo 20 60 100 3

EMBEDDED SYSTEM DESIGN
(Professional Elective - V)

COURSE OBJECTIVES:
1. The method of designing a real time systems
2. Implementation and testing an embedded system
3. Summarize special concerns that real-time systems present and how these concerns are
addressed
COURSE OUTCOMES:
After completion of the course, the student will be able to
CO1: Recall the fundamentals of Core of the Embedded system.
CO02: Define process models and technologies to design an Embedded system.
CO03: Demonstrate the customization of Hardware/Software.
CO04: Delineate the unique characteristics of Embedded systems.
CO5: Make use of system design techniques to develop Hardware/Software for embedded
systems.
CO6: Develop an embedded system with real time constraints.

UNIT-I: INTRODUCTION
Embedded systems overview, Design Challenges, Processor Technology, IC Technology, Design
Technology, Trade-offs.

UNIT-II: CUSTOM SINGLE PURPOSE PROCESSORS: HARDWARE
Combinational logic, Sequential logic, Custom single-purpose processor Design, RT-level
Custom single-purpose processor Design, Optimizing Custom single-purpose processor.

UNIT-III: GENERAL PURPOSE PROCESSORS: SOFTWARE
Basic Architecture, Operation, Programmer’s view, Development Environment, Application
specific Instruction set processors, Selecting a processor, General purpose processor design.

UNIT-IV: MEMORY
Common memory types, composing memory, memory hierarchy and cache
INTERFACING: Arbitration, Multilevel bus architectures, advanced communication principles.

UNIT-V: STATE MACHINE AND CONCURRENT PROCESS MODELS

Models vs Languages, Basic state machine model, HCFSM and state charts language, program
state machine model, Role of appropriate model and language, concurrent process model,
communication among processes, Synchronization among processes, Implementation, Real time
systems. "

UNIT-VI: IC TECHNOLOGY

Full custom IC technology, Semi-custom IC technology, PLD IC technology.

DESIGN TECHNOLOGY: Automation: Synthesis, Verification: Hardware/Software co-
simulation, Reuse: Intellectual property cores, Design process models.

Text Book:
1. Frank Vahid, Tony D. Givargis “Embedded System Design: A Umﬁed Hardware/Software

Introduction”, Wiley India Edition, 2002.

#

&y Page 207
NEC NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Reference Books:

1. KVKK Prasad, “Embedded / Real Time Systems”, Dreamtech Press, 2005.

2. Shibu K.V, “Introduction to Embedded Systems “, Tata Mc Graw Hill, 2009.

3. David E. Simon, “An Embedded Software Primer”, Pearson Education, Eighth Impression

20009.

& Page 208
NEC NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS)

" TEACHING PLAN

Sttt
NE

Narasaraopeta Engineering College

(Autonomous)

Yallmanda(Post), Narasaraopet- 522601

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TEACHING PLAN
ourse Title (Regulation) | Sem | Branch
. :) Electronics and |
R16EC4211 Embedded System Design | Communication 6 A,B,C&D
Engineering

COURSE OUTCOMES: Students are able to

CO1: Recall the fundamentals of Core of the Embedded System. [K1]
CO2: Define Process model and technologies to design an Embedded system. [K1]
CO3: Demonstrate the customization of Hardware/Software. [K2]
CO4: Delineate the unique Characteristics of Embedded Systems. [K2]
mCOS5: Make use of system design techniques to develop Hardware/Software for Embedded systems [K3]
CO6: Develop an Embedded system with real time constraints. [K3]

Unit Ref Delivery
Ngl Outcome Topics/Activity Text | Total Periods Method
book
UNIT-1: INTRODUCTION
1.1 | Embedded systems overview T1,
&b | R1 Chalk &
LU L. : Talk, PPT,
1 [Recall the fundamentals of | ' | Design Challenges -11;11’ Adkive
Technology —ll;ll’ & Tutorial
1.4 | Design Technology, Trade-offs. Tl
UNIT-II:CUSTOM SINGLE PURPOSE PROCESSORS:
Py HARDWARE
2.1 | Combinational logic, Sequential T1,
€o2. logic RI
— : : Chalk &
Define Process model and | 2.2 | Combinational logic, Sequential Tl, Talk,
2 pchnologies to design an logic Rl PPT
Fmbedded system. [K1] 10 Tutorial
2.3 | RT-level Custom single-purpose T1, Au:::’ae’
processor Design R1 Leatiiitig &
RN : Stud
24 | Optimizing Custom single- | TI, M
. purpose processor. R1
MID I EXAMINATION DURING SIXTH WEEK
UNIT-III: GENERAL PURPOSE PROCESSORS:
SOFTWARE
3.1 | Basic Architecture, Operation T,
C03, RI Chalk &
3 3.2 | Programmer’s view, Development | TI, Talk,
Demonstrate the Envi R1
e nvironment PPT,
customization of 33 Ticati el - o Tutorial
Hardware/Software. [K2] 3 | Application specific Instruction o utoria
set processors

34 | Selecting a processor, General | TI,
purpose processor design Rl 10
UNIT-1V: MEMORY
4.1 | Common memory types, Tl,
composing memory Rl
4.2 | memory hierarchy and cache TI, Chalk &
4 CO 4. = s RI Talk,
Delineate the unique 4.3 | INTERFACING: Arbitration ;11, 10 PPT &
aracteristics of Embedded - : - Tutorial.
Systems. [K2] 4.4 | Multilevel bus architectures 1[;1],
4.5 | Advanced communication T1
principles.
MID I1 EXAMINATION DURING TWELTH
UNIT-V: STATE MACHINE AND CONCURREN’]
PROCESS MODELS
5.1 | Models vs Languages, Basic state i
machine model, HCFSM and state | RI
charts language
CO>S. : Chalk &
. 5.2 | program state machine model, TS, | Cha
Make use of system design . Talk
: Role of appropriate model and RI ’
5 techniques to develop PPT. Active
language =
Hardware/Software for o - %ol = 10 Learning &
“mbedded systems [K3] | VREDHINELE PIOSSRS mMode 1 ' Seminars
communication among processes RI .
54 | Synchronization among T1,
processes, Implementation, Real RI
time systems. l -
UNIT-VI: IC TECHNOLOGY
6.1 | Full custom IC technology, Semi- | Tl
custom IC technology, PLD IC
CO6. technology. Chalk &
Develop an Embedded | 6.2 [DESIGN TECHNOLOGY: T Talk, PPT
6 system with real time Automation: Synthesis, - Tutorial,
constraints. [K3] Verification At
6.3 | Hardware/Software co-simulation T1 Learning &
Seminars
64 | Reuse: Intellectual property cores, | TI
Design process models.
Towl | 65

END EXAMINATIONS

Text Books:
T1 Frank Vahid, Tony D. Givargis “Embedded System Design: A Unified Hard vare/Sof ware
Introduction”, Wiley India Edition, 2002.

Reference Books:

R1 KVKK Prasad, “Embedded / Real Time Systems”, Dreamtech Press, 2005.

R2 Shibu K.V, “Introduction to Embedded Systems *, Tata Mc Graw Hill, 2009.

R3 David E. Simon, “An Embedded Software Primer”, Pearson Education, Eight!) Im »ression 2009

Al O THE ,l!,'._-' ARTMEN
FM}’ DEPT.OF i-_-'f,_;;-!'_'.",_;._'HOI.;); COMBUNIC 'T

: SHRUN CATION

ENGG
IlRARABAND TR IRIET RIS An -
N-’“*{ie.ﬁr:-&-n}r‘f.?ﬂ eNGINEERING COLLEGE

&M &~ = ou . -

T T T T T T T T T T T 0 00 T P R

AT AT AT AT AT AT AT AT AT T AT AT T AT AT A AW

7T
=T G R S Y R G GRS S S R A G R

CO-PO& PSO
Mapping and
assessment

AL AT ZTETE T LT L LA A TSI T TS

5

CO ATTAINMENT

ainjeudig’Aynoey

*SJUIRIISU0D
aw) [edJ [PIM wIIsAs pappaqud ue dopaad(190D

SUWII)SAS PIPPIqUId .10] d.AeM}JoS/aiempaeH dojaAap
03 sanbruyd3) udisap wdysAs Jo asn MR :SOD

*SUIISAS pappaquuy]
Jo sopsuBIRyd anbrun ay) NwvauIpP(QD

AIBMJOS/QIBMPIRH
JO uonEBZIW0)sSNd 3y} NeNSUOWI(10D

“wd)sAs pappaquu ue usIsop
0} sardojout]dad) pue sppow ssdo0xd duyd(170D

UWIA)SAS pappaquuy
3Y) JO 210)) JO S[BJUdWEPUN] 3Y) [[BIY 10D

2497
| ymomureny
| OD I3211pu]

EoEmmowm< Hoo.aw& pue 102.11(] :o.mt juswiureny 0D

€ C

" CO-PO MAPPING

al g:o&

ZT 03 T wouy sasued I, 213ym € / |9A37 Judawuienie 0) |elol 10d
:ejnwJo} Suimo||oy 3y} Jad se paje|ndjed s| Juawuienie Od °Z

SOd

juswuienlvy Od

T
0],

a

9°EIVd

S'ETVI

v'ETVD

€€

CTED

o~ N NN

T'ET

<10d

T10d

010d

60d

80d

LOd 90d SOd

vOd

£0d

10d

s0d

s0d

3uiddey 0d-0D

o

(

Ebooks URL .

Narsaraopeta Engineering College (Autonomous): Narasaraopet

Department of Electronics and Communication Engineering

Subject: Embedded System Design (ECE) [4-2]

S.No | Name URL

1 Embedded System Design https://drive.google.com/file/d/198vvRnbtwdRRnSjVoO9p3Cx
and Foundations vtweyHzhM/view

2 Modern Embedded https://drive.google.com/file/d/10Meik77CrPZyTLXyYi4xpQuF
Computing Designing EtXZolal/view

3 Embedded Systems https://drive.google.com/file/d/1IM7auyswcLIHb4WnFAZLzim

7bBh81uCp/view

4 Embedded System Design: A | http://dsp-book.narod.ru/ESDUA.pdf
Unified Hardware/Software
Approach

5 Introduction to Embedded https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSe

Systems

shia_Digitalv1l_08.pdf

STUDENT’S
ROLL LIST

BRANCH/SEC - ECE/A

SL.NO. H.T.NO. STUDENT NAME
1 16471A0405 | NELAKUDITI VENKATA SIVA SAI PRUDHVI KUMAR
2 17471A0401 | KOLLA CHAKRI SAI VIJAYACHANDRA
3 17471A0403 | MANAM YASWANTH CHOWDARY
+ 17471A0404 | CHINTAGUNTLA KALYAN KUMAR
5 17471A0405 | YERUVA SUDHEER KUMAR REDbY
6 17471A0406 | KOLISETTY BABA SRI RAM KUMAR
1 17471A0407 | BATTULA CHANDAN
8 17471A0408 | KOTABHATTAR V V S PRATHYUSHA
9 17471A0409 | CHERUKULA KASI MAITHRI
10 17471A0410 | KANCHETI VINAY
11 17471A0411 | YAKKALA NAGA MADAN DATHP; KUMAR
12 17471A0412 | SANAMPUDI VENKATA NARASIMHA REDDY
13 17471A0413 | GADAM RAM BHUPAL REDDY
14 17471A04I 4 | YANDAPALLI SAI VAMSIKRISHNA
15 17471A0415 | MAMILLAPALLI SAI RAM
16 17471A0416 | NEMALIDINNE VENKATAJAHNAVI

17

17471A0417

NEMALIDINNE VENKATA YASHASWINI

18 17471A0418 | MANDALA SAI BHARGAV REDDY

19 17471A0419 | MAMIDIPAKA SAI SRIDHAR

20 17471A0420 | POTHURI YASWANTH GUPTHA

21 17471A0421 | POPURI VENU

22 17471A0422 | KALANGI KRISHNA AKHIL

23 17471A0423 | DESABOINA PRUDHVISAI

24 17471A0424 | CHINNI ESWAR RAO

25 17471A0425 | YAKKALA PRATHAP

26 17471A0426 | PATHURI SAIPAVAN

27 17471A0427 | KOPPURAVURI JEEVAN JITHENDRA

28 17471A0428 | SANKARAPU SEKHAR BABU

29 17471A0429 | NUTHALAPATI DURGA PRASAD |

30 17471A0430 | BOGGAVARAPU YASWANTH AMARESH
31 17471A0432 | CHANDRAGIRI SAI PRAGNA

32 17471A0433 | SYED MANISHA

33 17471A0434 | GADDAM VAMSI

34 17471A0435 | MINDYALA NAGASAI

35 17471A0436 | IRUVANTI SATYA SITA RAMA SASTRY
36 17471A0437 | PANGA SRINIVASA RAO

37 17471A0438 | POTHRALA RAMANIJI

38 17471A0439 | PASUPULATI SURESH

39 17471A0440 | GUDIPATI CHARITHA

40 17471A0441 | SHAIK SALMAN

41 17471A0442 | MANDALAPU AKHIL SURYA

42 17471A0443 | PABBA VENKATESH NAIDU

43 17;171A0444 NANDHYALA LINGA REDDY

e 17471A0445 | GANGAVARAPU TEJESWAR REDDY

45 17471A0446 | TALLAPANENI VYSHNAVI

46 17471A0448 | YELURINAVYA

47 17471A0449 | DORAGACHARLA PAVAN KUMAR REDDY
48 17471A0450 | GOPALAM NAVYASRI

49 17;171A0451 SHAIK ABTHAB

50 17471A0452 | TADIKAMALLA SURESH BABU

51 17471A0453 | THUMATI MUKESH CHOWDARY

52 17471A0454 | ANEKALLA LAKSHMAN REDDY

53 17471A0455 | RAGHUVU VENKAT SIVA RAMA NAGENDRA
54 17471A0456 | NANDIKONDA ANJI REDDY

55 17471A0457 | KAKUMANU GANESH KRISHNA SAI

56 ' 17471A0459 \ RAMIDEVI SUMANTH

BRANCH/SEC - ECE/B
SL.NO. H.T.NO. STUDENT NAME

1 17471A0461 PONUGOTI RAMESH

2 17471A0462 | MATTRAM VISHNU BABU

3 17471A0463 | RAMISETTY RAMCHARAN

- 17471A0464 | ANANTHA DURGA

5 17471A0465 | KAMMA NAGA SAIRITHVIK

6 17471A0467 | DANDE NAGALAKSHMI

7 17471A0468 | JANAPATI YASASWINI JAYA BHARATHI SAHITHI

8 17471A0469 | JANAPATI SAILAKSHMI SRAVANI

9 17471A0470 | KUNISETTY GOPINADH

10 17471A0471 | SHAIK MD YASIN

11 17471A0472 | RAMISETTI LAKSHMISAITEJA

12 17471A0473 | B. MANI DEEPAK

13 17471A0474 | BOKKA JOHN VICTOR

14 17471A0475 | GODUGUNURI VIJAYA SAI DILEEP KUMAR REDDY

15 17471A0476 | GANAPATHI JYOTHI PRAKASH

16

17471A0477

MUNAGAPATI MANOJKUMAR

17 17471A0478 | SYED MD GOUSE

18 17471A0479 | GOLI SRINIVASARAO

19 17471A0480 | PATHI VENKATESWARI

20 17471A0481 | VANUKURI HARIVARDHAN VEERA REDDY
21 17471A0482 | PANCHUMARTHI DILEEP KUMAR
22 17471A0483 | KOLLURU KRISHNA MOHAN

23 17471A0484 | RACHUMALLU SASIDHAR

24 17471A0485 | KARNATI HEMANTH SAI

25 17471A0486 | THUMATI VENKATA SUNIL

26 17471A0487 | KOPPURAVURI AKHILA

al 17471A0488 | NAIDU RACHANA

28 17471A0489 | TELAPROLU PAVAN KALYAN

29 17471A0490 | BODEMPUDI SRI HARSHA

30 17471A0491 | SHAIK RUKSANA

31 17471A0492 | KATTAMURI SATYANARAYANA
32 17471A0493 | KOPPULA GANESH REDDY

33 17471A0494 | SYED MAHABOOB JANI BASHA -
34 17471A0495 | PERUMALLA PREETHI KOUMIKA

35

17471A0496

SHAIK JANI BASHA

36 17471A0497 | SHAIK MOHAMMED ALTHAF

37 17471A0498 | JANGALA KIRAN BABU

38 17471A0499 | RAMA CHANDRULA KAVYASRI

39 17471A04A0 | MUVVA MANOJ KUMAR

40 17471A04A1 | KAKUMANU SUMANTH

41 17471A04A2 | YANDAPALLIN V S L MALLIKA BRAMARAMBIKA
42 17471A04A3 | TUMMALACHERUVU SAITEJA

43 17471A04A4 | JAKKIREDDY KEERTHI

- 17471A04A5 | SHAIK AFRID

45 17471A04A6 | YERRAMSETTY SAI PAVAN

46 17471A04A7 | DESABOYINA HEMARAMACHANDRA VASU

47 17471A04A8 | SHAIK TANGEDA CHINA BAJI

48 17471A04A9 | KOLLA SIVA HEMANTH

49 17471A04B0 | AKULA ASHOK KUMAR

50 17471A04B1 | MOHAMMED ZAKIR HUSSAIN KI—iAN

< 17471A04B2 | BALUPUNURI KASU VASU DEVA VENKATA REDDY
52 17471A04B3 | GORANTLA SRAVAN KRISHNA

53 1?:471A04B4 JAMMULA CHANDRIKA

54 17471A04B5 | BONDE RAJENDRA

35 17471A04B6 | NANNEM VEENA VATSALYA

56 17471A04B7 | GOGULA NAVEEN KUMAR

57 17471A04B8 | KURANGI MUKUNDA SAI

58 17471A04B9 | GOUSE MOMITH BAIG

59 17471A04C0 | BUSSI JOSEPH BALA YASWANTH BABU
BRANCH/SEC - ECE/C

SL.NO. H.T.NO. STUDENT NAME

1 17471A04C1 | VATTIKONDA SIVA RAMAKRISHNA

2 17;171A04C2 GUNDA PRATHYUSHA

3 17471A04C3 | ALLA SARATH SAI

4 17471A04C4 | GARIKAPATI PAVAN KALYAN

5 17471A04C5 | GUTHA VENKAT RAO

6 17471A04C6 | PULUKURI SRI PRASANNA

7 17471A04C7 | BANDI CHINNAPA REDDY

8 17471A04C8 PINNIKA SRIVANI

9 17471A04C9 | MAD!'! KOTI KIRAN KUMAR

10 17471A04D0 | DOD! \KULA PRASANTH

11 17471A04D1 | SHAI ARSHAD

12 17471A04D2 | PALA' ''GU SRINIVASULU

18 17471A04D8 | GANGASANI ASHOK REDDY

19 17471A04D9 | KOSANA PRATAP

20 17471A04E0 | G RAGA VENKATA DEEPTHI

2] 17471A04E1 | POTHURI MANIKANTA

22 17471A04E2 | SHAIK NANNU SHAIDA

23 17471A04E3 | POLU DIVYA

24 17471A04E4 | VIBHARAMPATTAPU MAMATHA

25 17471A04E5 | MANDAVA SRI BHARATHI

26 17471A04E6 | BHOJANAPALLI TEJASWINI

27 17471A04E7 | SHAIK JAVEED

28 17471A04E8 | KOLLIKONDA GANGABHAVANI

29 17471A04E9 | GUNTA ROHITHA REDDY

30 17471A04F0 | LAKSHMISETTY VENKATA SAI VYSHNAVI
31 17471A04F1 | RAVULAPALLI SRINU

32 17471A04F2 | SADINENI SOWJANYA

33 17471A04F3 | GANJI KRANTHI

34 17471A04F4 | CHEVALA PRITHVI RAJ

35 17471A04F5 | DEVARAPALLI NAGA POOJA SAI SRI
36 17471A04F6 | MEKAPOTHULA GOPI KRISHNA

37 17471A04F7 | REPALLE PRATHYUSHA

38 17471A04F8 | KOMMANABOYINA NAGA ANIL

39 17471A04F9 | BATCHU DURGA BHAVANI

40 17471A04G0 | DIRISALA SRAVANI

4] 17471A04G1 | KOMIREDDY MANJU BHARGAVI]

42 17471A04G2 | POLA VENKATA MALLIKHARJUNA RAO
43 17471A04G3 | KOLIPAKULA DEVI CHAMUNDESWARI

e 17471A04G4 | BOBBA PRASANTH

45 17471A04G5 | G JAGADEESH CHANDRA BOSE

46 17471A04G6 | GUNTU NAVEEN CHOWDARY

47 17471A04G8 | YELLANURU JAHNAVI

48 17471A04G9 | MAMIDIPAKA NAGASUSHMA

49 17471A04HO | DUGGARAJU GOWTHAMY

50 17471A04H1 | P RAMA KRISHNA

51 17471A04H2 | NALAGANGULA KOTIREDDY

52 17471A04H3 | GUNTUPALLI THIRUMALA PRASANNA SANKAR
53 17471A04H4 | RAJARAPU SRILAKSHMI TIRUMALESWARI
54 17471A04H5 | PAMURU DIVYA

55 17471A04H6 | SHAIK SAMEER

56 17471A04H7 | KUNCHALA GOPI KRISHNA

57 17471A04H8 | PUSALA MADHU KUMAR

58 17471A04H9 | GAJJALA MARUTHI VENKATA KRISHNA RI DDY
59 17471A0410 | MEDA RAVI TEJA
60 18475A0401 | MARELLA VAMSI
61 18475A0402 | RACHAKONDA SHYAM PREMKUMAR
62 18475A0403 | SURISETTI ARCHANA
63 18475A0404 | PALADUGU GANESH
64 18475A0405 | VUYYURU SRILAKSHMI
65 18475A0406 | NUNNA VENKATA SIVASAI
66 18475A0407 | PARITALA HARITHA
67 18475A0408 | MADDINA VENKATA SANDEEP
638 18475A0409 | CHERUKURI BRAHMA VENKATESWARLU
BRANCH/SEC - ECE/D
SL.NO. H.T.NO. STUDENT NAME
1 16475A0415 | POLLA SIVA
2 16471A0424 | GOLLA VENKATESWARI
3 16471A04D2 | THALLAPALLI SIVANAGARAJU
+ 16471A04G1 | SRIRAM NAVEEN KUMAR
5 17471A0411 | CHERUKURI RAVI KUMAR
6 17471A0412 | KOLA PAVAN KALYAN
7 17471A0413 | TEMPALLI PRABHU KUMAR
8 17471A0414 | SHAIK MASTANVALI
9 17471A0415 | TANNIRU AVINASH BABU

TELLAGORLA MANIKANTA GOPALA

10 17471A0416 KRISHNA

11 17471A0417 | KOLA RAKESH

12 17471A0418 | KESANUPALLI PRIYANKA

13 17471A0419 | NARISETTI UMAMAHESWARI
14 17471A04J0 | MANYAM UDAY BHASKAR
15 17471A04J1 | Y SUPRAJA

16 17471A04)2 | GOSULA THIRUPATHI RAO

17 17471A04J3 | NARE TEJASWI

18 17471A04J4 | VAKA GOPI CHAND

19 17471A04)J5 | DOPPALAPUDI NELSON RAJU
20 17471A04J6 | SHAIK AFRIN

21 17471A04]J7 | MOLAMANTI SAIKALYAN

22 17471A04J8 | SHAIK KANDIPATI MOULALI
23 17471A04K0 | PALLEPOGU SHARONU

24 17471A04K1 | CHILAKA VAMSI KRISHNA

25 17471A04K2 | GOCHIPATHALA RAJ KAMAL
26 17471A04K3 | KESENAPALLI MARIYA BABU
27 17471A04K4 | ANGALAKURTHI SUMA PRIYA
28 17471A04K5 | PERUMALLA VINAY KUMAR
29 17471A04K6 | SHAIK SAJID HASAN

30 17471A04K7 | USAA PAVAN KALYAN

31 17471A04K8 | GORANTLA ASHOK

32 17471A04K9 | NALLAMOLU KUSUMA

33 17471A04L0 | JUPUDI RAJU

34 17471A04L1 | MOGAL IRFAN

35 17471A04L2 | VELISALA MANISH PREETHAM
36 17471A04L4 | V PREETHI MANISHA

37 17471A04L5 | JAMPANI KRISHNAVAMSI

38 17471A04L6 | MEDATATI DIVYA

39 17471A04L8 | SADHU KOTESWA RAO

40 17471A04M0 | BAPATLA VIJAYA LAKSHMI

41 17471A04M1 | PATIBANDLA NARESH

42 17471A04M2 | KANDULA GURU KIRAN

43 17471A04M3 | DARSI ANIL KUMAR

4t 17471A04M4 | BATRAJU NAGA UMAMAHESH
45 17471A04M5 | PALLEMPATI DURGA PRASAD
46 17471A04M6 | PUTTA SRIKANTH

47 17471A04M7 | MEKALA YASHWANTH KUMAR
48 17471A04M8 | SHAIK IMRAN

49 17471A04N0O | SHAIK MAHAMOOD SHAREEF
50 17471A04N1 | MADHIREDDY ANIL KUMAR REDDY
51 17471A04N2 | KADIYAM SUDHAKAR

52 17471A04N3 | VEMULURI YASASWI

53 18475A0410 | THOTA BHARATH

54 18475A0411 SIDDEALA DILEEP SAGAR

55 18475A0412 | DOPPALAPUDI SARATH CHANDRA

56 18475A0413 | JANGA MAHENDRA

87 18475A0414 | AINAOLU GOPIKRISHNA

58 18475A0415 | THUNGALA PRAMOD

59 18475A0416 | SURUBULA LEELA PAVANKUMAR
60 18475A0417 | SARIKONDA RAMA KRISHNAM RAJU
61 18475A0418 | ATTULURI SYAM PRASAD

62 18475A0419 | KUNDA JASHUVA

63 18475A0420 | YALAVARTHI MADHU BABU

64 18475A0421 | M SUBRAHMANYAM

65 18475A0422 | GUDISE VENKATESH

66 18475A0423 | VARIKUTI KRISHNANJANEYULU

MATERIAL

ESD UNIT-1

INTRODUCTION
INTRODUCTION:

Computing systems are everywhere. It’s probably no surprise that millions of computing
systems are built every year destined for desktop computers (Personal Computers, or PC’s),
workstations, mainframes and servers. What may be surprising is that billions of computing
systems are built every year for a very different purpose: they are embedded within larger
electronic devices, repeatedly carrying out a particular function, often going completely
unrecognized by the device’s user. Creating a precise definition of such embedded computing
systems, or simply embedded systems, is not an easy task. We might try the following
definition: An embedded system is nearly any computing system other than a desktop, laptop,
or mainframe computer. That definition isn’t perfect, but it may be as close as we’ll get. We
can better understand such systems by examining common examples and common
characteristics. Such examination will reveal major challenges facing designers of such
systems.

APPLICATIONS OF EMBEDDED SYSTEMS:
Embedded systems are found in a variety of common electronic devices, such as:

(a) consumer electronics -- cell phones, pagers, digital cameras, camcorders, videocassette
recorders, portable video games, calculators, and personal digital assistants

(b) home appliances -- microwave ovens, answering machines, thermostat, home security,
washing machines, and lighting systems

(c) office automation -- fax machines, copiers, printers, and scanners

(d) business equipment -- cash registers, curb side check-in, alarm systems, card readers,
product scanners, and automated teller machines

(e) automobiles -- transmission control, cruise control, fuel injection, anti-lock brakes, and
active suspension

CHARACTERISTICS OF EMBEDDED SYSTEMS:
Embedded systems have several common characteristics:

1) Single-functioned: An embedded system usually executes only one program,
repeatedly. For example, a pager is always a pager. In contrast, a desktop system
executes a variety of programs, like spreadsheets, word processors, and video games,
with new programs added frequently.

2) Tightly constrained: All computing systems have constraints on design metrics, but
those on embedded systems can be especially tight. A design metric is a measure of
an implementation’s features, such as cost, size, performance, and power. Embedded
systems often must cost just a few dollars, must be sized to fit on a single chip, must
perform fast enough to process data in real-time, and must consume minimum power
to extend battery life or prevent the necessity of a cooling fan.

There are some exceptions. One is the case where an embedded system’s program is
updated with a newer program version. For example, some cell phones can be updated
in such a manner. A second is the case where several programs are swapped in and
out of a system due to size limitations. For example, some missiles run one program
while in cruise mode, then load a second program for locking onto a target.

3) Reactive and real-time: Many embedded systems must continually react to changes
in the system’s environment, and must compute certain results in real time without
delay. For example, a car's cruise controller continually monitors and reacts to speed
and brake sensors. It must compute acceleration or decelerations amounts repeatedly
within a limited time; a delayed computation result could result in a failure to
maintain control of the car. In contrast, a desktop system typically focuses on
computations, with relatively infrequent (from the computer’s perspective) reactions
to input devices. In addition, a delay in those computations, while perhaps
inconvenient to the computer user, typically does not result in a system failure.

There are some exceptions. One is the case where an embedded system’s program is updated
with a newer program version. For example, some cell phones can be updated in such a
manner. A second is the case where several programs are swapped in and out of a system due
to size limitations. For example, some missiles run one program while in cruise mode, then
load a second program for locking onto a target.

EXAMPLE:

Digital camera chip
CCD

CCD preprocessor Pixel coprocessor D2A

- ¢ ?)
; : '

JPEG codec Microcontroller Multiplier/ Accumulator

A2D ™

DMA controller ' Display control
: '
v 4 v

Memory controller ISA bus interface UART LCD control

For example, consider the digital camera system shown in Figure 1.1. The A2D and D2A
circuits convert analog images to digital and digital to analog, respectively. The CCD pre-
processor is a charge-coupled device pre-processor. The JPEG codec compresses and

decompresses an image using the JPEG 2 compression standard, enabling compact storage in
the limited memory of the camera. The Pixel coprocessor aids in rapidly displaying images.
The Memory controller controls access to a memory chip also found in the camera, while the
DMA controller enables direct memory access without requiring the use of the
microcontroller. The UART enables communication with a PC’s serial port for uploading
video frames, while the ISA bus interface enables a faster connection with a PC’s ISA bus.
The LCD ctrl and Display ctrl circuits control the display of images on the camera’s liquid-
crystal display device. A Multiplier/Accum circuit assists with certain digital signal
processing. At the heart of the system is a microcontroller, which is a processor that controls
the activities of all the other circuits. We can think of each device as a processor designed for
a particular task, while the microcontroller is a more general processor designed for general
tasks. This example illustrates some of the embedded system characteristics described above.
First, it performs a single function repeatedly. The system always acts as a digital camera,
wherein it captures, compresses and stores frames, decompresses and displays frames, and
uploads frames. Second, it is tightly constrained. The system must be low cost since
consumers must be able to afford such a camera. It must be small so that it fits within a
standard-sized camera. It must be fast so that it can process numerous images in milliseconds.
It must consume little power so that the camera’s battery will last a long. JPEG is short for
the Joint Photographic Experts Group. The "joint' refers to its status as a committee working
on both ISO and ITU-T standards. Their best known standard is for still image compression.

1.2) Design Challenge — Optimizing Design Metrics
The embedded-system designer must of course construct an implementation that fulfills
desired functionality, but a difficult challenge is to construct an implementation that
simultaneously optimizes numerous design metrics.

Common Design Metrics

For our purposes, an implementation consists either of a microprocessor with an
accompanying program, a connection of digital gates. or some combination thereof. A design
metric is a measurable feature of a system'’s implementation. Commonly used metrics include:

—

! JPEG is short for Joint Photographic Fxperts Group. “Joint” refers to the graup’s
status as a committee working on both ISO and ITU-T standards. Their best-known standard

is for still-image compression.

Performance

l NRE cost

Figure 1.3: Design metric competition — improving one may worsen others.

;u_‘u\{dh.)
® NRE cost (nonfecurring engineering cost): The one-time monetary cost of designing

i i i manufactured
th.e systgnk&;ge "‘?\E stem, is mw. any number of units can be‘
without incurring any additional design cost; hence the term nonrecurring.

® Unir cost: The monetary cost of manufacturing each copy of the system, excluding

NRE cost.
* Size: The physical space required by the system, often measured in bytes for

software, and gates or transistors for hardware.

® Performance: The execution time of the system.

® Power: The amount of power consumed by the system, which may determine the
lifetime of a battery, or the cooling requirements of the IC, since more power means
more heat.

* Flexibility: The ability to change the functionality of the system without incurring
heavy NRE cost. Software is typically considered very flexible.

* Time-to-prototype: The time needed to build a working version of the system, which
may be bigger or more expensive than the final system implementation, but it can be
used to verify the system’s usefulness and correctness and to refine the system’s
functionality.

® Time-to-market: The time required to develop a system to the point that if can be
released and sold to customers” The main contributors are design time,
manufacturing time, and testing time. *

® Maintainability: The ability to modify the system after its initial release, especially
by designers who did not originally design the system.

* Correcmess: Our confidence that we have implemented the system’s functionality
correctly. We can check the functionality throughout the process of designing the
system, and we can insert test circuitry to check that manufacturing was correct.

* Safety: The probability that the system will not cause harm.

Metrics typically compete with one another: Improving one often leads to worsening (?f
another, For example, if we reduce an implementation’s size, the implementation s
performance may suffer. Some observers have compared this phenomenon to a wheel w;:lr
numerous pins, as illustrated in Figure 1.3, If you push one pin in, such as size, then the othe

X

Peak revenue

Peak revenue from
delayed entry

On-hime
Market

Market fall

rnse

l)ciu_vcd

Revenues (3)

i Time |

Time (months) / (ll) W 2W
On-time ™ Delayed

(a) entry entry (b)

e i evenue loss from
Figure 140 Time-to-market: (a) market window, (b) simplified revenue model for computing reve
delaved entny

=

pins pop out. To best meet this oplimization challenge, the designer must be comfonablg with
a vanety of hardware and software implementation technologies, and must be able to migrate
from onc technology to another, in order to find the best implementation for a given
application and constraints. Thus, a designer cannot simply be a hardware expert or a software
expert. as is commonly the case today; the designer must have expertise in both areas.

- The Time-to-Market Design Metric

. Most of these metrics are heavily constrained in an embedded system. The time-to-market
constraint has become especially demanding in recent years. Introducing an embedded system
to the marketplace early can make a big difference in the system’s profitability, since market
windows for products are becoming quite short, with such windows often measured in
months. For example, Figure 1.4(a) shows a ﬂn&mmkeuﬂnd_ow during which time a
product would have highest sales. Missing this window, which means that the product begins
‘Being sold further to the righton the time scale, can mean significant loss in sales. In some
cascs, cach day that a product is delayed from introduction to the market can translate to a
onc-million-dollar loss. The average time-to-market constraint has been reported as having
shrunk to only 8 months!

Adding to the difficulty of meeting the time-to-market constraint is the fact that
embedded system complexities are growing due to increasing IC capacities, as we will see
later in this chapter. Such rapid growth in IC capacity translates into pressure on designers to
add more functionality to a system. Thus, designers today are being asked to do more in less
time.

Let’s investigate the loss of revenue that can occur due to delayed entry of a product in
the market. We'll usc a simplified model of revenue that is shown in Figure 1.4(b). This
model assumes the peak of the market occurs at the halfway point, denoted as W, of the
product life, and that the peak is the same cven for a delayed entry. The revenue for an

$200 1 e ——A
i\ §< o
‘g- v $160 c
s S si20 i)
g g
o 80—
&
$40
$0 + ——t =
° 800 1600 2400 0 800 1600 2400
Number of units (volume) Number of units (volume)
(a) (b)

Figure 1.5: Costs for technologies A, B, and C as a function of volume: (a) total cost, (b) per-product cost.

on-time market entry is the area of the triangle labeled On-time, and the revenue for a delayed
entry product is the area of the triangle labeled Delayed. The revenue loss for a delayed entry
is just the difference of these two triangles’ areas. Let’s derive an equation for percentage
revenue loss, which equals ((On-time — Delayed) | On-time) * 100%. For simplicity, we’ll
assume the market rise angle is 45 degrees, meaning the height of the triangle is W, and we
leave as an exercise the degivation of the same equation for any angle. The area of the On-
time triangle, computed as %2 * base * height, is thus Y2 * 2W * W, or W?. The area of the
Delayed triangle is Y2(W - D + W) * (W — D). After algebraic simplification, we obtain the
following equation for percentage revenue loss:

percentage revenue loss = (D@BW-D)/ 2W?) * 100%

Consider a product whose lifetime is 52 weeks, so W= 26. According to the preceding
equation, a delay of just D = 4 weeks results in a revenue loss of 22%, and a delay of D = 10
weeks results in a loss of 50%. Some studies claim that reaching market late has a larger
negative effect on revenues than development cost overruns or even a product price that is too

high.)
The NRE and Unit Cost Design Metrics

As another exercise, let’s consider NRE cost and unit cost in more detail. Suppose three
technologies are available for use in a particular product. Assume that implementing the
product using technology A would result in an NRE cost of $2,000 and unit cost of $100, that
technology B would have an NRE cost of $30,000 and unit cost of $30, and that technology c
would have an NRE cost of $100,000 and unit cost of $2. Ignoring all other design metrics,
like time-to-market, the best technology choice will depend on the number of units we plan to
produce. We illustrate this concept with the plot of Figure 1.5(a). For each of the three
technologies, we plot total cost versus the number of units produced, where:

et units
total cost ~ NRE cost 4+ unit cost i ol unit
\

i LA v A vields the lowest total
W from the plot that, of the three u-clmolny.u\'. MI]"':‘(l:(‘)”'|‘Adnmlnp\ B ek fia
[SRISN) :] oC y ¢
. . stween dAng . - v
. . w volumes betwee e : e fi

o8t for Tow volumes, namely (¢ S T) telds the lowest cost for
;\“\l '~': total cost tor yolumes between 400 and 2500 Technology C
ASALAN U
volumes above 2500, * s 1o amortize NRE costs such that

e 1 SO) illustrates how larger volumes allow us (o amort Ll

Fueure 15 P P N lots per-product cost versus volume, where:
lower per-product costs result. The figure plots per-f

g s “units + unit cos
per-product cost - total cost / #of units = NRE cost / # of units + unit cost

For example, for technology C and a volume of 200,000, the co‘nln‘buuon o the
. 4 fodt dAne 2 cost is $100,000 / 200,000, or $0.50. So the per-product cost

per-product cost due 1o NRE cost is $100.(: i ince
would be $0.50 + $2 = $2.50. The larger the volume, the lower the per-product cost, since c
NRE cost can be distributed over more products. The per-product cqst for cach technology
Approaches that technology's it cost for very large volumes. So for very Iargq volumes,
nurabering in the hundreds of thonsands, we can approach a per-product cost of just $2 —
quite a bit less than the per-product cost of over $100 for small volumes,

Clearly. one must consider (he revenue impact of both time-to-market and per-product
Cost, as well as all the other relevant design metrics when evaluating different technologies,

The Performance Design Metric

Performance of a System is a measure of how long the sy
tasks. Performance is perhaps the most widely
system. and also one of the most abused, M

stem takes to exccute our desired
used design metric in marketing an embedded

any metrics are commonly used in reporting
system performance, such as clock frequency or instructions per second. However, what we

really care about is how long the system takes 10 execute our application. For example, in
terms of performance, we care about how long a digital camera takes 10 process an image.
The camera’s clock frequency or instructions per second are not the key issues — one camera
may actually process images faster but have a lower clock frequency than another camery,

With that said, there are several measures of performance, For simplicity, suppose we
have a single task that will be repeated over and over, such as processing an image in 3 digital
camera. The two main measures of performance are:

- * Latency, or response time: The time between the start of the task’
end. For example, processing an image may take 0.25 second.
* Throughpur: The number of tasks that can be Processed per unit time. For example, a
camera may be able to process 4 images per second,
However, note that throughput is not always just the number of tasks times latency. A
system may be able to do better than (his by using parallelism, cither by starting one task
before finishing the next one or by processing

cach task concurrently, A digital camera, for
example, might be able 1o Capture and compress the next image, while stil] storing the
previous image to memory. Thus, our camery may have a latency of 025 second but a
throughput of 8 images per second.

S execution and the

In embedded systems, performance at a very detailed level is also often of concern. In
particular. two signal changes may have to be generated or measured within some number of
nanoseconds.

Speedup is a common method of comparing the performance of two systems. The
speedup of system A over system B is determined simply as:

speedup of A over B = performanée of A / performance of B.

Performance could be measured either as latency or as throughput, depending on what is
of interest. Suppose the speedup of camera A over camera B is 2. Then we also can say that A
is 2 times faster than B and B is 2 times slower than A.

\

Embedded processor technology:

Processor technology involves the architecture of the computation engine used to implement
a system’s desired functionality. While the term “processor” is usually associated with
programmable software processors, we can think of many other, non-programmable, digital
systems as being processors also. Each such processor differs in its specialization towards a
particular application (like a digital camera application), thus manifesting different design
metrics. We illustrate this concept graphically in Figure 1.5. The application requires a
specific embedded functionality, represented as a cross, such as the summing of the items in
an array, as shown in Figure 1.5(a). Several types of processors can implement this
functionality, each of which we now describe. We often use a collection of such processors to
best optimize our system’s design metrics, as was the case in our digital camera example.

General-purpose processors — software

The designer of a general-purpose processor builds a device suitable for a variety of
applications, to maximize the number of devices sold. One feature of such a processor is a
program memory — the designer does not know what program will run on the processor, so
cannot build the program into the digital circuit. Another feature is a general datapath — the
datapath must be general enough to handle a variety of computations, so typically has a large
register file and one or more general-purpose arithmetic-logic units (ALUs). An embedded
system designer, however, need not be concerned about the design of a general-purpose
processor. An embedded system designer simply uses a general-purpose processor, by
programming the processor’s memory to carry out the required functionality. Many people
refer to this portion of an implementation simply as the “software” portion.

Using a general-purpose processor in an embedded system may result in several design-
metric benefits. Design time and NRE cost are low, because the designer must only write a
program, but need not do any digital design. Flexibility is high, because changing
functionality requires only changing the program. Unit cost may be relatively low in small
quantities, since the processor manufacturer sells large quantities to other customers and
hence distributes the NRE cost over many units. Performance may be fast for computation-
intensive applications, if using a fast processor, due to advanced architecture features and
leading edge IC technology.

However, there are also some design-metric drawbacks. Unit cost may be too high for large
quantities. Performance may be slow for certain applications. Size and power may be large
due to unnecessary processor hardware.

For example, we can use a general-purpose processor to carry out our arraysumming
functionality from the earlier example. Figure 1.5(b) illustrates that a general-purpose covers
the desired functionality, but not necessarily efficiently. Figure 1.6(a) shows a simple
architecture of a general-purpose processor implementing the arraysumming functionality.
The functionality is stored in a program memory. The controller fetches the current
instruction, as indicated by the program counter (PC), into the instruction register (IR). It then
configures the data path for this instruction and executes the instruction. Finally, it determines
the appropriate next instruction address, sets the PC to this address, and fetches again.

total = 0
fori=1toN
locp

total += M[i]
ernd loop -

(©) (d)

Figure 1.6: Processors vary in their customization for the problem at hand: (a) desired ﬁ.mclxonalnv (b) general-
purposc processor, (c) application-specific processor, (d) single-purpose processor.

(b)

Single-purpose processors — hardware

A single-purpose processor is a digital circuit designed to execute exactly one program. For
example, consider the digital camera example . All of the components other than the
microcontroller are single-purpose processors. The JPEG codec, for example, executes a
single program that compresses and decompresses video frames. An embedded system
designer creates a single-purpose processor by designing a custom digital circuit, as discussed
in later chapters. Many people refer to this portion of the implementation simply as the
“hardware” portion (although even software requires a hardware processor on which to run).
Other common terms include coprocessor and accelerator.

Using a single-purpose processor in an embedded system results in several designmetric
benefits and drawbacks, which are essentially the inverse of those for generalpurpose
processors. Performance may be fast, size and power may be small, and unit-cost may be low
for large quantities, while design time and NRE costs may be high, flexibility is low, unit cost
may be high for small quantities, and performance may not match general-purpose processors
for some applications.

For example, Figure 1.5(d) illustrates the use of a single-purpose processor in our embedded
system example, representing an exact fit of the desired functionality, nothing more, nothing
less. Figure 1.6(c) illustrates the architecture of such a single-purpose processor for the
example. Since the example counts from one to N, we add an index register. The index
register will be loaded with N, and will then count down to zero, at which time it will assert a
status line read by the controller. Since the example has only one other value, we add only
one register labelled total to the data path. Since the example’s only arithmetic operation is
addition, we add a single adder to the data path. Since the processor only executes this one
program, we hardwire the program directly into the control logic.

e Datapath | | | Controller | [Datapath | | [Controller | [Datapath
! ' &
: . | [Control
Igglogl;zld Register |1 f | Control | |) Registers || | logte: =
State R L e 1 e oy
register | |} 1 ' register Custom || | State
. ALU || | || register
- i
el ey e
{ i
5 ‘ Data | Data
‘ ! ' \ memory E memory
!)
Program Data t | Program i
memory memory : memory E
Assembly i | Assembly ; 2
code for: E code for: E L/CD
! 1
total = 0 ! | total =0 :
: : g ’
fori=lto... ! | fori=1to... :
(a) ' (b) ' ())
Figure 1.7: Implementing desired functionality on different processor types: (a) genall-pm?osc, (b)
application-specific, (c) single-purpose.

Application-specific processors

An application-specific instruction-set processor (or ASIP) can serve as a compromise
between the above processor options. An ASIP is designed for a particular class of
applications with common characteristics, such as digital-signal processing,
telecommunications, embedded control, etc. The designer of such a processor can optimize
the datapath for the application class, perhaps adding special functional units for common
operations, and eliminating other infrequently used units.

Using an ASIP in an embedded system can provide the benefit of flexibility while still
achieving good performance, power and size. However, such processors can require large
NRE cost to build the processor itself, and to build a compiler, if these items don’t already
exist. Much research currently focuses on automatically generating such processors and
associated retargetable compilers. Due to the lack of retargetable compilers that can exploit
the unique features of a particular ASIP, designers using ASIPs often write much of the
software in assembly language.

Digital-signal processors (DSPs) are a common class of ASIP, so demand special mention. A
DSP is a processor designed to perform common operations on digital signals, which are the
digital encodings of analog signals like video and audio. These operations carry out common
signal processing tasks like signal filtering, transformation, or combination. Such operations
are usually math-intensive, including operations like multiply and add or shift and add. To
support such operations, a DSP may have specialpurpose datapath components such a
multiply-accumulate unit, which can perform a computation like T =T + M[i]*k using only
one instruction. Because DSP programs often manipulate large arrays of data, a DSP may
also include special hardware to fetch sequential data memory locations in parallel with other
operations, to further speed execution.

Figure 1.5(¢c) illustrates the use of an ASIP for our example; while partially customized to the
desired functionality, there is some inefficiency since the processor also contains features to
support reprogramming. Figure 1.6(b) shows the general architecture of an ASIP for the
example. The datapath may be customized for the example. It may have an auto-incrementing
register, a path that allows the add of a register plus a memory location in one instruction,
fewer registers, and a simpler controller.

IC technology:

Every processor must eventually be implemented on an IC. IC technology involves the
manner in which we map a digital (gate-level) implementation onto an IC. An IC (Integrated
Circuit), often called a “chip,” is a semiconductor device consisting of a set of connected
transistors and other devices. A number of different processes exist to build semiconductors,
the most popular of which is CMOS (Complementary Metal Oxide Semiconductor). The IC
technologies differ by how customized the IC is for a particular implementation. For lack of a
better term, we call these technologies “IC technologies.” IC technology is independent from
processor technology; any type of processor can be mapped to any type of IC technology.

To understand the differences among IC technologies, we must first recognize that
semiconductors consist of numerous layers. The bottom layers form the transistors. The
middle layers form logic gates. The top layers connect these gates with wires. One way to
create these layers is by depositing photo-sensitive chemicals on the chip surface and then
shining light through masks to change regions of the chemicals. Thus, the task of building the
layers is actually one of designing appropriate masks. A set of masks is often called a layout.
The narrowest line that we can create on a chip is called the feature size, which today is well
below one micro-meter (sub-micron). For each IC technology, all layers must eventually be
built to get a working IC.

Full-custom/VLSI:

In a full-custom IC technology, we optimize all layers for our particular embedded system’s
digital implementation. Such optimization includes placing the transistors to minimize
interconnection lengths, sizing the transistors to optimize signal transmissions and routing
wires among the transistors. Once we complete all the masks, we send the mask
specifications to a fabrication plant that builds the actual ICs. Full-custom IC design, often
referred to as VLSI (Very Large Scale Integration) design, has very high NRE cost and long
turnaround times (typically months) before the IC becomes available, but can yield excellent

performance with small size and power. It is usually used only in high-volume or extremely
performance-critical applications.

Semi-custom ASIC (gate array and standard cell):

In an ASIC (Application-Specific IC) technology, the lower layers are fully or partially built,
leaving us to finish the upper layers. In a gate array technology, the masks for the transistor
and gate levels are already built (i.e., the IC already consists of arrays of gates). The
remaining task is to connect these gates to achieve our particular implementation. In a
standard cell technology, logic-level cells (such as an AND gate or an AND-OR-INVERT
combination) have their mask portions pre-designed, usually by hand. Thus, the remaining
task is to arrange these portions into complete masks for the gate level, and then to connect
the cells. ASICs are by far the most popular IC technology, as they provide for good
performance and size, with much less NRE cost than full-custom IC’s.

. 3

source gMitnnts|

Silicon substrate

Figure 1.8: ICs consist of several layers. Shown is a simplified CMOS transistor; an IC may possess millions of these,
connected above by many layers of metal (not shown).

PLD:

In a PLD (Programmable Logic Device) technology, all layers already exist, so we can
purchase the actual IC. The layers implement a programmable circuit, where programming
has a lower-level meaning than a software program. The programming that takes place may
consist of creating or destroying connections between wires that connect gates, either by
blowing a fuse, or setting a bit in a programmable switch. Small devices, called programmers,
connected to a desktop computer can typically perform such programming. We can divide
PLD's into two types, simple and complex. One type of simple PLD is a PLA (Programmable
Logic Array), which consists of a programmable array of AND gates and a programmable
array of OR gates. Another type is a PAL (Programmable Array Logic), which uses just one
programmable array to reduce the number of expensive programmable components. One type
of complex PLD, growing very rapidly in popularity over the past decade, is the FPGA (Field
Programmable Gate Array), which offers more general connectivity among blocks of logic,
rather than just arrays of logic as with PLAs and PALs, and are thus able to implement far
more complex designs. PLDs offer very low NRE cost and almost instant IC availability.
However, they are typically bigger than ASICs, may have higher unit cost, may consume
more power, and may be slower (especially FPGAs). They still provide reasonable
performance, though, so are especially well suited to rapid prototyping.

The choice of an IC technology is independent of processor types. For example, a general-
purpose processor can be implemented on a PLD, semi-custom, or full-custom IC. In fact, a
company marketing a commercial general-purpose processor might first market a semi-
custom implementation to reach the market early, and then later introduce a full-custom
implementation. They might also first map the processor to an older but more reliable
technology, like 0.2 micron, and then later map it to a newer technology, like 0.08 micron.
These two evolutions of mappings to a large extent explain why a processor’s clock speed
improves on the market over time.

Figure 1.8: The independence of processar and IC tednologies: any processor technology can be

mmapped to any IC techndlogy.
General- Single-
General urpose ASIP purpose Customized,
providing improved: | Processor Processor | providing injroved:
Flexibility Pover efficiency
NRE cost Performance
Tine to prototype Qino
Tine to market Cast (highvol
Cost {lowvolune) gyl
PLD Semi-astom Full-astom
Trends

We should be aware of what is by far the most important trend in embedded systems. a trend
related to 1Cs: IC transistor capacity has doubled roughly every 18 months for the past
several decades.

10,000

1,000 /

100) /
10 /

. el

0.1 /

0.001

(in millions)

1.ogic transistors per chip

—_ =" ~ o) —_— -, " fo) — o wy E=2)
% £ %2 % z =2 & &2 % % 2 2 2 E 2
< S S > > O Q& & S C = = =
— —_— —_ — — —_ — — — — ~ ~ ~ ~ ™~

Figure 1.9: IC capacity exponential increase. following “Moore's Law.” Source: The International Technology
Roadmap for Semiconductors.

This trend, illustrated in Figure 1.9. was actually predicted way back in 19635 by Intel
co-founder Gordon Moore. He predicted that semiconductor transistor density would double
every 18 to 24 months. The trend is therefore known as Aoore's Law. Moore recently
predicted about another decade before such growth slows down. The trend is mainly caused
by improvements in IC manufacturing that result in smaller parts, such as transistor parts and
wires. on the surface of the IC. The minimum part size. commonly known as feature size. for
a CMOS IC in 2002 is about 130 nanometers.

Figure 1.9 shows leading-edge chip approximate capacity per year from 1981 to 2010,
using predicted data for years 2000-2010. Note that chip capacity. shown in millions of
transistors per chip. is plotted on a logarithmic scale. People often underestimate and are
somewhat amazed by the actual growth of something that doubles over short time periods, in
this case 18 months. For example. this underestimation in part explains the popularity of so-
called pyramid schemes. It is the key to the popular trick question of asking somcone to
choose between a salary of $1.000/day for a year. or a penny on day one. 2 pennics on day
two, with continued doubling cach day for a year. While many people would choose the first
option. the second option results in more money than exists in the world. Many people are
also surprised to discover that just 20 generations ago. meaning a few hundred years. we find
that we each have one million ancestors.

Figure 1.10 shows that in 1981, a leading-edge chip could hold about 10.000 transistors,
which is roughly the complexity of an 8-bit microprocessor. In 2002, a leading-edge chip can
hold about 150.000.000 transistors. the equivalent of 15,000 8-bit microprocessors! For

comparison, if automobile fuel efficiency had improved at this rate since 1981, cars in 2002
would get about 500.000 miles per gallon.

1981 1984 1987 1990 1993 1996 1999 2002

e =
10,000 r_—] 7l 50,000,000
transistors : transistors

Leading edge | Leading edge

chip in 1981 chip in 2002
Figure 1 f” Graphical demonstration of the rapid growth in transistor density. The shaded region svmbolizes the are2
required by a 10,000-transistor design over the years. Note tha : b ¥

leading edge chip in 2002 t the area occupies an incredibly tiny portien of 2

This trend of increasing chip capaci
¢ pacity has enabled I iferati ~cost, high-
performance embedded systems that we see loday FIRldRR g hpnan

Design technology:

Design technology involves the manner in which we convert our concept of desired system
functionality into an implementation. We must not only design the implementation to
optimize design metrics, but we must do so quickly. As described earlier, the designer must
be able to produce larger numbers of transistors every year, to keep pace with IC technology.
Hence, improving design technology to enhance productivity has been a focus of the software
and hardware design communities for decades.

To understand how to improve the design process, we must first understand the design
process itself. Variations of a top-down design process have become popular in the past
decade, an ideal form of which is illustrated in Figure 1.9. The designer refines the system
through several abstraction levels. At the system level, the designer describes the desired
functionality in some language, often a natural language like English, but preferably an
executable language like C; we shall call this the system specification. The designer refines
this specification by distributing portions of it among chosen processors (general or single
purpose), yielding behavioral specifications for each processor. The designer refines these
specifications into register-transfer (RT) specifications by converting behavior on general-
purpose processors to assembly code, and by converting behavior on single-purpose
processors to a connection of register-transfer components and state machines. The designer
then refines the register-transfer-level specification of a single-purpose processor into a logic
specification consisting of Boolean equations. Finally, the designer refines the remaining
specifications into an implementation, consisting of machine code for general-purpose
processors, and a gate-level netlist for single-purpose processors.

There are three main approaches to improving the design process for increased productivity,
which we label as compilation/synthesis, libraries/IP, and test/verification. Several other
approaches also exist. We now discuss all of these approaches. Each approach can be applied
at any of the four abstraction levels.

Compilation/ Libraries/ Test/

Synthesis P Verilication
Compilation Svnthesis: Sy s_lem_ System ”“‘/‘?“/ Model simulators/
‘ : ; specification synthesis (ON) checkers
Automates exploration
and insertion of ‘
implementation details ! ‘ X
for lower level v Behavioral Behavior Cores Hw-Sw
specification synthesis cosimulators
Libraries IP: Incorporates
pre-designed !
implementation {from | 2
lower abstraction level RT RT » RT HDL simulators
into higher level specification synthesis components
Test Verificatnon: Ensures >< '
correct funcuonality at ; = -
each level, thus reducing Logic]‘Oglc_ (l‘ﬂlCS/ Gate
costlv iterations between specification synthesis Cells simulators
levels
‘ To final implementation
Figure 1.11" Ideal top-down design process, and productivily improvers.

Compilation/Synthesis:

Compilation/Synthesis lets a designer specify desired functionality in an abstract manner, and
automatically generates lower-level implementation details. Describing a system at high
abstraction levels can improve productivity by reducing the amount of details, often by an
order of magnitude, that a design must specify.

A logic synthesis tool converts Boolean expressions into a connection of logic gates (called a
netlist). A register-transfer (RT) synthesis tool converts finite-state machines and register-
transfers into a datapath of RT components and a controller of Boolean equations. A
behavioral synthesis tool converts a sequential program into finite-state machines and register
transfers. Likewise, a software compiler converts a sequential program to assembly code,
which is essentially register-transfer code. Finally, a system synthesis tool converts an
abstract system specification into a set of sequential programs on general and single-purpose
processors.

Libraries/IP:

Libraries involve re-use of pre-existing implementations. Using libraries of existing
implementations can improve productivity if the time it takes to find, acquire, integrate and
test a library item is less than that of designing the item oneself.

A logic-level library may consist of layouts for gates and cells. An RT-level library may
consist of layouts for RT components, like registers, multiplexors, decoders, and functional
units. A behavioral-level library may consist of commonly used components, such as
compression components, bus interfaces, display controllers, and even generalpurpose
processors. The advent of system-level integration has caused a great change in this level of
library. Rather than these components being IC’s, they now must also be available in a form,
called cores, that we can implement on just one portion of an IC. This change from
behavioral-level libraries of IC’s to libraries of cores has prompted use of the term
Intellectual Property (IP), to emphasize the fact that cores exist in a “soft” form that must be

protected from copying. Finally, a system-level library might consist of complete systems
solving particular problems, such as an interconnection of processors with accompanying

operating systems and programs to implement an interface to the Internet over an Ethernet
network.

Test/Verification:

Test/Verification involves ensuring that functionality is correct. Such assurance can prevent
time-consuming debugging at low abstraction levels and iterating back to high abstraction
levels.

Simulation is the most common method of testing for correct functionality, although more
formal verification techniques are growing in popularity. At the logic level, gatelevel
simulators provide output signal timing waveforms given input signal waveforms. Likewise,
general-purpose processor simulators execute machine code. At the RT-level, hardware
description language (HDL) simulators execute RT-level descriptions and provide output
waveforms given input waveforms. At the behavioral level, HDL simulators simulate
sequential programs, and co-simulators connect HDL and generalpurpose processor
simulators to enable hardware/software co-verification. At the system level, a model
simulator simulates the initial system specification using an abstract computation model,
independent of any processor technology, to verify correctness and completeness of the
specification. Model checkers can also verify certain properties of the specification, such as
ensuring that certain simultaneous conditions never occur, or that the system does not
deadlock.

Other productivity improvers:

There are numerous additional approaches to improving designer productivity. Standards
focus on developing well-defined methods for specification, synthesis and libraries. Such
standards can reduce the problems that arise when a designer uses multiple tools, or retrieves
or provides design information from or to other designers. Common standards include
language standards, synthesis standards and library standards.

Languages focus on capturing desired functionality with minimum designer effort. For
example, the sequential programming language of C is giving way to the objectoriented
language of C++, which in turn has given some ground to Java. As another example, state-
machine languages permit direct capture of functionality as a set of states and transitions,
which can then be translated to other languages like C.

Frameworks provide a software environment for the application of numerous tools
throughout the design process and management of versions of implementations. For example,
a framework might generate the UNIX directories needed for various simulators and
synthesis tools, supporting application of those tools through menu selections in a single
graphical user interface.

Trends

The combination of compilation/synthesis, libraries/IP. test/verification. standards. languages.
and frameworks has improved designer productivity over the past seyeral decades. as shown
in Figure 1.12. Productivity is measured as the number of transistors that one designer can
produce in one month. As the figure shows, the growth has been impressive. A designer in
1981 could produce only about 100 transistors per month, whereas in 2002 a designer should
be able to produce about 5,000 transistors per month.

P
-

! ©

— > 3
;: 1.§ Trade-offs

o,

Pérhaps the key embedded system design challenge is the simultaneous optimization of

C.6 competing design metrics. To address this challenge. the designer trades off among the

-

-

F’ Sequential program code (e.g., C, VIDL)

Behavioral synthesis '

(19905)
Compilers - :
(19605,1970s) ———]
Rl synthesis
Assembly instructions (1980s, 1990s)
Logic equations / FSMs |

Assemblers, linkers

(19505, 1960s) Logic synthesis

(1970s, 1980s)

Machine instructions Logic gates °
)= ‘ bl
Microprocessor plus ~ Implementation VLSI, ASIC, or PLD
program bits: implementation:
“software” ' “hardware”

Figure 1.13: The co-design ladder: recent maturation of synthesis enables a unified view of hardware and software

advantages and disadvantages of the various available processor technologies and IC

technologics. To optimize a system, the designer must therefore be familiar with and

comfortable with the various technologies — the designer must be a “renaissance engineer,”

in the words of some. In the past and to a large extent in the present, however, most designers

had expertise with cither general-purpose processors or with single-purpose processors but not

both — they were cither software designers or hardware designers. Because of this separation
of design expertise, systems had to be separated into the software and hardware subsystems
very carly in the design process, separately designed, and then integrated near the end of the
process. However, such carly and permanent separation clearly aoesn’t allow for the best
optimization of design metrics. [nstead, being able to move functions between hardware and
software, at any stage of the design process, provides for better optimization.

The relatively recent maturation of RT and behavioral synthesis tools has enabled 3
unified view of the design process for hardware and software. In the past, the design processes
were radically different — software designers wrote sequential programs, while hardware
designers connected components, By today. synthesis tools have changed the hardwar
designer’s task cssentially into one of writing sequential programs, albeit with s
knowledge of how the hardware will be synthesized from such programs. We can "‘!“k .
abstraction levels as being the rungs of a laadcr, and compilation and synthesis as cnabllnguz
0 step up the ladder and hence enabling designers to focus their design efforts at higher ley

General- Single-

General, el ASIP purpose Customized,
providing improved: | Processor 7 Processor | providing improved:

Flexibility

Muintainability ¢ ks
. NRE cost Size
Time- to-prototype Cost (high volume)

Time-to-market
Cost (low volume)

PLD Semicustom Full-custom

Figure 1.14: The independence of processor and IC technologies: Any processor technology can be mapped to any IC
technology.

of abstraction, as illustrated in Figure 1.13. Thus, the starting point for either hardware or
software is sequential programs, enhancing the view that system functionality can be
implemented in hardware, software, or some combination thereof, leading to the following
important point:

The choice of hardware versus software for a particular function is simply a

trade-off among various design metrics, like performance, power, size, NRE

cost, and especially flexibility; there is no fundamental difference between

what hardware or software can implement.

Hardware/software codesign is the field that emphasizes a unified view of hardware and
software, and develops synthesis tools and simulators that enable the co-development of
systems using both hardware and software. -

In general, we can view the basic design trade-off as general versus customized
implementation, with respect to either processor technology or IC technology, as illustrated in
Figure 1.14. The more general, programmable technologies on the left of the figure provide
greater flexibility (a design can be reprogrammed rclatively casily), reduced NRE cost
(designing using those technologies is generally cheaper), faster time-to-prototype and
time-to-market (since designing takes less time), and lower cost in low volumes (since the IC
manufacturer distributes its IC NRE cost over large quantities of ICs). On the other hand,
more customized technologies provide for better power efficiency, faster performance,
reduced size, and lower cost in high volumes.

Recall that cach of the three processor technologies can be implemented in any of the
three IC technologies. For example, a general-purpose processor can be implemented on a
PLD, semicustom, or full-custom IC. In fact, a company marketing a product, such as a
set-top box or even a general-purpose processor, might first market a semicustom
implementation to reach the market early, and then later introduce a full-custom

implementation. They might also first map the processor to an older but more reliable
technology, like 0.2 micron, and then later map it to a newer technology. like 0.08 n\icm{l.
~ These two evolutions of mappings 10 a large extent explain why a general-purpose processor's

100 (i)

1000
:'E 1.0 /—-IH,(U] %
< 4
F® 1,000 g
£k : / Lap L 106 g?
” C capacity ;
313 ! Pl 1 — dg
0 -] Wi RO ._...__../._.-. S saiphatonian - - . z.
*5 o1] 1 é
é OUI—MY] 0.1 g
= 0001 om ©
ALy E T T T I T T T T I I T T 1T
- ™ ~ O e b A v~ - O~ A - L T v R - .

Figure 115 The growing “design productivity gap.”

clock speed improves on the market over time. Likewise, a designer of an embedded system
may use PLDs for prototyping a product, and even for the first few hundred instances of the
product 1o speed its time-to-market, switching to ASICs for larger-scale production.
Furthermore, we often implement multiple processors of different types on the same IC.
Figure 1.2 was an example of just such a situation — the digital camera included 2
microcontroller plus numerous single-purpose processors on the same 1C. A single chip with
multiple processors is often referred to as a system-on-a-chip. In fact, we can even implement
more than one IC technology on a single IC — a portion of the IC may be custom. another
portion semicustom. and yet another portion programmable logic. The need for designers
comfortable with the variety of processor and IC technologies thus becomes evident.

Design Productivity Gap

While designer productivity has grown at an impressive rate over the past decades, the rate of .
improvement has not kept pace with chip capacity growth. Figure 1.15 shows the productivity
growth plot superimposed on the chip capacity growth plot, illustrating the: growing design
productivity gap. For example, in 1981, a leading-cdge chip required about 100
designer-months to design, since 100 designer-months * 100 transistors/designer-month =
10,600 transistors. However, in 2002, a leading-edge chip would require about 30,000
designer months, since 30,000 designer-months * 5,000 transistors/designer-month =
150.000,000 transistors. So the design productivity £ap has resulted in an increase from 100 to
30,000 designer-months 1o build 3 Icading-cdge chip. Assuming a designer costs $10,000 per
month, the cost of building a leading-cdge chip has risen from $1.000,000 in 1981 10 an
incredible $300,000,000 in 2002, Few products can justify such large investment in a chip.

~ Thus, most designs do not even come close to using potential chip capacity,

leam

60000
50000 —
40000

30000 .
- Months until completion

Team productivity

(Transistors / month)

20000 — 43

Individual
10000] e

| | | 1.
0 10 20 30 40
Number of designers

Figure 1.16: The “mythical man-month™: Adding designers can decrease individual productivity and at some point
can actually delay the project completion time.

The situation is even worse than stated before, because the discussion assumes that
designer productivity is independent of project tcam size. whereas in rcality adding morc
designers to a project tecam can actually decrecase productivity. Suppose 10 designers work
together on a project, and cach produces 5.000 transistors/month, so that their combined
output is 10 * 5,000 = 50,000 transistors/month. Would 100 designers on a project then
produce 100 * 5,000 = 500,000 transistors/month? Probably not. The complexity of having
100 designers work together is far greater than having 10 designers work together. Even
calling a meeting of 100 designers is a fairly complex task. whereas a 10-designer meeting is
quite straightforward. Furthermore, a 100-designer tcam would likely be decomposed into
groups. cach group having a group leader that meets with other group leaders and reports back
to his or her group, thus introducing extra layers of communication and hence more likelihood
of misunderstandings and time-consuming mistakes.

This decrease in productivity as designers are added to a project was reported by
Frederick Brooks in his classic 1975 book entitled The Mvthical Man-Month. His book
focused on writing software, but the same principle applics to designing hardware. The
decrease in productivity due to tcam-size complexity can at some point actually lengthen the
time to complete a project. For example, consider a hypothetical 1,000,000 transistor project.
in which a designer working alonc can produce 5.000 transistors per month, and cach
additional designer added to the project results in a productivity decrcase of 100 transistors
per designer, duc to the added complexities of team communication and management. So a
designer can complete the project in 1,000,000 / 5,000 = 200 months. 10 designers can
produce 4,100 transistors per month each, meaning 10 * 4.100 = 41,000 transistors per month
!°“‘.'-.‘f°quiring 1,000,000 / 41.000 = 24.3 months to complete the project. Figure 1.16 plots
individual designer productivity as designers are added to the project. The figure also plots

.
——

tcam productivity, computed simply as the number of designers multiplied by their individyg|
productivity. Project completion times for different team sizes, computed as 1,000,0(
transistors divided by team-transistors/month, arc also shown. A 25-designer tcam can
produce 25 * 2,600 = 65,000 transistors per month, requiring 1,000,000/65,000 = 15.3 months
to complete the project. However, a 26-designer tcam also produces 26 * 2,500 = 65,000
transistors per month, so adding a 26" designer docsn’t help. Furthermore. a 27-designer tcam
produces only 27 * 2.400 = 64.800 transistors per month, thus actually delaying the project
completion time to 15.4 months. Adding more designers beyond 26 only worsens the project
completion time. Hence, man-months are in a sensc mythical: We cannot always add
designers to a project to decrease the project completion time.

Therefore, the growing gap between IC capacity and designer productivity in Figure 1.15
is even worse than the figure shows. Designer productivity decreases as we add designers toa
project. making the gap even larger. Furthermore, at some point we simply cannot decrease
project completion time no matter how much money we can spend on designers, since adding
designers will decrease the project team'’s overall productivity. And therefore. Icading-edge
chips cannot always be designed in a given time period. no matter how much money we have
to spend on designers.

Thus. a pressing need exists for new design technologics that will shrink the design gap.
One partial solution proposed by many pcople is to educate designers not just in one subarca
of embedded systems, like hardware design or softwarc design, but instead to educate them to
be comfortable with both hardware and software design. This book is intended to contribute (0
this solution.

——E s -~

ESD UNIT-2

CUSTOM SINGLE PURPOSE PROCESSORS: HARDWARE
INTRODUCTION:

A single-purpose processor is a digital system intended to solve a specific computation task.
While a manufacturer builds a standard single-purpose processor for use in a variety of
applications, we build a custom single- purpose processor to execute a specific task within
our embedded system. An embedded system designer choosing to use a custom single-
purpose, rather than a general-purpose, processor to implement part of a system’s
functionality may achieve several benefits, similar to some of those of the previous chapter.

First, performance may be fast, due to fewer clock cycles resulting from a customized data
path, and due to shorter clock cycles resulting from simpler functional units, less
multiplexors, or simpler control logic. Second, size may be small, due to a simpler data path
and no program memory. In fact, the processor may be faster and smaller than a standard one
implementing the same functionality, since we can optimize the implementation for our
particular task.

However, because we probably won't manufacture as many of the custom processor as a
standard processor, we may not be able to invest as much NRE, unless the embedded system
we are building will be sold in large quantities or does not have tight cost constraints. This
fact could actually penalize performance and size.

COMBINATIONAL LOGIC:

Transistors and Logic Gates:

A transistor is the basic electrical component of digital systems. Combinations of transistors
form more abstract components called logic gates, which designers primarily use when
building digital systems. Thus, we begin with a short description of transistors before
discussing logic design.

A transistor acts as a simple on/off switch. One type of transistor (CMOS -- Complementary
Metal Oxide Semiconductor) is shown in Figure 4.1(a). The gate (not to be confused with
logic gate) controls whether or not current flows from the source to the drain. When a high
voltage (typically +5 Volts, which we'll refer to as logic 1) is applied to the gate, the
transistor conducts, so current flows. When low voltage (which we'll refer to as logic 0,
typically ground, which is drawn as several horizontal lines of decreasing width) is applied to
the gate, the transistor does not conduct. We can also build a transistor with the opposite
functionality, illustrated in in Figure 4.1(b). When logic 0 is applied to the gate, the transistor
conducts, and when logic 1 is applied, the transistor does not conduct. Given these two basic
transistors, we can easily build a circuit whose output inverts its gate input, as shown in in
Figure 4.1(c). When the input x is logic 0, the top transistor conducts (and the bottom does
not), so logic 1 appears at the output F. We can also easily build a circuit whose output is
logic 1 when at least one of its inputs is logic 0, as shown in Figure 4.1(d). When at least one
of the inputs x and y is logic 0, then at least one of the top transistors conducts (and the
bottom transistors do not), so logic 1 appears at F. If both inputs are logic 1, then neither of
the top transistors conducts, but both of the bottom ones do, so logic 0 appears at F. Likewise,

we can easily build a circuit whose output is logic 1 when both of its inputs are logic 0, as
illustrated in Figure 4.1(e). The three circuits shown implement three basic logic gates: an
inverter, a NAND gate, and a NOR gate.

Figure 4.1: CMOS transistor implementations of some basic logic gates: (a) nMOS
transistor, (b) pMOS transistor, (c) inverter, (d) NAND gate, (e) NOR gate.

source +5V +5V +5V

gate | lConducts « _d b— v X —q

drain X F=x
F=yy v—g

(@) e F = (xy)
gaEE3| Sil:;cgiute=ov - Y _L X % l_ ¥

drain — =

na (C) (d) (e)

Figure 4.2: Basic logic gates

X X X
{_D_F x | F Df Xy Flx y |[F F [x y|F
0o 0 oo Y 0 0|0 ¥ 0 00
1|1 0 1|0 0 1 0 1|1
F=x F=xy I 0]0 F=xay |1 0 |1 F=x®y (1 0 |1
Driver AND 1 1]1 OR I S XOR 1 1|0
) X x E X

X Flx |F F |x y|F x y |F F [x y |[F
011 0 0|1 y 0 0|1 3 0 0|1

1|10 0 1 1 0 110 =xXy |0 1

F=x' F=(xy)' 1 01 F=(x+y)'| 1 0O XNOR P

Inverter NAND 1 110 NOR 1 110 E 1

Digital system designers usually work with logic gates, not transistors. Figure 4.2 describes 8
basic logic gates. Each gate is represented symbolically, with a Boolean equation, and with a
truth table. The truth table has inputs on the left, and output on the right. The AND gate
outputs 1 if and only if both inputs are 1. The OR gate outputs 1 if and only if at least one of
the inputs is 1. The XOR (exclusive-OR) gate outputs 1 if and only if exactly one of its two
inputs is 1. The NAND, NOR, and XNOR gates output the complement of AND, OR, and
XOR, respectively. As you might have noticed from our transistor implementations, the
NAND and NOR gates are actually simpler to build than AND and OR gates.

Basic Combinational Logic Design:

A combinational circuit is a digital circuit whose output is purely a function of its current
inputs; such a circuit has no memory of past inputs. We can apply a simple technique to
design a combinational circuit using our basic logic gates, as illustrated in Figure 4.3. We
start with a problem description, which describes the outputs in terms of the inputs. We
translate that description to a truth table, with all possible combinations of input values on the
left, and desired output values on the right. For each output column, we can derive an output
equation, with one term per row. However, we often want to minimize the logic gates in the
circuit. We can minimize the output equations by algebraically manipulating the equations.
Alternatively, we can use Karnaugh maps, as shown in the figure. Once we’ve obtained the
desired output equations (minimized or not), we can draw the circuit diagram.

Figure 4.3: Combinational logic design.

(a) Problem description (d) Minimized output equations

R
yis lifaisequalto 1, orbandcis be 00 01 11 10
equal to 1. zis 1 if b or ¢ is equal ol o 0 1 0
to 1, but not both. i

(b) Truth table

Inputs Outputs 2 b 00 o1 i 10
a b ¢ y VA a i =
0 0 0 0 0 of 0 1 0 |
0 0 1[0 1 -
0 1 0 0 1 il o a
0 1 1 0 S e
1 0 0 1 0 z=ab+b’c+bc’
1 0 1 1 1
1 1 0 1 1
)| 1 1 1 1

o)

(¢) Output equations ‘ DTJD* y

y =abc + ab'c' + ab'c + abc' +
abc Z

z=ab'c + abc'+ ab'c + abc’ +

abc —Do—

R-T Level Combinational Components:

Although we can design all combinational circuits in the above manner, large circuits would
be very complex to design. For example, a circuit with 16 inputs would have 2 16 , or 64K,
rows in its truth table. One way to reduce the complexity is to use components that are more
abstract than logic gates. Figure 4.4 shows several such combinational components. We now
describe each briefly

A multiplexor, sometimes called a selector, allows only one of its data inputs Im to pass
through to the output O. Thus, a multiplexor acts much like a railroad switch, allowing only
one of multiple input tracks to connect to a single output track. If there are m data inputs, then
there are log2(m) select lines S, and we call this an m-by-1 multiplexor (m data inputs, one
data output). The binary value of S determines which data input passes through; 00...00
means 10 may pass, 00...01 means I1 may pass, 00...10 means 12 may pass, and so on. For
example, an 8x1 multiplexor has 8 data inputs and thus 3 select lines. If those three select
lines have values of 110, then 16 will pass through to the output. So if I6 is 1, then the output
would be 1; if 16 is 0, then the output would be 0. We commonly use a more complex device
called an n-bit multiplexor, in which each data input, as well as the output, consists of n lines.
Suppose the previous example used a 4-bit 8x1 multiplexor. Thus, if 16 is 0110, then the
output would be 0110. Note that n does not affect the number of select lines.

Figure 4.4: Combinational components.
m-1) o |Kogn-b jo A B A B A B
SO - e - . T SO
— n-bit, mx | lognxn n-bit n-bit n bit, m function (g——
—— Multiplexor Decoder Adder Comparator ALU ——
S{log m) S(log m)
&) O(n-1) O100 carry sum less equal greater O
O= 00 =1 if 1=0..00 | sum=A+B less =1ifA<B O=Aop B
10 if §=0..00 01 =1 i 1=0..01 (first n bits) equal =1if A=B op determined
I1 if S=0..01 carry = (n+1)'th greater=1 if A>B by S.
On=1if I=1..11 bit of A+B
Imif S=1..11
enable input e carry-in inputCi status outputs
all O's 0 ife=0 sum=A+B+Ci CarTy, Zero. etc.
n-l 1 0
5 means | ...
n wires

. A decoder converts its binary input I into a one-hot output O. "One-hot" means that exactly
one of the output lines can be 1 at a given time. Thus, if there are n outputs, then there must
be log2(n) inputs. We call this a log2(n)xn decoder. For example, a 3x8 decoder has 3 inputs
and 8 outputs. If the input is 000, then the output O0 will be 1. If the input is 001, then the
output O1 would be 1, and so on. A common feature on a decoder is an extra input called
enable. When enable is 0, all outputs are 0. When enable is 1, the decoder functions as before.

An adder adds two n-bit binary inputs A and B, generating an n-bit output sum along with an
output carry. For example, a 4-bit adder would have a 4-bit A input, a 4-bit B input, a 4-bit
sum output, and a 1-bit carry output. If A is 1010 and B is 1001, then sum would be 0011 and
carry would be 1.

A comparator compares two n-bit binary inputs A and B, generating outputs that indicate
whether A is less than, equal to, or greater than B. If A is 1010 and B is 1001, then less would
be 0, equal would be 0, and greater would be 1.

An ALU (arithmetic-logic unit) can perform a variety of arithmetic and logic functions on its
n-bit inputs A and B. The select lines S choose the current function; if there are m possible
functions, then there must be at least log2(m) select lines. Common functions include
addition, subtraction, AND, and OR.

SEQUENTIAL LOGIC
FLIP-FLOPS:

A sequential circuit is a digital circuit whose outputs are a function of the current as well as
previous input values. In other words, sequential logic possesses memory. One of the most
basic sequential circuits is the flip-flop. A flip-flop stores a single bit. The simplest type of
flip-flop is the D flip-flop. It has two inputs: D and clock. When clock is 1, the value of D is
stored in the flip-flop, and that value appears at an output Q. When clock is 0, the value of D
is ignored; the output Q maintains its value. Another type of flip-flop is the SR flip-flop,
which has three inputs: S, R and clock. When clock is 0, the previously stored bit is
maintained and appears at output Q. When clock is 1, the inputs S and R are examined. If S is
1,a 1 is stored. If R is 1, a 0 is stored. If both are 0, there’s no change. If both are 1,
behaviour is undefined. Thus, S stands for set, and R for reset. Another flip-flop type is a JK
flip-flop, which is the same as an SR flip-flop except that when both J and K are 1, the stored
bit toggles from 1 to 0 or 0 to 1. To prevent unexpected behaviour from signal glitches, flip-
flops are typically designed to be edgetriggered, meaning they only pay attention to their non-
clock inputs when the clock is rising from O to 1, or alternatively when the clock is falling
from 1 to 0.

[
n $
load oy i :
—->§ Rn-!m shi bs n-bit Ciuﬂ»b n-bit
>l egister hift register > > C
! | ounter
| clear n \i\ I Q clear
Q Q
QO= - Q=Ish =
if clear=1, - Content shifted 0 if cle
) 2 ar=1, ’
Iif {Ic:ad~.l and clock=1, - I'stored in msb Qprev)+1 if counr=1
Q otherwise. and clock=1.

Figure 2.6: Sequential components, k

R-T-Level Sequential Components:

Just as we used more abstract combinational components to implement complex
combinational systems, we also use more abstract sequential components for complex
sequential systems. Figure above illustrates several sequential components, which we now
describe.

A register stores n bits from its n-bit data input I, with those stored bits appearing at its output
O. A register usually has at least two control inputs, clock and load. For a rising-edge-
triggered register, the inputs I are only stored when load is 1 and clock is rising from 0 to 1.
The clock input is usually drawn as a small triangle, as shown in the figure. Another common
register control input is clear, which resets all bits to 0, regardless of the value of . Because
all n bits of the register can be stored in parallel, we often refer to this type of register as a
parallel-load register, to distinguish it from a shift register.

A shift register stores n bits, but these bits cannot be stored in parallel. Instead, they must be
shifted into the register serially, meaning one bit per clock edge. A shift register has a one-bit
data input I, and at least two control inputs clock and shift. When clock is rising and shift is 1,
the value of I is stored in the (n)’th bit, while the (n)’th bit is stored in the (n-1)’th bit, and
likewise, until the second bit is stored in the first bit. The first bit is typically shifted out,
meaning it appears over an output Q.

A counter is a register that can also increment (add binary 1) to its stored binary value. In its
simplest form, a counter has a clear input, which resets all stored bits to 0 and a count input,
which enables incrementing on the clock edge. A counter often also has a parallel load data
input and associated control signal. A common counter feature is both up and down counting
(incrementing and decrementing), requiring an additional control input to indicate the count
direction.

The control inputs discussed above can be either synchronous or asynchronous. A
synchronous input’s value only has an effect during a clock edge. An asynchronous input’s
value affects the circuit independent of the clock. Typically, clear control lines are
asynchronous.

Sequential Logic Design:

Sequential logic design can be achieved using a straightforward technique, whose steps are
illustrated in Figure 4.1. We again start with a problem description. We translate this
description to a state diagram. We describe state diagrams further in a later chapter. Briefly,
each state represents the current "mode" of the circuit, serving as the circuit’s memory of past
input values. The desired output values are listed next to each state. The input conditions that
cause a transition from one state to another are shown next to each arc. Each arc condition is
implicitly AND with a rising (or falling) clock edge. In other words, all inputs are
synchronous. State diagrams can also describe asynchronous systems, but we do not cover
such systems in this book, since they are not common.

We will implement this state diagram using a register to store the current state, and
combinational logic to generate the output values and the next state. We assign each state
with a unique binary value, and we then create a truth table for the combinational logic. The
inputs for the combinational logic are the state bits coming from the state register, and the

external inputs, so we list all combinations of these inputs on the left side of the table. The
outputs for the combinational logic are the state bits to be loaded into the register on the next
clock edge (the next state), and the external output values, so we list desired values of these
outputs for each input combination on the right side of the table. Because we used a state
diagram for which outputs were a function of the current state only, and not of the inputs, we
list an external output value only for each possible state, ignoring the external input values.
Now that we have a truth table, we proceed with combinational logic design as described
earlier, by generating minimized output equations, and then drawing the combinational logic
circuit.

Figure 4.1: Sequential logic design.

(a) Problem description (e) Minimized output equations
. Q1Qo
'You want to construct a clock divider. 11 00 01 11 10
Slow down your pre-existing clock so »
that you output a 1 for every four clock 0 0 0 T !
cycles. 2L 1
| o | 755l & 1
0 (b) State diagram a 5 A ,:
a=
11 =Q1'Q0a + Qla’ + Q1Q0
x=0 x=1 10 Q1QO
00 01 B! 10
a=l
7 S [Sty
= a=1 a=1 0 0 1 0
a=0

10 =Q0a” + Q0¥a

(c) Implementation model

% 5 00 01 1 10
a | Combinational logic T’ "
—p 5 R
= 0 o |: 0
I

Q1 T Qo0 T A oo o |1
X x=Q1Q0

State register

(f) Combinational Logic

11 T 10 t a |—
) X
(d) State table (Moore-type)
Inputs ‘ Outputs 11
QI Q0 a | N 10 x)
0 0 0 0 0 0
P T (PR
0 1 0| 0 1 0
0 1 1 | 1 0 |
i 0 0] 1 o o | Do
B0 S SN U S S 10
IR R Y S , o
1 1 1/0 o .

Q1 QO

CUSTOM SINGLE-PURPOSE PROCESSOR DESIGN:

We now have the knowledge needed to build basic processor. A basic processor consists of a
controller and data path shown in below figure. The data path stores and manipulates a

/
external ex(ti;mal ‘ ‘ i ‘
control ta
Sigels inpts controller datapath
; datapath b next-state
§ control ‘ ‘ and & | registers
controller | inputs | datapath control | g - - |
' > / logic 1
4 .
atapall’ 4 {
' state functional
r* register units
external 4
data X /K
outputs .
P v, X
Figure 2.8: A basic processor: (a) controller and datapath, (b) 2 view inside the controller and datapath.
3

svstem’s data. Examples of data in an embedded system include binary numbers representing
&xternal conditions like temperaturc or speed, characters (o be displayed on a s;recn. or a
digitized photographic image to be stored and compressed. The datapath contains rcglslc?'
units. functional units, and connection units like wires and multiplexors. The datapalh can pc
configured to read data from particular registers, feed that data through funchgnal units
configured to carry out particular operations like add or shift. and store the operation results
back into particular registers. A controller carries out such configuration of th.e datapath. It
sets the datapath control inputs. like register load and multiplexor sclect mgnznls.i of the
register units. functional units. and conncction units to obtain the desired configuration at a
ﬁauhicular time. It monitors external control inputs as well as datapath control outputs. known_
“as status signals. coming from functional units. and it sets external control outputs as well.

We can apply the above combinational and sequential logic design techniques to build data
path components and controllers. Therefore, we have nearly all the knowledge we need to
build a custom single-purpose processor for a given program, since a processor consists of a
controller and a data path. We now describe a technique for building such a processor.

We begin with a sequential program we must implement. Figure 4.3 provides a example
based on computing a greatest common divisor (GCD). Figure 4.3(a) shows a black-box
diagram of the desired system, having x i and y i data inputs and a data output d 1. The
system’s functionality is straightforward: the output should represent the GCD of the inputs.
Thus, if the inputs are 12 and 8, the output should be 4. If the inputs are 13 and 5, the output
should be 1. Figure 4.3(b) provides a simple program with this functionality. The reader
might trace this program’s execution on the above examples to verify that the program does
indeed compute the GCD.

To begin building our single-purpose processor implementing the GCD program, we first
convert our program into a complex state diagram, in which states and arcs may include
arithmetics expressions, and these expressions may use external inputs and outputs or
variables. In contrast, our earlier state diagrams only included boolean expressions, and these

expressions could only use external inputs and outputs, not variables. Thus, these more
complex state diagram looks like a sequential program in which statements have been
scheduled into states.

We can use templates to convert a program to a state diagram, as illustrated in Figure 4.2.
First, we classify each statement as an assignment statement, loop statement, or branch (if-
then-else or case) statement. For an assignment statement, we create a state with that
statement as its action. We add an arc from this state to the state for the next statement,
whatever type it may be. For a loop statement, we create a condition state C and a join state J,
both with no actions. We add an arc with the loop’s condition from the condition state to the
first statement in the loop body. We add a second arc with the complement of the loop’s
condition from the condition state to the next statement after the loop body. We also add an
arc from the join state back to the condition state. For a branch statement, we create a
condition state C and a join state J, both with no actions. We add an arc with the first
branch’s condition from the condition state to the branch’s first statement. We add another
arc with the complement of the first branch’s condition AND with the second branches
condition from the condition state to the branches first statement. We repeat this for each
branch. Finally, we connect the arc leaving the last statement of each branch to the join state,
and we add an arc from this state to the next statement’s state.

Using this template approach, we convert our GCD program to the complex state diagram of
Figure 4.3(c). We are now well on our way to designing a custom single-purpose processor
that executes the GCD program. Our next step is to divide the functionality into a data path
part and a controller part, as shown in Figure 4.4. The data path part should consist of an
interconnection of combinational and sequential components. The controller part should
consist of a basic state diagram, i.e., one containing only boolean actions and conditions.

We construct the datapath through a four-step process:

1. First, we create a register for any declared variable. In the example, these are x and y. We
treat an output port as having an implicit variable, so we create a register d and connect it to
the output port. We also draw the input and output ports.

2. Second, we create a functional unit for each arithmetic operation in the state diagram. In
the example, there are two subtractions, one comparison for less than, and one comparison
for inequality, yielding two subtractors and two comparators, as shown in the figure.

3. Third, we connect the ports, registers and functional units. For each write to a variable in
the state diagram, we draw a connection from the write’s source (an input port, a functional
unit, or another register) to the variable’s register. For each arithmetic and logical operation,
we connect sources to an input of the operation’s corresponding functional unit. When more
than one source is connected to a register, we add an appropriately-sized multiplexor.

Figure 4.3: Example program -- Greatest Common Divisor (GCD): (a) black-box view,
(b) desired functionality, (c) state diagram

A

GCD

(a)

:vectorN X.y:
s while (1) {
while (!go_i):
=5 & ¥
y=y_i;
while (x!=y) |
if (x<y)
Y=y-xi
else
X=X-Y;
)
9: d_o=x:

}

el S ol it =

%

(b)

4. Finally, we create a unique identifier for each control input and output of the data path
components.

Now that we have a complete data path, we can build a state diagram for our controller. The
state diagram has the same structure as the complex state diagram. However, we replace
complex actions and conditions by boolean ones, making use of our data path. We replace
every variable write by actions that set the select signals of the multiplexor in front of the
variable’s register’s such that the write’s source passes through, and we assert the load signal
of that register. We replace every logical operation in a condition by the corresponding
functional unit control output.

Figure 4.2: Templates for creating a state diagram from a program.

Assignment Loop Branch
statement statement statement
a=bh while (cond) { if (c1)
next statment loop-body- cl stmts
statements else if c2
} ¢2 stmts
next statement else

other stmts
next statement

!cond

i ‘ cond

next i loop-body-
statement : statements

J:[]_

next -
statement '

next
Statement

We can then complete the controller design by implementing the state diagram using our
sequential design technique described earlier. Figure 4.4 shows the controller implementation
model, and Figure 4.5 shows a state table.

Note that there are 7 inputs to the controller, resulting in 128 rows for the table. We reduced
rows in the state table by using don’t cares for some input combinations, but we can still see
that optimizing the design using hand techniques could be quite tedious. For this reason,
computer-aided design (CAD) tools that automate the combinational as well as sequential
logic design can be very helpful.

Figure 4.4: Example after splitting into a controller and a datapath.
go_i I i y_i |
Controller 7 ‘ r i F Datapath
0000 1: x_sel | . .
n-bit 2x1] | n-bit 2x1
ser * '
0001 2: <14
G o T T O
_Id | |
— VE VY[V V[V
= < subtractor subtractor
0011 3: S:x!=y| 6:x<y |8: X-y I7: y-X
X_n
x_lty 9:d
i *d_o
0101 5: =~
Controller implementation model
0110 6: iy i
x_It_y=1 z Combinfnional y_sel >
logic .
v sel =1 | of x_sel=1 x_Id
)ld 1 x_ld=1 y_Id »
0111 1000 x_neq _y’
1001 g.J- ‘——x iy
FemS
d_1d
1010 5-J:
Q3fQ%Ql$Q0+
1100 1-J: - State regislel'
BTuTutw

Also, note that we could perform significant amounts of optimization to both the data path
and the controller. For example, we could merge functional units in the data path, resulting in
fewer units at the expense of more multiplexors. We could also merge states in the data path.

Figure 4.5: State table for the GCD example.

State table
Inputs Outputs

': > o ¥ < x e A
89922:&‘35:5% 2 = = '=

E e &
0.0, 0 0 = = %T0 0 0 1 _X X 0 0_0
g 0O © 1 b * | 9 K I g X X 0 9 @
L. R .S Sl 8. B NS . AR e . B
o010 .t L0 0.0 1 X 2000
Dol atee i P L 0 0, 0 X L 0. 0
L T WAL T B SO, .. 0 s (| S O o | FH Y|
0 1 0 1 O * ¥ 1 0 1 1 X X 0 0 0
0 1 @8 1 4 % =)0 { 1 6 X X 0 06 0
0 1 1 ¢ = O % 1 0 0 0 X X 0 6 90
O 1 L 9 % 1 &g 1 4 1 X X0 0 O
NN L e T O e
) T T N S L T i G i < W G
B RN O . SO« L, S S T T W WL R
B O R N N T 01| 5. OO OO SO NN W V. . . A
o B d o LD B B P R O Gt
A8 Y e e B B X000
i S O WSl I, SO T | N S O
1 1 1 1 * * *10 0 0 0 X X 0 o0 o
* - indicates all possible combinations of 0's and 1’s
X -indicates don’t cares

Remember that we could alternatively implement the GCD program by programming a
microcontroller, thus eliminating the need for this design process, but possibly yielding
slower and bigger design.

RT-Level Custom Single-Purpose Processor Design

Section 2.4 described a basic technique 'for@'erﬁng a sequential program into a custom
single-purpose processor. by first converting the program to an FSMD using the provided
templates for each language construct. splitting the FSMD into a simple FSM controlling 2
datapath, and performing sequential logic design on the FSM. However, in many cases. w¢
prefer not to start with a program. but instead directly with an FSMD. The reason is that often
the cycle-by-cycle timing of a system is central to the design, but programming languages
don't typically support cycle-by-cycle description. FSMDs, in contrast, make cycle-by-cycle
timing explicit. ,

For example. consider the design problem in Figure 2.13(a). We want one device (the
sender) to send an 8-bit number to another device (the receiver). The problem is that while the
receiver can receive all 8 bits at once. the sender sends 4 bits at a time: first it sends the
low-order 4 bits. then the high-order 4 bits. So we need to design a bridge that will enable to

two devices to communicate.

(2)

e Bridge =
. rdy_mn A single-purpose processor that rdy out i
k] converts two 4-bit inputs, arriving one - '3
5 clock at a ime over data in along witha G
vi rdy_in pulse, into one 8-bit output on g
: > data_out along with a rdy out pulse -t
data_in(4) data_out(8)
rdy_in=0 Bridge rdy_in=1
1wyl a—
— - WaitFirstd - RecFirst4Start RecFirst4End
— ; data_lo=data_in)
L _ T
rdy_in=0 rdy_in=0 rdv in=1
7 | y rdy_in=1 ¥ |
([WaitSecomdd | RecSecond4Start RecSecond4End
data_hi=data_in
\ J - |
r rdy_in=0 -)
puts
(" SendsStart , rdy in: bit; data_in: bit[4];
data_out=data- hi Send8End - Outputs
- & data_lo rdy_out=0 rdy_out: bit; data_out:bit[8]
rdy_out=1 +| Variables
— data_lo, data_hi: bit[4];
(b)

Figure 2.13: RT-level custom single-purpose processor design example: (a) problem specification, (b) FSMD.

might attack this problem at different levels of abstraction. One
ng in terms of registers, multiplexors, and flip-flops. Another might
as a sequential program. But perhaps the most natural level is to
describe the bridge as an FSMD, as shown in Figure 2.13(b). We begin by creating a state
WaitFirst4 that waits for the. first 4 bits, whose presence on data_in will be indicated by a
pulse on rdy_in. Once the-pulse is detected, we transition to a state RecFirst4Start that saves
the contents of data_in in a variable called data_lo. We then wait for the pulse on rdy_in to
end, and then wait for the other 4 bits, indicated by a second pulse on rdy_in. We save the
contents of data_in in a variable called data_hi. After waiting for the second pulse on rdy _in
to end, we write the full 8 bits of data to the output data_out, and we pulse rdy_out. We

Different designers
designer might start thinki
try to describe the bridge

Bridge
(a) Controller
rdy_in=0 rdy_in=1
] | rdy_in=1 v |
—> WaitFirst4 RecFirst4Start RecFirst4End
—> data_lo_ld=1
|
rdy_in=0 rdy_in=0 rdy in=1
\ | y rdy_in=1 f |
WaitSecond4 RecSecond4Start RecSecond4End
- data_hi_ld=1
‘ =1
Send8Start Send8End
data_out_ld=1 =
~ wdy out=1 rdy_out=0
]
| rdyin 44 " rdy_out
Ik +
data_in(4) data_out
T
. o '.9.1 EI ‘ Y =)
= k = b . " - i - l
;% gl _:l—bl £ data_hl J | ,dm_lo.“q——gl
% 5|8 v ! z
S Emewr)
(b) Datapath |

Figure 2.14: RT-level custom single-purpose processor design example continued: (a) controller, (b) datapath

assume we are builsiing a synchronous circuit, so the brid
FSMD, every transition is implicitly ANDed with the clock.

We apply the same methods as before to convert thi MD
. 3 1 F
ksaeetsn, 2T s buildsa SMD 1o a controller and a datapath

i : datapath, shown in Figure 2.14(b).
using the four-step process outlined before. We add registers for data hi and daiur,o 4 ‘5,2"
as for the output data_out. We don’t add any functional units since there are ng arithmetic
operations. We connect the registers according to the assignments in the FSMD; no
multiplexors are necessary. W e :

¢ Create unique identifiers for th i -
Having completed the datapath, we convent the FSMD into an FSI\Z tileagtlit:ers fl(:: [;Z:a;igﬂrlml:s
"2 Z2vent the FSMD into an FSM that uses the datapath. s _

ge has a clock input — in our

shown in Figure 2 14(a). This conversion requires only three simple changes. as shown n
bold 1n the figure Having obtamned the FSM. we can convert the FSM into a state-regisier and
combinatonal logic using the same techmque as in Figure 2.7, we omit this conversion here

Tlus example demonstrates how a problem that consists mostly of waiting for or making
changes on signals. rather than consisting mostly of performing computations on data, might
most casily be descnibed as an FSMD. The FSMD would be even more appropriate if specific
numbers of clock cycles were specified (c.g.. the input pulse would be held high exactly two
cycles and the output pulse would have to be held high for three cycles) On the other hand. if
a problem consists mostly of an algonthm with lots of computations, the detailed tming of
which are not especially important. such as the GCD computation in the carlier example. then
a program might be the best starting point.

The FSMD level is often referred 1o as the register-transfer (RT) level. since an FSMD
describes in each state which registers should have their data transferred to which other
registers. with that data possibly being transformed along the way. The RT-level is probably
the most common starting point fow%@ﬂécsiw&

Some custom single-purpose processors do not manipulate much data. These processors
consist primarily of a controller, with perhaps no datapath or a trivial one with just a couple
registers or counters, as in our bridge example of Figure 2.14. Likewise. other custom
single-purpose processors do not exhibit much control. These processors consist primanly of
a datapath configured to do one or a few things repeatedly, with no controller or a trivial onc

with just a couple flip-flops and gates. Nevertheless. we can still think of these circuits as
Processors.

Optimizing Custom Single-Purpose Processors

You may have noticed in the GCD example of Figure 2.11 that we ignored scveral
opponun—iu'es to simplify the resulting design. For example, the FSM had several states that
obviously do nothing and could have been removed. Likewise, the datapath has two adders
whereas one would have been sufficient. We intentionally did not perform such optimizations
so as not to detract from the basic idea that programs can be converted to custom
single-purposc processors through a series of straightforward steps. However, when we really
design such processors, we will usually also want to optimize them whenever possible.
(Qp_limiyation is the task of making design metric values the be,wiblt:lOplinumlion is an
extensive subject, and we do not intend to cover it in depth here. Instead, we point out some
simple optimizations that can be applied, and refer the reader to textbooks on the subject.

Optimizing the Original Program _
Let us start with optimizing the initial program, such as the GCD program in Figure 2.9. At
this level,\we can analyze the number of computations and size of variables that are required

by the algorithm. In other words, we can analyze the algorithm in terms of time complexity
and space complexity. We can try to develop alternative algorithms that are more efficient. In

—

y ation %. w .
the GCD example, if we assume we can make use of a modulo operation /o.'“c could wrige
an algorithm that would use fewer steps. In particular, we could use the following algorit,-

int X, Yy, EIs

while (1) |
while ('go_i)i: ' '
if (e i >=y i) {x=x iy y=y 17}

else {x=y i; y=x_1i;) // x must be the larger number
while (y '= 0) |

r=x2%y; .
X =y
y = &j

]

d o= ¥x;

Let us compare this second algorithm with the carlier one when computing the GCD of
42 and 8. The earlier algorithm would step through its inner loop with x and y values as
follows: (42.,8), (34,8), (26,8), (18.8), (10,8), (2,8), (2,6), (2,4), (2,2), thus outputting 2. The
second algorithm would step through its inner loop with x and y values as follows: (42.8),
(8.2), (2,0), thus outputting 2. The second algorithm is far more efficient in terms of time.
Analysis of algorithms and their efficient design is a widely researched area. The choice of
algorithm can have perhaps the biggest impact on the efficiency of the designed processor.

Optimizing the FSMD

LOnce an algorithm is settled upon, we convert the program describing that algorithm to an
FSMD. Use of the template-based method introduced in this chapter will result in a rather
inefficient FSMD. In particular, many states in the resulting FSMD could likely be merged
into fewer states.

\Scheduling is the task of assigning operations from the original program to states in an
FSMD. The scheduling obtained using the template-based method can be improved. Consider
the original FSMD for the GCD, which is redrawn in Figure 2.15(a). State 1 is clearly not
necessary since its outgoing transitions have constant values. States 2 and 2-J can be merged
into a single state since there are no loop operations in between them. States 3 and 4 can be
merged since they perform assignment operations that arc independent of one another. States
5 and 6 can be merged. States 6-J and 5-J can be eliminated, with the transitions from states 7
and 8 pointing directly to state 5. Likewise, state 1-J can be climinated. The resulting reduced
FSMD is shown in Figure 2.15(b). We reduced the FSMD from thirteen states to only Six
states. Be careful, though, to avoid the common mistake of assuming that a variable assigned
in a state can have the newly assigned value read on an outgoing arc of that state!

The original FSMD could also have had too few states to be efficient in terms of
hardware size. Suppose a particular program statement had the operation a = b *e "‘_‘1 3 "r'
Generating a single state for this operation will require us to use three multipliers ea‘;\‘ 31[1'15
datapath. However. multipliers are expensive, and thus we might instead want to br

(a)

(b)
2:
3] x=x1
\
4.1 Y=y)
\ (v!=v
s ‘.(.\.—V) 5:
x!=y X<y g X>Y
6: 7:[y=y—x]8:(x=xﬂ
X<y g l(x<y) —
Ty=y-x] 8[x=x-y] 9;
6-I: _
5-1: e
9.

Figure 2.15: Optimizing the FSMD for the GCD example: (a) on'gi;:al FSMD and optimizations, and (b) optimized
FSMD.

operation down into smaller operations, liketl =b *c, 12 =d*e,and a = 1 * 12, with each
smaller operation having its own state. Thus, only one multiplier would be needed in the
datapath, since the three multiplications could share multiplier; sharing will be discussed in
the next section.

In this scenario, we assumed that the timing of output operations could be changed. For
example, the reduced FSMD will generate the GCD output in fewer clock cycles than the
original FSMD. In many cases, changing the timing is not acceptable. For example, in our
carlier clock divider example, changing the timing clearly would not be acceptable, since we

intended for the cycle-by-cycle behavior of the original FSM to be preserved during design

Thus, when optimizing the FSMD, a design must be aware of whether output timing may or
may not be modified.

Optimizing the Datapath

In our four-step datapath approach, we created a unique functional unit for every arithmetic
operation in the FSMD. However, such a one-to-one-mapping is ofien not necessary. Many
arithmetic operations in the FSMD can share a single functional unit if that functional unit
supports those operations. and those operations occur in different states. In the GCD example,
states 7 and 8 both performed subtractions. In the datapath of Figure 2.11, each -subtraction
got its own subtractor. Instead, we could use a single subtractor and usc multiplexors to
choose whether the subtractor inputs are x and y. or instead y and x.

Furthermore. we often have a number of different RT components from which we can
build our datapath. For example, we have fast and slow adders available. We may have
multifunction components, like ALUs, also. Allocation is the task of choosing which RT
components to use in thie datapath. Binding is the task of mapping operations from the FSMD
to allocated components.

Scheduling, allocation, and binding are highly interdependent. A given schedule will
affect the range of possible allocations, for example. An allocation will affect the range of

possible schedules. And so on. Thus, we sometimes want to consider these tasks
simultaneously.

Optimizing the FSM

Designing a sequential circuit to implement an FSM also provides some opportunities for
optimization, namely, state encoding and state minimization.

State encoding is the task of assigning a unique bit pattern to each state in an FSM. Any
assignment in which the encodings are umque will work properly, but the size of the state
register as well as the size of the combinational logic may differ for different encodings. For
example, four states 4, B, C, and D can be encoded as 00, 01, 10, and 11, respectively.
Alternatively, those states can be encoded as 11, 10, 00, and 01, respectively. In fact, for an
FSM with 7 states where 7 is a power of 2, there are n! possible encodings. We can see this
casily if we treat encoding as an ordering problem — we order the states and assign a
straightforward binary encoding. starting with 00...00 for the first state. 00...01 for the second
state, and so on. There are n! possible orderings of » items, and thus n! possible encodings. n!
is a very large number for large n, and thus checking each encoding to determine which yields
the most efficient controller is a hard problem. Even more encodings are possible, since We
can usc more than log.(n) bits to encode # states, up to # bits to achieve a one-hot encoding.
CAD tools arc therefore a great aid in scarching for the best encoding,

State minimization is the task of merging equivalent states into a single state. Two statcs
are equivalent if, for all possible input combinations, those two states generate the same

_outpuls and transition to the same next state. Such states are clearly equivalent, since merging
them will yield exactly the same output behavior.

The state merging that we did when optimizing our FSMD was not the same as state
minimization as defined here. The reason is that our state merging in the FSMD actually

changed the output behavior, in particular the output timing, of the FSMD. Typically. by the
time we arrive at an FSM. we assume output timing cannot be changed. State minimization

does not change the output behavior in any way.

ESD UNIT-3
GENERAL PURPOSE PROCESSORS: SOFTWARE

BASIC ARCHITECHTURE:

A general-purpose processor, sometimes called a CPU (Central Processing Unit) or a
microprocessor, consists of a data path and a controller, tightly linked with a memory. We
now discuss these components briefly. Figure 2.1 illustrates the basic architecture.

Figure 2.1: General-purpose processor basic architecture.

Pr ocessor
Controller D atapath
C ontrol
Next-state and control /Status ALU
logic
PC IR Registers
V.
7
1/0 v
Memory

Datapath: The data path consists of the circuitry for transforming data and for storing
temporary data. The data path contains an arithmetic-logic unit (ALU) capable of
transforming data through operations such as addition, subtraction, logical AND, logical OR,
inverting, and shifting. The ALU also generates status signals, often stored in a status register
(not shown), indicating particular data conditions. Such conditions include indicating whether
data is zero, or whether an addition of two data items generates a carry. The data path also
contains registers capable of storing temporary data. Temporary data may include data
brought in from memory but not yet sent through the ALU, data coming from the ALU that
will be needed for later ALU operations or will be sent back to memory, and data that must
be moved from one memory location to another. The internal data bus is the bus over which
data travels within the data path, while the external data bus is the bus over which data is
brought to and from the data memory.

We typically distinguish processors by their size, and we usually measure size as the bit-
width of the data path components. A bit, which stands for binary digit, is the processor’s
basic data unit, representing either a 0 (low or false) or a 1 (high or true), while we refer to 8
bits as a byte. An N-bit processor may have N-bit wide registers, an N-bit wide ALU, an N-
bit wide internal bus over which data moves among data path components, and an N-bit wide
external bus over which data is brought in and out of the data path. Common processor sizes

include 4-bit, 8-bit, 16-bit, 32-bit and 64-bit processors. However, in some cases, a particular
processor may have different sizes among its registers, ALU, internal bus, or external bus, so
the processor-size definition is not an exact one. For example, a processor may have a 16-bit
internal bus, ALU and registers, but only an 8-bit external bus to reduce pins on the
processor's IC.

CONTROLLER: The controller consists of circuitry for retrieving program instructions,
and for moving data to, from, and through the data path according to those instructions. The
controller contains a program counter (PC) that holds the address in memory of the next
program instruction to fetch. The controller also contains an instruction register (IR) to hold
the fetched instruction. Based on this instruction, the controller’s control logic generates the
appropriate signals to control the flow of data in the data path. Such flows may include
inputting two particular registers into the ALU, storing ALU results into a particular register,
or moving data between memory and a register. Finally, the next-state logic determines the
next value of the PC. For a non-branch instruction, this logic increments the PC. For a branch
instruction, this logic looks at the data path status signals and the IR to determine the
appropriate next address.

The PC’s bit-width represents the processor’s address size. The address size is independent of
the data word size; the address size is often larger. The address size determines the number of
directly accessible memory locations, referred to as the address space or memory space. If the
address size is M, then the address space is 2 M. Thus, a processor with a 16-bit PC can
directly address 2 16 = 65,536 memory locations. We would typically refer to this address
space as 64K, although if 1K = 1000, this number would represent 64,000, not the actual
65,536. Thus, in computer-speak, 1K = 1024.

For each instruction, the controller typically sequences through several stages, such as
fetching the instruction from memory, decoding it, fetching operands, executing the
instruction in the data path, and storing results. Each stage may consist of one or more clock
cycles. A clock cycle is usually the longest time required for data to travel from one register
to another. The path through the data path or controller that results in this longest time (e.g.,
from a data path register through the ALU and back to a data path register) is called the
critical path. The inverse of the clock cycle is the clock frequency, measured in cycles per
second, or Hertz (Hz). For example, a clock cycle of 10 nanoseconds corresponds to a
frequency of 1/10x10 -9 Hz, or 100 M Hz. The shorter the critical path, the higher the clock
frequency. We often use clock frequency as one means of comparing processors, especially
different versions of the same processor, with higher clock frequency implying faster
program execution (though this isn’t always true).

MEMORY: While registers serve a processor’s short term storage requirements, memory
serves the processor’s medium and long-term information-storage requirements. We can
classify stored information as either program or data. Program information consists of the
sequence of instructions that cause the processor to carry out the desired system functionality.
Data information represents the values being input, output and transformed by the program.

We can store program and data together or separately. In a Princeton architecture, data and
program words share the same memory space. In a Harvard architecture, the program
memory space is distinct from the data memory space. Figure 2.2 illustrates these two
methods. The Princeton architecture may result in a simpler hardware connection to memory,
since only one connection is necessary. A Harvard architecture, while requiring two
connections, can perform instruction and data fetches simultaneously, so may result in
improved performance. Most machines have a Princeton architecture. The Intel 8051 is a
well-known Harvard architecture.

Figure 2.2: Two memory architectures: (a) Harvard, (b) Princeton.
Processor Processor
Program Data Memory
memory memory (program and data)
(a) (b)

Memory may be read-only memory (ROM) or readable and writable memory (RAM). ROM
is usually much more compact than RAM. An embedded system often uses ROM for
program memory, since, unlike in desktop systems, an embedded system’s program does not
change. Constant-data may be stored in ROM, but other data of course requires RAM.

Memory may be on-chip or off-chip. On-chip memory resides on the same IC as the
processor, while off-chip memory resides on a separate IC. The processor can usually access
on-chip memory must faster than off-chip memory, perhaps in just one cycle, but finite IC
capacity of course implies only a limited amount of on-chip memory.

To reduce the time needed to access (read or write) memory, a local copy of a portion of
memory may be kept in a small but especially fast memory called cache, as illustrated in
Figure 2.3. Cache memory often resides on-chip, and often uses fast but expensive static
RAM technology rather than slower but cheaper dynamic RAM (see Chapter 5). Cache
memory is based on the principle that if at a particular time a processor accesses a particular
memory location, then the processor will likely access that location and immediate
neighbours of the location in the near future. Thus, when we first access a location in
memory, we copy that location and some number of its neighbours (called a block) into
cache, and then access the copy of the location in cache. When we access another location,
we first check a cache table to see if a copy of the location resides in cache. If the copy does
reside in cache, we have a cache hit, and we can read or write that location very quickly. If
the copy does not reside in cache, we have a cache miss, so we must copy the location’s
block into cache, which takes a lot of time. Thus, for a cache to be effective in improving
performance, the ratio of hits to misses must be very high, requiring intelligent caching
schemes. Caches are used for both program memory (often called instruction cache, or I-
cache) as well as data memory (often called D-cache).

Figure 2.3: Cache memory.

Fast/expensive technology,
usually on the same chip

Processor

Slower /cheaper technology,
usually on a different chip

OPERATION:

Instruction execution: We can think of a microprocessor’s execution of instructions as
consisting of several basic stages:

1. Fetch instruction: the task of reading the next instruction from memory into the instruction
register.

2. Decode instruction: the task of determining what operation the instruction in the instruction
register represents (e.g., add, move, etc.).

3. Fetch operands: the task of moving the instruction’s operand data into appropriate
registers.

4. Execute operation: the task of feeding the appropriate registers through the ALU and back
into an appropriate register.

5. Store results: the task of writing a register into memory. If each stage takes one clock
cycle, then we can see that a single instruction may take several cycles to complete.

Pipelining: Pipelining is a common way to increase the instruction throughput of a
microprocessor. We first make a simple analogy of two people approaching the chore of
washing and drying 8 dishes. In one approach, the first person washes all 8 dishes, and then
the second person dries all 8 dishes. Assuming 1 minute per dish per person, this approach
requires 16 minutes. The approach is clearly inefficient since at any time only one person is
working and the other is idle. Obviously, a better approach is for the second person to begin
drying the first dish immediately after it has been washed. This approach requires only 9
minutes -- 1 minute for the first dish to be washed, and then 8 more minutes until the last dish
is finally dry. We refer to this latter approach as pipelined.

Each dish is like an instruction, and the two tasks of washing and drying are like the five
stages listed above. By using a separate unit (each akin a person) for each stage, we can
pipeline instruction execution. After the instruction fetch unit fetches the first instruction, the
decode unit decodes it while the instruction fetch unit simultaneously fetches the next
instruction. The idea of pipelining is illustrated in Figure 2.4. Note that for pipelining to work

well, instruction execution must be decomposable into roughly equal length stages, and
instructions should each require the same number of cycles.

Figure 2.4: Pipelining: (a) non-pipelined dish cleaning, (b) pipelined dish cleaning, (c)

\X/ pipelined instruction execution.
Wash [1]2]3[4]5]6]7]8] [1]2]3]4]5][6]7]8]
Non-pipelined Pipelined
\kDry L112[3[4]5]6]7]8] [112[3f4]5]6]7]8]
S B T G I s B [) S e e e 2 —t—t—t—t—1—1p
(a) Time (b) Time
Fetch-instr. [1]2[3]4]5]6]7]8]
Decode [1]2][3]4]5]6]7]8]
Fetch ops. (1]2]3]4]|5]6]7]8] Pipelined
Execute [1]12]3]4]5]6]7]8]
Storeres. [1]2]3[4]5]6[7]8]
111>
(c) Time

Branches pose a problem for pipelining, since we don’t know the next instruction until the
current instruction has reached the execute stage. One solution is to stall the pipeline when a
branch is in the pipeline, waiting for the execute stage before fetching the next instruction.
An alternative is to guess which way the branch will go and fetch the corresponding
instruction next; if right, we proceed with no penalty, but if we find out in the execute stage
that we were wrong, we must ignore all the instructions fetched since the branch was fetched,
thus incurring a penalty. Modern pipelined microprocessors often have very sophisticated
branch predictors built in.

PROGRAMMER'’S VIEW:

A programmer writes the program instructions that carry out the desired functionality on the
general-purpose processor. The programmer may not actually need to know detailed
information about the processor’s architecture or operation, but instead may deal with an
architectural abstraction, which hides much of that detail. The level of abstraction depends on
the level of programming. We can distinguish between two levels of programming. The first
is assembly-language programming, in which one programs in a language representing
processor-specific instructions as mnemonics. The second is structured-language
programming, in which one programs in a language using processorindependent instructions.
A compiler automatically translates those instructions to processor-specific instructions.
Ideally, the structured-language programmer would need no information about the processor
architecture, but in embedded systems, the programmer must usually have at least some
awareness, as we shall discuss.

Actually, we can define an even lower-level of programming, machine-language
programming, in which the programmer writes machine instructions in binary. This level of

programming has become extremely rare due to the advent of assemblers. Machinelanguage
programmed computers often had rows of lights representing to the programmer the current
binary instructions being executed. Today’s computers look more like boxes or refrigerators,
but these do not make for interesting movie props, so you may notice that in the movies,
computers with rows of blinking lights live on.

Instruction set: The assembly-language programmer must know the processor’s instruction
set. The instruction set describes the bit-configurations allowed in the IR, indicating the
atomic processor operations that the programmer may invoke. Each such configuration forms
an assembly instruction, and a sequence of such instructions forms an assembly program

Figure 2.5: Addressing modes.
Addressing . Register-file Memory
mode O perand field contents contents
Immediate | Data I
Reaqister- :
Teach | Register address |—p» D ata
R egister :
S et I Register address]_y M emory address | g D ata
Direct I M emory address JI """"""""""""""""""""""""""""""""""" > D ata
Indirect | Memory address | p| Memory address
L Data

An instruction typically has two parts, an opcode field and operand fields. An opcode
specifies the operation to take place during the instruction. We can classify instructions into
three categories. Data-transfer instructions move data between memory and registers,
between input/output channels and registers, and between registers themselves.
Arithmetic/logical instructions configure the ALU to carry out a particular function, channel
data from the registers through the ALU, and channel data from the ALU back to a particular
register. Branch instructions determine the address of the next program instruction, based
possibly on data path status signals.

Branches can be further categorized as being unconditional jumps, conditional jumps or
procedure call and return instructions. Unconditional jumps always determine the address of
the next instruction, while conditional jumps do so only if some condition evaluates to true,
such as a particular register containing zero. A call instruction, in addition to indicating the
address of the next instruction, saves the address of the current instruction 1 so that a
subsequent return instruction can jump back to the instruction immediately following the

most recent invoked call instruction. This pair of instructions facilitates the implementation
of procedure/function call semantics of high-level programming languages.

An operand field specifies the location of the actual data that takes part in an operation.
Source operands serve as input to the operation, while a destination operand stores the output.
The number of operands per instruction varies among processors. Even for a given processor,
the number of operands per instruction may vary depending on the instruction type.

The operand field may indicate the data’s location through one of several addressing modes,
illustrated in Figure 2.5. In immediate addressing, the operand field contains the data itself. In
register addressing, the operand field contains the address of a data path register in which the
data resides. In register-indirect addressing, the operand field contains the address of a
register, which in turn contains the address of a memory location in which the data resides. In
direct addressing, the operand field contains the address of a memory location in which the
data resides. In indirect addressing, the operand field contains the address of a memory
location, which in turn contains the address of a memory location in which the data resides.
Those familiar with structured languages may note that direct addressing implements regular
variables, and indirect addressing implements pointers. In inherent or implicit addressing, the
particular register or memory location of the data is implicit in the opcode; for example, the
data may reside in a register called the "accumulator." In indexed addressing, the direct or
indirect operand must be added to a particular implicit register to obtain the actual operand
address. Jump instructions may use relative addressing to reduce the number of bits needed to
indicate the jump address. A relative address indicates how far to jump from the current
address, rather than indicating the complete address — such addressing is very common since
most jumps are to nearby instructions.

Figure 2.6: A simple (trivial) instruction set.

Assembly instruct. First byte Second byte O peration

MOV Rn, direct 0000 Rn direct Rn = M (direct)

MOV direct, Rn 0001 Rn direct M (direct) = Rn

MOV @Rn,Rm 0010 Rn Rm M(Rn) =Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

ADD Rn, Rm 0100 Rn Rm Rn=Rn+Rm

SUB Rn, Rm 0101 Rn Rm Rn=Rn-Rm

JZ Rn, relative 1000 Rn relative PC = PC+ relative
(only if Rnis0)

Ideally, the structured-language programmer would not need to know the instruction set of
the processor. However, nearly every embedded system requires the programmer to write at
least some portion of the program in assembly language. Those portions may deal with low-
level input/output operations with devices outside the processor, like a display device. Such a
device may require specific timing sequences of signals in order to receive data, and the
programmer may find that writing assembly code achieves such timing most conveniently. A
driver routine is a portion of a program written specifically to communicate with, or drive,
another device. Since drivers are often written in assembly language, the structured-language
programmer may still require some familiarity with at least a subset of the instruction set.

Figure 2.6 shows a (trivial) instruction set with 4 data transfer instructions, 2 arithmetic
instructions, and 1 branch instruction, for a hypothetical processor. Figure 2.7(a) shows a
program, written in C, that adds the numbers 1 through 10. Figure 2.7(b) shows that same
program written in assembly language using the given instruction set.

Figure 2.7: Sample programs: (a) C program, (b) equivalent assembly program.
MOV RO, #0; // total = 0
MOV R1, #10; /i=10
MOV R2, #1; /{ constant 1
int total = 0 MOV R3, #0; // constant 0
for (inti=10; i'=0; i--) .
total += i Loop: JZ RT, Next /{ Doneif i=0
// next instructions... ADD RO, RT; // total += i
SUB R1, R2; Hi--
JZ R3, Loop; // Jump always
Next: //nextinstructions...
(a) (b)

Program and data memory space: The embedded systems programmer must be aware
of the size of the available memory for program and for data. For example, a particular
processor may have a 64K program space, and a 64K data space. The programmer must not
exceed these limits. In addition, the programmer will probably want to be aware of on-chip
program and data memory capacity, taking care to fit the necessary program and data in on-
chip memory if possible.

Registers: The assembly-language programmer must know how many registers are
available for general-purpose data storage. He/she must also be familiar with other registers
that have special functions. For example, a base register may exist, which permits the
programmer to use a data-transfer instruction where the processor adds an operand field to
the base register to obtain an actual memory address.

Other special-function registers must be known by both the assembly-language and the
structured-language programmer. Such registers may be used for configuring built-in timers,
counters, and serial communication devices, or for writing and reading external pins.

I/0O: The programmer should be aware of the processor’s input and output (I/0) facilities,
with which the processor communicates with other devices. One common I/O facility is
parallel I/O, in which the programmer can read or write a port (a collection of external pins)
by reading or writing a special-function register. Another common I/O facility is a system
bus, consisting of address and data ports that are automatically activated by certain addresses
or types of instructions.

Interrupts: An interrupt causes the processor to suspend execution of the main program,
and instead jump to an Interrupt Service Routine (ISR) that full fills a special, short-term
processing need. In particular, the processor stores the current PC, and sets it to the address of
the ISR. After the ISR completes, the processor resumes execution of the main program by
restoring the PC. The programmer should be aware of the types of interrupts supported by the
processor (we describe several types in a subsequent chapter), and must write ISRs when
necessary. The assembly-language programmer places each ISR at a specific address in
program memory. The structured-language programmer must do so also; some compilers
allow a programmer to force a procedure to start at a particular memory location, while
recognize pre-defined names for particular ISRs.

For example, we may need to record the occurrence of an event from a peripheral device,
such as the pressing of a button. We record the event by setting a variable in memory when
that event occurs, although the user’s main program may not process that event until later.
Rather than requiring the user to insert checks for the event throughout the main program, the
programmer merely need write an interrupt service routine and associate it with an input pin
connected to the button. The processor will then call the routine automatically when the
button is pressed.

Example: Assembly-language programming of device drivers

This example provides an application of assembly language programming of a low-level
driver, showing how the parallel port of an x86 based PC (Personal Computer) can be used to
perform digital I/O. Writing and reading three special registers accomplishes parallel
communication on the PC. Those three register are actually in an 8255A Peripheral Interface
Controller chip. In unidirectional mode, (default power-on-reset mode), this device is capable
of driving 12 output and five input lines. In the following table, we provide the parallel port
(known as LPT) connector pin numbers and the corresponding register location.

Parallel port signals and associated registers.

LPT Connector Pin 1/0 Direction R egister Address

1 Output 0™ bit of register #2
2-9 Output 0™-7™ bit of register #0
10 Input 6" bit of register #1
11 Input 77 bit of register #1
12 Input 57 bit of register #1
13 Input 4™ bit of register #1
14 Output 1* bit of register #2
15 Input 3" bit of register #1
16 Output 2" bit of register #2
17 O utput 3" bit of register #2

In our example, we are to build the following system:
Pin13

Switch
PC Iparallel port

Pin L

A switch is connected to input pin number 13 of the parallel port. An LED (lightemitting
diode) is connected to output pin number 2. Our program, running on the PC, should monitor
the input switch and turn on/off the LED accordingly.

Figure 2.8 gives the code for such a program, in x86 assembly language. Note that the in and
out assembly instructions read and write the internal registers of the 8255A. Both instructions
take two operands, address and data. Address specifies the the register we are trying to read
or write. This address is calculated by adding the address of the device, called the base
address, to the address of the particular register as given in Figure 2.8. In most PCs, the base
address of LPT1 is at 3BC hex (though not always). The second operand is the data. For the
in instruction, the content of this eight-bit operand will be written to the addressed register.
For the out instruction, the content of the addressed eight-bit register will be read into this
operand

The program makes use of masking, something quite common during low-level I/O. A mask
is a bit-pattern designed such that ANDing it with a data item D yields a specific part of D.
For example, a mask of 00001111 can be used to yield bits 0 through 3, e.g., 00001111 AND
10101010 yields 00001010. A mask of 00010000, or 10h in hexadecimal format, would yield
bit 4.

In Figure 2.8, we have broken our program in two source files, assembly and C. The
assembly program implements the low-level I/O to the parallel port and the C program
implements the high-level application. Our assembly program is a simple form of a device
driver program that provides a single procedure to the high-level application. While the trend
is for embedded systems to be written in structured languages, this example shows that some
small assembly program may still need to be written for low-level drivers.

Figure 2.8: Parallel port example.

This program consists of a sub-routine that reads

the state of the input pin, determining the on/off state
of our switch and asserts the output pin, turning the LED
on/foff accordingly.

.386
CheckPort preoc
push ax : save the content
push dx : save the content
mov dx, 3BCh + 1 : base + 1 for register #1
in al, dx ; read register #1
and al, 10h : mask out all but bit # 4
cmp al, 0 sodg: At Q2
jne SwitchOn ; if not, we need to turn the LED on

SwitchOff:

mov dx, 3BCh + O : base + 0 for register #0
in al, dx : read the current state of the port
and al, £7h : clear first bit (masking)
out dx, al : write it out to the port
Jmp Done . we are done
SwitchOn:
mowv dx, 3BCh + 0 : base + 0O for register #0
in al, dx ; read the current state of the port
or al, 01h ; set first bit (masking)
out dx, al : write it out to the port
Done: pop dx i restore the content
pop ax ; restore the content
CheckPort endp
extern “C" CheckPort(void): // defined in assembly above

s

void main(void)} {
while(1) {

CheckPort|(};

Operating system: An operating system is a layer of software that provides low-level
services to the application layer, a set of one or more programs executing on the CPU
consuming and producing input and output data. The task of managing the application layer
involves the loading and executing of programs, sharing and allocating system resources to
these programs, and protecting these allocated resources from corruption by non-owner
programs. One of the most important resource of a system is the central processing unit
(CPU), which is typically shared among a number of executing programs. The operating
system, thus, is responsible for deciding what program is to run next on the CPU and for how
long. This is called process/task scheduling and is determined by the operating system’s
preemption policy. Another very important resource is memory, including disk storage,
which is also shared among the applications running on the CPU.

In addition to implementing an environment for management of high-level application
programs, the operating system provides the software required for servicing various
hardware-interrupts, and provides device drivers for driving the peripheral devices present in
the system. Typically, on startup, an operating system initializes all peripheral devices, such
as disk controllers, timers and input/output devices and installs hardware interrupt (interrupts
generated by the hardware) service routines (ISR) to handle various signals generated by
these devices 2. Then, it installs software interrupts (interrupts generated by the software) to

process system calls (calls made by high-level applications to request operating system
services) as described next.

Figure 2.9: System call invocation.

DB file_name “out.txt?” -- store file name
MOV RO, 1324 -- system call “open”™ id
MOV R1, file_name -- address of file-name
INT 34 -- cause a system call
JZ RO, L1 -- 1f zZero -> error

read the file

JMP L2 -- bypass error cond.
L1:
handle the error

L2:

A system call is a mechanism for an application to invoke the operating system. This is
analogous to a procedure or function call, as in high-level programming languages. When a
program requires some service from the operating system, it generates a predefined software
interrupt that is serviced by the operating system. Parameters specific to the requested
services are typically passed from (to) the application program to (from) the operating system
through CPU registers. Figure 2.9 illustrates how the file “open” system call may be invoked,
in assembly, by a program. Languages like C and Pascal provide wrapper functions around
the system-calls to provide a high-level mechanism for performing system calls.

DEVELOPMENT ENVIRNORNMENT:

C File C File Asm.
File

Binary Binary Binary
File File File
L Blr 9 e
s IR S
s [
File . J 2 Profiler
Implementation Phase E— Verification Phase

=

Figure 3.12: Software development process. - / N

Several software and hardware tools commonly support the programming of general-purpose
processors. First, we must distinguish between two processors we deal with when developing

an embedded system. One processor is the development processor, on which we write and
debug our program. This processor is part of our desktop computer. The other processor is
the target processor, to which we will send our program and which will form part of our
embedded system’s implementation. For example, we may develop our system on a Pentium
processor, but use a Motorola 68HC11 as our target processor. Of course, sometimes the two
processors happen to be the same, but this is mostly a coincidence.

@) o ®)
Impl i . ua
= c;:::emon (- Implementation
Figure 3.12 % P‘“’s; in i
Verification Phase | ?-
Figure 3.12
External tools < x = ; = nad = Al orse g .4
Programmer

\ Vcriﬂcation
S~ Phase =~ >

Fig: software development a) desktop, b) embedded system

Assemblers translate assembly instructions to binary machine instructions. In addition to just
replacing opcode and operand mnemonics by binary equivalents, an assembler may also
translate symbolic labels into actual addresses. For example, a programmer may add a
symbolic label END to an instruction A, and may reference END in a branch instruction. The
assembler determines the actual binary address of A, and replaces references to END by this
address. The mapping of assembly instructions to machine instructions is one-to-one. A
linker allows a programmer to create a program in separately-assembled files; it combines the
machine instructions of each into a single program, perhaps incorporating instructions from
standard library routines.

Compilers translate structured programs into machine (or assembly) programs. Structured
programming languages possess high-level constructs that greatly simplify programming,
such as loop constructs, so each high-level construct may translate to several or tens of
machine instructions. Compiler technology has advanced tremendously over the past decades,
applying numerous program optimizations, often yielding very size and performance efficient
code. A cross-compiler executes on one processor (our development processor), but generates
code for a different processor (our target processor). Cross-compilers are extremely common
in embedded system development.

Debuggers help programmers evaluate and correct their programs. They run on the
development processor and support stepwise program execution, executing one instruction
and then stopping, proceeding to the next instruction when instructed by the user. They
permit execution up to user-specified breakpoints, which are instructions that when
encountered cause the program to stop executing. Whenever the program stops, the user can
examine values of various memory and register locations. A source-level debugger enables
step-by-step execution in the source program language, whether assembly language or a
structured language. A good debugging capability is crucial, as today’s programs can be quite
complex and hard to write correctly.

Device programmers download a binary machine program from the development processor’s
memory into the target processor’s memory.

Emulator’s support debugging of the program while it executes on the target processor. An
emulator typically consists of a debugger coupled with a board connected to the desktop
processor via a cable. The board consists of the target processor plus some support circuitry
(often another processor). The board may have another cable with a device having the same
pin configuration as the target processor, allowing one to plug this device into a real
embedded system. Such an in-circuit emulator enables one to control and monitor the
program’s execution in the actual embedded system circuit. Incircuit emulators are available
for nearly any processor intended for embedded use, though they can be quite expensive if
they are to run at real speeds.

The availability of low-cost or high-quality development environments for a processor often
heavily influences the choice of a processor.

SELECTING A PROCESSOR:

The embedded system designer must select a microprocessor for use in an embedded system.
The choice of a processor depends on technical and non-technical aspects. From a technical
perspective, one must choose a processor that can achieve the desired speed within certain
power, size and cost constraints. Non-technical aspects may include prior expertise with a
processor and its development environment, special licensing arrangements, and so on.

Figure 2.10: General Purpose Processors

Processor Clock Speed |Peripherals |Bus Width |MIPS |Power |TransistofPrice
Intel SA110 233 MHz 32K cache 32| 268|360 mW 2.1 M 549
VLSIARM710 25 MHz 8K cache 32 30[120 mW |341K S35
IBM 401GF 50 MHz 3K cache 32 521740 mW |345K $11
Mistubishi M32R/D |66 MHz 4K cache 16 521180 mW |7 M S80

512 ROM,

25 RAM, 5
PIC 12508 8 MHz 1/0 8] ~ .8 [NA ~10 K S6

4K ROM,

128 RAM,

32 1/0,

Timer,
Intel 8051 12 MHz UART 8] ~1[NA ~10 K S7

Sources: Embedded Systems Programming, Nov. 1998; PIC and Intel datasheets

Speed is a particularly difficult processor aspect to measure and compare. We could compare
processor clock speeds, but the number of instructions per clock cycle may differ greatly
among processors. We could instead compare instructions per second, but the complexity of
each instruction may also differ greatly among processors -- €.g., one processor may require
100 instructions, and another 300 instructions, to perform the same computation. One attempt
to provide a means for a fairer comparison is the Dhrystone benchmark. A benchmark is a
program intended to be run on different processors to compare their performance. The
Dhrystone benchmark was developed in 1984 by Reinhold Weicker specifically as a
performance benchmark; it performs no useful work. It focuses on exercising a processor’s
integer arithmetic and string-handling capabilities. It is written in C and in the public domain.
Since most processors can execute it in milliseconds, it is typically executed thousands of
times, and thus a processor is said to be able to execute so many Dhrystones per second.

Another commonly-used speed comparison unit, which happens to be based on the
Dhrystone, is MIPS. One might think that MIPS simply means Millions of Instructions Per
Second, but actually the common use of the term is based on a somewhat more complex
notion. Specifically, its origin is based on the speed of Digital’s VAX 11/780, thought to be
the first computer able to execute one million instructions per second. A VAX 11/780 could
execute 1,757 Dhrystones/second. Thus, fora VAX 11/780, 1 MIPS = 1,757
Dhrystones/second. This unit for MIPS is the one used today. So if a machine today is said to
run at 750 MIPS, that actually means it can execute 750*1757 = 1,317,750
Dhrystones/second.

The use and validity of benchmark data is a subject of great controversy. There is also a clear
need for benchmarks that measure performance of embedded processors. Numerous general-
purpose processors have evolved in the recent years and are in common use today. In Figure
2.10, we summarize some of the features of several popular processors.

Application-Specific Instruction-Set Processors (ASIPs)

Today’s embedded applications, such as high definition TV, require high computing power
and very specific functionality. The performance, power, cost, or size demands of these
applications cannot always be dealt with efficiently by using general-purpose processors.
Nonetheless, the inflexibility-of custom single-purpose processors is often tog prohibitive. A
solution is to use an instruction-set processor that is specific to that application.or application
domain. Because these ASIPs are instruction-set processors, they can be programmed by
writing software, resulting in short time-to-market and good flexibility, while the performance
and other constraints may be efficiently satisfied. _

As with most other aspects of embedded systems design, there is a trade-off here.
Instruction-set processors and the associated software tools (compilers, linkers, etc.) are very
expensive to develop; therefore, they are expensive to integrate into low-cost embedded
systems. In contrast, the large applicability and resulting cost amortization of general-purpose
processors make them very cost effective solutions in most embedded systems. ASIPs tend to
come in three major varieties, namely, microcontrollers, which are specific to applications
that perform a large amount of control-oriented tasks, digital signal processors (DSPs), which
are specific to applications that process large amounts of data, and everything else, which are
less general ASIPs.

Microcontrollers

Numerous processor IC manufacturers market devices specifically for the control-dominated
embedded systems domain. These devices may include several features. First, they may
Jinclude several peripheral devices, such as timers, analog-to-digital converters, and scrial
communication devices, on the same IC as the processor. Second, they may include some
program and data memory on the same IC. Third, they may provide the programmer with
direct access to a number of pins of the IC. Fourth, they may provide specialized instructions
for common embedded system control operations, such as bit-manipulation ‘operations. A
microcontroller is a device possessing some or all of these features.

Incorporating peripherals and memory onto the same IC reduces the number of required
ICs, resulting in compact and low-power implementations. Providing pin access allows
programs to easily monitor sensors, to set actuators, and to transfer data with other devices.
Providing specialized instrictions improves performance for embedded systems applications.
Thus, microcontrollers can be considered ASIPs to some degree.

Many manufacturers market devices referred to as “embedded processors.” The
difference between embedded processors and microcontrollers is not clear, although we note
that the former term seems to be used more for large (32-bit) processors. B

Digital Signal Processors (DSP)

Digital signal processors (DSPs) are processors that are highly optimized for processing large
amounts of data. The source of this large amount of data is some form of digitized signal, like
a photo image captured by a digital camera, a voice packet going through a network router, or
an audio clip played by a digital keyboard. A DSP may contain numerous register files,
memory blocks, multipliers, and other arithmetic units. In addition, DSPs often ‘provide
instructions that are central to digital signal processing, such as filtering and-transforming
vectors or metrics of data. In a DSP, frequently used arithmetic functions, such as multiply-
and-accumulate, are implemented in hardware and thus execute orders of magnitude faster
than a software implementation running on a general-purpose processor. In addition, DSPs
may allow for execution of some functions in parallel, resulting in a boost in performance.

As with microcontrollers, DSPs also tend to incorporate many peripherals that are useful
in signal processing on a single IC. As an example, a DSP device may contain a number of
analog-to-digital and digital-to-analog converters, pulse-width-modulators, direct-memory-
access controllers, timers, and counters.

Many companies offer a variety of commonly used DSPs that are well supported in terms
of compiler and other development tools, making them easy and cheap to integrate into most
embedded systems.

Less-General ASIP Environments

In contrast to microcontrollers and DSPs, which.can be used in a variety of embedded
systems, IC manufacturers have designed ASIPs that are less general in nature. These ASIPs
are designed to perform some very domain specific processing while allowing some degree of
programmability. For example, an ASIP designed for networking hardware may be designed
to be programmable with different network - routing, checksum, and pac‘keg processing
protocols. '

A ral-Purpose Processor Design

Afg"/eneral-purpose processor is really just a single-purpose processor whose purpose is to
process instructions stored in a prograim memory. Therefore, we can design a general-purpose
processor using the single-purpose processor design technique described in Chapter 2. While
real microprocessors intended for mass production are more commonly designed using
custom methods rather than the general fechnique of this section, using the the general
technigue here may prove a dseful exercise that will illustrate the basic unity between single-
purpose and general-purpose processors. '

Suppose we want to design a general‘purpose processor having the basic architecture of
Figur(: 3.1 and supporting the "stmction—ict of Figure 3.7. We can begin by creating the
FSMD shown in Figure 3. l6(a§:vhich describes the desired processor’s behavior. The FSMD
declares several variables for Storage: a’16-bit program counter PC, a 16-bit instruction
register IR, a 64K x 16 bit memory M, and a 16 x 16 bit register file RF, The FSMD’s initial
state, Reset, clears PC to 0. The Fetch state reads M/PC] into IR. The Decode state does
nothing but adds the extra cycle necessary for /R to get updated so we can then read it on an
arc. Each arc icaving the Decode state detects a particilar instruction opcode, causing a
transition to the corresponding execute state for that opcode.. Each execute state, like Movl,

Declarations: Aliases:
bit PC[16], IR[16]; op IR[1S.12] dir IR[7.0]
bit M{64k][16], RF[16]{16]; m IR{IL.8 imm IR(7.0]
m IR[7.4] rl IR[7.0]
Reset | PC=0, PCelr=1;
(a) MS=10; (b)
= Irid=1;
Fetch | IR=M[PC}; .
=PC+1 Mre=1;
| PCinc=1;
from states
—
g3 -
bl
Movl RF[rn] = M[dir) RFwa=m; RFwe=1; RFs=],
§ to Fetch Ms=01, Mre=1;
- Mov2 | Midir] = RF[m) RFrla=m; RFrle=];
2 1o Fetch MFQI; Mwe=1,
= Mov3 | M[m]=RFm] RFrla=m; RFrle=1;
s L 10 Fetch Ms=10, Mwe=1;
= pl Mova J RF[ru}= imm RFwa=rn, RFwe=1; RFs=10;
S »{ Add RF{m) =RFfm}+RF(rm)| RFwa=m; RFwe=1; RFs=00,
RFrla=m; RFrle=1;
S D Fok RFr2u=rm; RFr2e=1; ALUs=00
= @
"—E RF{m] = RF[m}-RF{mm){ RFwa=rn; RFwe=1; RFs=00;
RFrla=m; RFrle=1;
= =PioFuch RFr2a=rm; RF2e=1; ALUs=0]
7| PC=(RF[m}=0) el PC! PCld= ALUzZ
to Fetch

Figure 3.16: A simple microprocessor:
ereate the datapath of Figure 3.17.

devices, modifying data, or updating PC,
Wemnnowhﬂldadaﬂpahth&memyomtbemﬂonoﬂhism,a

inClnpta2.1heMpabwem:ﬁng&efolbwingﬂepsisshownhFigm3.l7

ﬁmncpisloinﬂmdaeaslmagadmmraehdedmduﬁable.sowe

(.)m,@)ﬁsumummunrsmmmmam

Control unit To all Ditipts | ‘ ‘0 |
in,
put RFs_’L 2x 1 mux —]
signals ||| . B
Controller i RFw
(next-state and From all RFwe
~ control) output RF ~ RF (16)
logic; state register) control 'L.
signals RFrle 7|
o ¥ -
Irld RFr2a
PCd,, >| RFrl RFr2
g B0 R e
o ¥ v
PCtlr ALUs =
i i
2 ly Oy
MS—DL 3x1 mux ' —, Mre Mwe
v ; ”
A Memory D

Figure 3.17: Architecture of a simple mIcToprocessor.
L]
registers PC and /R, mcmoryM,andregistaﬁlcRF.'mcwcondstep Is o instantiate
1 units to carry out the FSMD operations. We'll use a single ALU capable of

control signal, :
Giventhisdammm.wccannowmwﬁtctthSMDasanFSMmpmemingtbe
datapath’s mnuolla-.EaanSNﬂ)opemionmtmbeteplacedbybimqopemdonsonconml
signals.asshowninl'-'igm'e3.l6(b).1hes!amwdamareidenﬁcalforme'FSNﬂ)mdFSM.
J andmlylheopcmuonsclmge,sowedonouedmwtbcmandarcsinmeﬁgme.Asan

We can use the FSM design technique of Chapter 2 1o design a controller, consisting of a
state register and next-state/control logic. We omit this siep here,

Having just designed a simple generdl-purpose processor using the same technique we
used to design a single-purpose processor, we can see the similarity between. the two
processor types. The key difference is that a single-purpose processor puts the “program”

“.-inside of its control logic, whereas a general-purpose processor keeps it in an external

memory. So the program of a single-purpose processor cannot be changed once the processor
has been implemented. But nevertheless, both processor types process programs. A second
difference is that we design the datapath in a general-purpose processor without knowledge of
what program will be put in the memory, whereas we know this program in a single-purpose
processor. So the datapath of a single-purpose processor can be optimized to the program. We
see that single-purpose and general-purpose processors both implement programs. Though

- they may differ in terms of design metrics like flexibility, power, performance, and cost, they

fundamentally do the same thing.

ESD UNIT-4
MEMORY &INTERFACING

COMMON MEMORY TYPES: ROM&RAM

READ ONLY MEMORY—ROM:

ROM, or read-only memory, is a memory that can be read from, but not typically written to,
during execution of an embedded system. Of course, there must be a mechanism for setting the
bits in the memory (otherwise, of what use would the read data serve?), but we call this
"programming," not writing. Such programming is usually done off-line, i.e., when the memory
is not actively serving as a memory in an embedded system. We usually program a ROM before
inserting it into the embedded system. Figure 1(b) provides a block diagram of a ROM.

We can use ROM for various purposes. One use is to store a software program for a general-
purpose processor. We may write each program instruction to one ROM word. For some
processors, we write each instruction to several ROM words. For other processors, we may
pack several instructions into a single ROM word. A related use is to store constant data, like
large lookup tables of strings or numbers.

Another common use is to implement a combinational circuit. We can implement any
combinational function of k variables by using a 2k x 1 ROM, and we can implement n
functions of the same k variables using a 2k x n ROM. We simply program the ROM to
implement the truth table for the functions, as shown in Figure 2.

Figure below provides a symbolic view of the internal design of an 8x4 ROM. To the right of
the 3x8 decoder in the figure is a grid of lines, with word lines running horizontally and data
lines vertically; lines that cross without a circle in the figure are not connected. Thus, word
lines only connect to data lines via the programmable connection lines shown. The figure shows
all connection lines in place except for two connections in word 2. To see how this device acts
as a read-only memory, consider an input address of "010." The decoder will thus set word 2’s
line to 1. Because the lines connecting this word line with data lines 2 and 0 do not exist, the
ROM output will read "1010." Note that if the ROM enable input is 0, then no word is read.
Also note that each data line is shown as a wired-OR, meaning that the wire itself acts to
logically OR all the connections to it.

Figure 5.3: ROM internals

8x4 ROM
enahle 3x8 :N i\‘ f\' f\‘ worgl])
™ decoder [N Y
- ST word 2
enable 2xn ROM Ag —» < Word line
Ay —T SSSTST
Ap — Ar—r> SIS
SNSNSTS 7
A — ™ 5 gL word7
“ l lu 71 Y Y & Dataline
Programmable/ Utjtj [j Wired-OR
Q1 Qo connection vV V¥
(b) Qs gz Qi Qp
Figure 5.2: Implementing combinational functions with aROM: (a) truth table, (b) ROM
contents.
Truth table (ROM contents)
Inputs (address) | Outputs
a b c¢c |y 2z 8x2 ROM
00 0D 0k g gl] wordo
0 0 1 i 1 0 1 word 1
0 1 0]0 1 N
0 1 1[1 0 0
1 0 ol 1 o0 enable T
T 0 1|1 1 T
BRI e
— ! word 7
I
(a) (b)

MASK-PROGRAMMED ROM: In a mask-programmed ROM, the connection is made when
the chip is being fabricated (by creating an appropriate set of masks). Such ROM types are
typically only used in high-volume systems, and only after a final design has been determined.

PROGRAMMABLE ROM: PROM, which can be programmed by the chip’s user, well after
the chip has been manufactured. These devices are better suited to prototyping and to low-
volume applications. To program a PROM device, the user provides a file indicating the desired
ROM contents. A piece of equipment called a ROM programmer (note: the programmer is a
piece of equipment, not a person who writes software) then configures each programmable

connection according to the file. A basic PROM uses a fuse for each programmable connection.
The ROM programmer blows fuses by passing a large current wherever a connection should
not exist. However, once a fuse is blown, the connection can never be re-established. For this
reason, basic PROM is often referred to as one-time-programmable device, or OTP.

ERASABLE PROM or EPROM: This device uses a MOS transistor as its programmable
component. The transistor has a "floating gate," meaning its gate is not connected. An EPROM
programmer injects electrons into the floating gate, using higher than normal voltage (usually
12V to 25V) that causes electrons to "tunnel" into the gate. When that high voltage is removed,
the electrons can-not escape, and hence the gate has been charged and programming has
occurred. Standard EPROMs are guaranteed to hold their programs for at least 10 years. To
erase the program, the electrons must be excited enough to escape from the gate. Ultra-violet
(UV) light is used to fulfil this role of erasing. The device must be placed under a UV eraser
for a period of time, typically ranging from 5 to 30 minutes, after which the device can be
programmed again. In order for the UV light to reach the chip, EPROM’s come with a small
quartz window in the package through which the chip can be seen. For this reason, EPROM is
often referred to as a windowed ROM device.

ELECTRICALLY-ERASABLE PROM, or EEPROM: is designed to eliminate the time
consuming and sometimes impossible requirement of exposing an EPROM to UV light to erase
the ROM. An EEPROM is not only programmed electronically, but is also erased
electronically. These devices are typically more expensive the EPROM’s, but far more
convenient to use. EEPROM’s are often called " E square’s " for short. Flash memory is a type
of EEPROM in which reprogramming can be done to certain regions of the memory, rather
than the entire memory at once.

Flash Memory

Flash memory is an extension of EEPROM that was developed in the late 1980s. While also
using the floating-gate principle of EEPROM, flash memory is designed such that large
blocks of mnemory can be erased all at once, rather than just one word at a time as in

traditional EEPROM. A block is typically several thousand bytes large. This fast erase ability
can vastly improve the performance of embedded systems where large data items must be
stored in nonvolatile memory, systems like digital cameras, TV set-top boxes, cell phones,
and medical monitoring equipment. It "can also speed manufacturing throughput, since
programming the complete contents of flash may be faster than programming a similar-sized
EEPROM.

Like EEPROM, each block in a flash memory can typically be erased and reprogrammed
tens of thousands of times before the block loses its ability to store data, and can store its data
for 10 years or more.

A drawback of flash memory is that writing to a single word in flash may be slower than
writing to a single word in EEPROM, since an entire block wnll need to be read, the word
within it updated. and than the block written back

READ WRITE MEMORY - RAM:

RAM, or random-access memory, is a memory that can be both read and written. In contrast to
ROM, a RAM’s content is not "programmed" before being inserted into an embedded system.
Instead, the RAM contains no data when inserted in the embedded system; the system writes
data to and then reads data from the RAM during its execution. Below provides a block diagram
of a RAM. A RAM’s internal structure is somewhat more complex than a ROM’s, as shown in
Figure. which illustrates a 4x4 RAM (note: RAMs typically have thousands of words, not just
4 as in the figure). Each word consists of a number of memory cells, each storing one bit. In
the figure, each input data connects to every cell in its column. Likewise, each output data line
connects to every cell in its column, with the output of a memory cell being OR with the output
data line from above. Each word enable line from the decoder connects to every cell it’s row.
The read/write input (readd/write) is assumed to be connected to every cell. The memory cell
must possess logic such that it stores the input data bit when read/write indicates write and the

row is enabled, and such that it outputs this bit when read/write indicates read and the row is
enabled.

i
Figure 5.4: RAM internals
[T PR R [0
riw I I
> 2x4 RAM
enable 2x n RAM =
enable | 2x4
" > " | decoder
:‘ At -
0 A-]J -
Api—™ Memory
cell
rd/Wr — =70 every cell

RN

Qz Q2 Q7 Qp

.

There are two basic types of RAM, static and dynamic. Static RAM is faster but bigger than
dynamic RAM.

STATIC RAM: Static RAM, or SRAM, uses a memory cell consisting of a flip-flop to store
a bit. Each bit thus requires about 6 transistors. This RAM type is called static because it will
hold its data as long as power is supplied, in contrast to dynamic RAM. Static RAM is typically
used for high-performance parts of a system.

DYNAMIC RAM: Dynamic RAM, or DRAM, uses a memory cell consisting of a MOS
transistor and capacitor to store a bit. Each bit thus requires only 1 transistor, resulting in more
compact memory than SRAM. However, the charge stored in the capacitor leaks gradually,
leading to discharge and eventually to loss of data. To prevent loss of data, each cell must
regularly have its charge "refreshed." A typical DRAM cell minimum refresh rate is once every
15.625 microseconds. Because of the way DRAMs are designed, reading a DRAM word
refreshes that word’s cells. In particular, accessing a DRAM word results in the word’s data

being stored in a buffer and then being written back to the word’s cells. DRAMs tend to be
slower to access than SRAMs.

PSRAM: Pscudo-Static RAMs, or PSRAMSs, are DRAMSs with a refresh controller built-in.
Thus, since the RAM user need not worry about refreshing, the device appears to behave much
like an SRAM. However, in contrast to true SRAM, a PSRAM may be busy refreshing itself
when accessed, which could slow access time and add some system complexity. Nevertheless,
PSRAM is a popular low-cost alternative to SRAM in many embedded systems.

NONVOLATILE RAM: Non-volatile RAM, or NVRAM, is another RAM variation. Non-
volatile storage is storage that can hold its data even after power is no longer being supplied.
Note that all forms of ROM are non-volatile, while normal forms of RAM (static or dynamic)
are volatile. One type of NVRAM contains a static RAM along with its own permanently
connected battery. A second type contains a static RAM and its own (perhaps flash) EEPROM.
This type stores RAM data into the EEPROM just before power is turned off (or whenever
instructed to store the data), and reloads that data from EEPROM into RAM after power is
turned back on. NVRAM is very popular in embedded systems. For example, a digital camera
must digitize, store and compress an image in a fraction of a second when the camera’s button
is pressed, requiring writes to a fast RAM (as opposed to programming of a slower EEPROM).
But it also must store that image so that the image is saved even when the camera’s power is
shut off, requiring EEPROM. Using NVRAM accomplishes both these goals, since the data is
originally and quickly stored in RAM, and then later copied to EEPROM, which may even take
a few seconds.

COMPOSING MEMORY:

An embedded system designer is often faced with the situation of needing a particular-sized
memory (ROM or RAM), but having readily available memories of a different size. For
example, the designer may need a 2k x 8 ROM, but may have 4k x 16 ROMs readily available.
Alternatively, the designer may need a 4k x 16 ROM, but may have 2k x § ROMs available for
use.

The case where the available memory is larger than needed is easy to deal with. We simply
use the needed lower words in the memory, thus ignoring unneeded higher words and their
high-order address bits, and we use the lower data input/output lines, thus ignoring unneeded
higher data lines. (Of course, we could use the higher data lines and ignore the lower lines
instead).

The case where the available memory is smaller than needed requires more design effort. In
this case, we must compose several smaller memories to behave as the larger memory we need.
Suppose the available memories have the correct number of words, but each word is not wide
enough. In this case, we can simply connect the available memories side-by-side. For example,
Figure 5(a) illustrates the situation of needing a ROM three-times wider than that available.
We connect three ROMs side-by-side, sharing the same address and enable lines among them,
and concatenating the data lines to form the desired word width.

Suppose instead that the available memories have the correct word width, but not enough
words. In this case, we can connect the available memories top-to-bottom. For example, Figure
5(b) illustrates the situation of needing a ROM with twice as many words, and hence needing
one extra address line, than that available. We connect the ROMs top-to-bottom, the
corresponding data lines of each. We use the extra high-order address line to select the higher
or lower ROM (using a 1x2 decoder), and the remaining address lines to offset into the selected
ROM. Since only one ROM will ever be enabled at a time, the data lines never actually in
volves more than one 1.

Figure 5.5: Composing memories into larger ones.

(a)
2" x 3n ROM
m m
enable | [2"xnROM | | 2"xnROM | | 2"xn ROM
Ao =+ e S
- SRS) }]
Yy vwyy y vw
Qaan Qa1 Qo Qo
(b)
2™ xn ROM (c)
m
2%xn ROM
A
Ao — | i
Am1 = A A
A =T 120 I~) L o
decoder "| ™ § -
» 27xn ROM enae 4
enable _| ‘ outputs

1

Qn-l QO

If we instead needed four times as many words, and hence two extra address lines, we would
instead use four ROMs. A 2x4 decoder having the two high-order address lines as input would
select which of the four ROMs to access. Finally, suppose the available memories have a
smaller word with as well as fewer words than necessary. We then combine the above two

techniques, first creating the number of columns of memories necessary to achieve the needed
word width, and then creating the number of rows of memories necessary, along with a decoder,
to achieve the needed number of words. The approach is illustrated in Figure 5(c).

MEMORY HEIRARCHY AND CACHE:

When we design a memory to store an embedded system’s program and data, we often face the
following dilemma: we want an inexpensive and fast memory, but inexpensive memories tend
to be slow, whereas fast memories tend to be expensive. The solution to this dilemma is to
create a memory hierarchy, as illustrated in Figure 5.6. We use an inexpensive but slow main
memory to store all of the program and data. We use a small amount of fast but expensive
cache memory to store copies of likely-accessed parts of main memory. Using cache is
analogous to posting on a wall near a telephone a short list of important phone numbers rather
than posting the entire phonebook.

Some systems include even larger and less expensive forms of memory, such as disk and tape,
for some of their storage needs. However, we do not consider these further as they are not
especially common in embedded systems. Also, although the figure shows only one cache, we
can include any number of levels of cache, those closer to the processor being smaller and
faster than those closer to main memory. A two-level cache scheme is common.

Figure 5.6: An example memory hierarchy.

Processor

v

Registers

v

Cache

M ain memory

v

Disk

Tape

CACHE: Cache is usually designed using static RAM rather than dynamic RAM, which is one
reason that cache is more expensive but faster than main memory. Because cache usually
appears on the same chip as a processor, where space is very limited, cache size is typically
only a fraction of the size main memory. Cache access time may be as low as just one clock
cycle, whereas main memory access time is typically several cycles.

A cache operates as follows. When we want the processor to access (read or write) a main
memory address, we first check for a copy of that location in cache. If the copy is in the cache,
called a cache hit, then we can access it quickly. If the copy is not there, called a cache miss,

then we must first read the address (and perhaps some of its neighbors) into the cache. This
description of cache operation leads to several cache design choices: cache mapping, cache
replacement policy, and cache write techniques. These design choices can have significant
impact on system cost, performance, as well as power, and thus should be evaluated carefully
for a given application.

Cache mapping techniques: Cache mapping is the method for assigning main memory
addresses to the far fewer number of available cache addresses, and for determining whether a
particular main memory address’ contents are in the cache. Cache mapping can be
accomplished using one of three basic techniques:

1. Direct mapping: In this technique, the main memory address is divided into two fields, the
index and the tag. The index represents the cache address, and thus the number of index bits is
determined by the cache size, i.e., index size = log2(cache size). Note that many different main
memory addresses will map to the same cache address. When we store a main memory address’
content in the cache, we also store the tag. To determine if a desired main memory address is
in the cache, we go to the cache address indicated by the index, and we then compare the tag
there with the desired tag.

2. Fully-associative mapping: In this technique, each cache address contains not only a main
memory address’ content, but also the complete main memory address. To determine if a
desired main memory address is in the cache, we simultaneously (associatively) compare all
the addresses stored in the cache with the desired address.

3. Set-associative mapping: This technique is a compromise between direct and fully-
associative mapping. As in direct-mapping, an index maps each main memory address to a
cache address, but now each cache address contains the content and tags of two or more
memory locations, called a set or a line. To determine if a desired main memory address is in
the cache, we go to the cache address indicated by the index, and we then simultaneously
(associatively) compare all the tags at that location (i.e., of that set) with the desired tag. A
cache with a set of size N is called an N-way set-associative cache. 2-way, 4- way and 8-way
set associative caches are common.

Direct-mapped caches are easy to implement, but may result in numerous misses if two or more
words with the same index are accessed frequently, since each will bump the other out of the
cache. Fully-associative caches on the other hand are fast but the comparison logic is expensive
to implement. Set-associative caches can reduce misses compared to direct-mapped caches,
without requiring nearly as much comparison logic as fully-associative caches. Caches are
usually designed to treat collections of a small number of adjacent mainmemory addresses as
one indivisible block, typically consisting of about 8 address.

@) ; e

el
Vaild

viTlp [v[t[p vitlo i
*
A\ t
(b) = = Val
elag index gf Offset
vith |[v[t]po | |
/
() IS
| /" i v Vali -

—

// 3

,\/
y associative, (<) two-way set associative.

Figure 5.12: Cache mapping techniques: (a) direct-mapped, b)
Direct-mannsd rarhon aca ane. o -
Cache replacement policy: The cache-replacement policy is the technique for choosing which
cache block to replace when a fully-associative cache is full, or when a set-associative cache’s
line is full. Note that there is no choice in a direct-mapped cache; a main memory address
always maps to the same cache address and thus replaces whatever block is already there. There
are three common replacement policies. A random replacement policy chooses the block to
replace randomly. While simple to implement, this policy does nothing to prevent replacing
block that’s likely to be used again soon. A least-recently used (LRU) replacement policy
replaces the block that has not been accessed for the longest time, assuming that this means
that it is least likely to be accessed in the near future. This policy provides for an excellent
hit/miss ratio but requires expensive hardware to keep track of the times blocks are accessed.
A first-in-first-out (FIFO) replacement policy uses a queue of size N, pushing each block

address onto the queue when the address is accessed, and then choosing the block to replace
by popping the queue.

Cache Write technique:

When we write to a cache, we must at some point update the memory. Such update is only an
issue for data cache, since instruction cache is read-only. There are two common update
techniques, write-through and write-back.

In the write-through technique, whenever we write to the cache, we also write to main memory,

requiring the processor to wait until the write to main memory completes. While easy to
implement, this technique may result in several unnecessary writes to main memory. For
example, suppose a program writes to a block in the cache, then reads it, and then writes it
again, with the block staying in the cache during all three accesses. There would have been no
need to update the main memory after the first write, since the second write overwrites this first
write.

The write-back technique reduces the number of writes to main memory by writing a block to
main memory only when the block is being replaced, and then only if the block was written to
during its stay in the cache. This technique requires that we associate an extra bit, called a dirty
bit, with each block. We set this bit whenever we write to the block in the cache, and we then
check it when replacing the block to determine if we should copy the block to main memory.

INTERFACING:

ARBITARATION: Several situations existed in which multiple peripherals might request
service from a single resource. For example, multiple peripherals might share a single
microprocessor that services their interrupt requests. As another example, multiple peripherals
might share a single DMA controller that services their DMA requests. In such situations, two
or more peripherals may request service simultaneously. We therefore must have some method
to arbitrate among these contending requests, i.e., to decide which one of the contending
peripherals gets service, and thus which peripherals need to wait. Several methods exist, which
we now discuss.

PRIORITY ARBITARATION: One arbitration method uses a single-purpose processor, called
a priority arbiter. We illustrate a priority arbiter arbitrating among multiple peripherals using
vectored interrupt to request servicing from a microprocessor, as illustrated in Figure 6.9. Each
of the peripherals makes its request to the arbiter. The arbiter in turn asserts the microprocessor
interrupt, and waits for the interrupt acknowledgment. The arbiter then provides an
acknowledgement to exactly one peripheral, which permits that peripheral to put its interrupt
vector address on the data bus

Priority arbiters typically use one of two common schemes to determine priority among
peripherals: fixed priority or rotating priority. In fixed priority arbitration, each peripheral has
a unique rank among all the peripherals. The rank can be represented as a number, so if there

are four peripherals, each peripheral is ranked 1, 2, 3 or 4. If two peripherals simultaneously
seek servicing, the arbiter chooses the one with the higher rank.

In rotating priority arbitration (also called round-robin), the arbiter changes priority of
peripherals based on the history of servicing of those peripherals. For example, one rotating
priority scheme grants service to the least-recently serviced of the contending peripherals. This
scheme obviously requires a more complex arbiter.

We prefer fixed priority when there is a clear difference in priority among peripherals.
However, in many cases the peripherals are somewhat equal, so arbitrarily ranking them could
cause high-ranked peripherals to get much more servicing than low ranked ones. Rotating
priority ensures a more equitable distribution of servicing in this case.

Figure 6.9: Arbitration using a priority arbiter.

Micro-
processor
. t System bus B ¢ t >
Inta| §
—] Priority Peripheral1| |Peripheral2
Int 43— arbiter
Ireq14.—2| j 2
lack1 6
Ireq2<
lack 2|

DAISY-CHAIN ARBITARATION: The daisy-chain arbitration method builds arbitration
right into the peripherals. A daisy-chain configuration is shown in Figure 6.10, again using
vectored interrupt to illustrate the method. Each peripheral has a request output and an
acknowledge input, as before. But now each peripheral also has a request input and an
acknowledge output. A peripheral-asserts its request output if it requires servicing, OR if its
request input is asserted; the latter means that one of the "upstream" devices is requesting
servicing. Thus, if any peripheral needs servicing, its request will flow through the downstream
peripherals and eventually reach the microprocessor. Even if more than one peripheral request
servicing, the microprocessor will see only one request. The microprocessor acknowledge
connects to the first peripheral. If this peripheral is requesting service, it proceeds to put its
interrupt vector address on the system bus. But if it doesn’t need service, then it instead passes
the acknowledgement upstream to the next peripheral, by asserting it’s acknowledge output. In
the same manner, the next peripheral may either begin being serviced or may instead pass the
acknowledgement along. Obviously, the peripheral at the front of the chain, i.e., the one to
which the microprocessor acknowledge is connected, has highest priority, and the peripheral
at the end of the chain has lowest priority.

We prefer a daisy-chain priority configuration over a priority arbiter when we want to be able
to add or remove peripherals from an embedded system without redesigning the system.
Although conceptually we could add as many peripherals to a daisy-chain as we desired, in
reality the servicing response time for peripherals at the end of the chain could become

intolerably slow. In contrast to a daisy-chain, a priority arbiter has a fixed number of channels;
once they are all used, the system needs to be redesigned in order to accommodate more
peripherals. However, a daisy-chain has the drawback of not supporting more advanced priority
schemes, like rotating priority. A second drawback is that if a peripheral in the chain stops
working, other peripherals may lose their access to the processor.

Figure 6.10: Arbitration using a daisy-chain configuration.

System bus t t >

M icro-
Processor |

Peripheral 1 Peripheral 2
Int A
oo P Ack_in Ack_out —p{ Ack_in Ack_out |—p
Int |4 Regout Req.in @—{Req-out Reg.in|g

NETWORK-ORIENTED ARBITARATION METHODS: The arbitration methods described
are typically used to arbitrate among peripherals in an embedded system. However, many
embedded systems contain multiple microprocessors communicating via a shared bus; such a
bus is sometimes called a network. Arbitration in such cases is typically built right into the bus
protocol, since the bus serves as the only connection among the microprocessors. A key feature
of such a connection is that a processor about to write to the bus has no way of knowing whether
another processor is about to simultaneously write to the bus. Because of the relatively long
wires and high capacitances of such buses, a processor may write many bits of data before
those bits appear at another processor. For example, Ethernet and 12C use a method in which
multiple processors may write to the bus simultaneously, resulting in a collision and causing
any data on the bus to be corrupted. The processors detect this collision, stop transmitting their
data, wait for some time, and then try transmitting again. The protocols must ensure that the
contending processors don’t start sending again at the same time, or must at least use statistical
methods that make the chances of them sending again at the same time small.

As another example, the CAN bus uses a clever address encoding scheme such that if two
addresses are written simultaneously by different processors using the bus, the higher-priority
address will override the lower-priority one. Each processor that is writing the bus also checks
the bus, and if the address it is writing does not appear, then that processor realizes that a
higher-priority transfer is taking place and so that processor stops writing the bus.

MULTILEVEL BUS ARCHITECHTURES: A microprocessor-based embedded

system will have numerous types of communications that must take place, varying in their
frequencies and speed requirements. The most frequent and high-speed communications will
likely be between the microprocessor and its memories. Less frequent communications,
requiring less speed, will be between the microprocessor and its peripherals, like a UART. We

could try to implement a single high-speed bus for all the communications, but this approach

has several disadvantages.

Figure 6.11: A two-level bus architecture.

Micro- Cache Memory DMA
processor controller controller
. & ¥ 3 3
Processor-local bus ¢
Peripheral Peripheral Peripheral Bridge

v v v

Peripheral bus

.

First, it requires each peripheral to have a high-speed bus interface. Since a peripheral may not
need such high-speed communication, having such an interface may result in extra gates, power
consumption and cost. Second, since a highspeed bus will be very processor-specific, a
peripheral with an interface to that bus may not be very portable. Third, having too many
peripherals on the bus may result in a slower bus.

Therefore, we often design systems with two levels of buses: a high-speed processor local bus
and a lower-speed peripheral bus, as illustrated in Figure 6.11. The processor local bus typically
connects the microprocessor, cache, memory controllers, certain highspeed co-processors, and
is highly processor specific. It is usually wide, as wide as a memory word.

The peripheral bus connects those processors that do not have fast processor local bus access
as a top priority, but rather emphasize portability, low power, or low gate count. The peripheral
bus is typically an industry standard bus, such as ISA or PCI, thus supporting portability of the
peripherals. It is often narrower and/or slower than a processor local bus, thus requiring fewer
gates and less power for interfacing. A bridge connects the two buses.

A bridge is a single-purpose processor that converts communication on one bus to
communication on another bus. For example, the microprocessor may generate a read on the
processor local bus with an address corresponding to a peripheral. The bridge detects that the
address corresponds to a peripheral, and thus it then generates a read on the peripheral bus.
After receiving the data, the bridge sends that data to the microprocessor. The microprocessor
thus need not even know that a bridge exists -- it receives the data, albeit a few cycles later, as
if the peripheral were on the processor local bus.

A three-level bus hierarchy is also possible, as proposed by the VSI Alliance. The first level
is the processor local bus, the second level a system bus, and the third level a peripheral bus.
The system bus would be a high-speed bus, but would offload much of the traffic from the
processor local bus. It may be beneficial in complex systems with numerous co-processors.

ADVANCED COMMUNICATION PRINCIPALS:

Communication can take place over a number of different types of media, such as a
single wire, a set of wires, radio waves, or infrared waves. We refer to the medium that is
used to carry data from one device to another as the physical layer. Depending on the
protocol, we may refer to an actor as a device or node. In either case, a device is simply a
processor that uses the physical layer to send or receive data to and from another device.

In this section, we provide a general description of serial communication, parallel
communication, and wireless communication. In addition, we ‘describe communication
pﬁmiplgs such as layering, error detection and correction, data security, and plug and play.
Pafallel Communication) "
Parallel communication takes place when the physical layer is capable of carrying muluple
bits of data from one device to another. This means that the data bus is composed of multiple
data wires, in addition to control and possibly power wires, running in parallel from one
device to another. Each wire carries one of the bits. Parallel communication has the advantage
of high data throughput, if the length of the bus is short. The length of a parallel bus must be
kept short because long parallel wires will result in high capacitance values, and transmitting
a bit on a bus with a higher capacitance value will require more time to charge or discharge.
In addition, small variations in the length of the individual wires of a parallel bus can cause
the received bits of the data word to arrive at different times. Such misalignment of data
becomes more of a problem as the length of a parallel bus increases. Another problem with
parallel buses is the fact that they are more costly to construct and may be bulky, especially
when considering the insulation that must be used to prevent the noise from ‘each wire from
interfering with the other wires. For example, a 32-wire cable connecting two devices together
will cost much more and be larger than a two-wire cable.

In general, parallel communication is used when connecting devices that reside on the
same IC/or devices that reside on the same circuit board. Since the length of such buses is
short, the capacitance load, data misalignment and cost pmblems mentxoned earlier do not

important role.

erial Communication

/ Serial communication involves a physical layer that carries one bit of data at a time. This
means that the data bus is composed of a single data wire, along with control and possnbly -

power wires, running from one device to another. In serial communication, a word of daia is
transmitted one bit at a time. Serial buses are capable of higher throughputs than parallel
buses when used to connect two physically distant devices. The reason for this is that a serial
bus will have less average capacitance, enabling it to send more bits per unit of time. In
addition, a serial bus cable is cheaper (o build because it has fewer wires. The disadvantage of
a serial bus is that the interfacing logic and communication protocol will be more complex.
On the sending side, a transmitter must decompose data words into bits and on the receiving
side, and the receiver must compose bits into words.

Most serial bus protocols eliminate the need for extra control signals, such as read and
write signals, by using the same wire that carries data for this purpose. This is performed as
follows. When data is to be sent, the sender first transmits a bit called a start bit. A stant bit
merely signals the receiver (0 wakeup and start receiving data. The starnt bit is then followed
by N data bits, where N is the size of the word, and a stop bir. The stop bit signals to the
receiver the end of the transmission. Often. both the transmitter and the recciver agree on the
transmission speed used (o send and receive data. After sending a stant bit, the transmitter
sends all N bits at the predetermined transmission speed. Likewise, on secing a stant bit. 2
receiver simply starts sampling the data at a predetermined frequency until all N bits arc
assembled. Another common synchronization technique is to use an additional wire for
clocking purposes (see the I°C bus protocol). Here, the transmitter and receiver devices use
this clock line to determine when to send or sample the data.

' Wireless Communication

Wireless communication eliminates the need for devices to be physically connected in order
to communicate. The physical layer used in wireless communication is typically either an
infrared (IR) channel or a radio frequency (RF) channel.

Infrared uses clectromagnetic wave frequencies that are Just below the visible light
spectrum, thus undetectable by the human eye. These waves can be generated by using an
infrared diode and detected by using an infrared transistor. An infrared diode is similar to a
red or green diode except that it emits infrared light. An infrared transistor is a transistor that
conducts (i.e., allows current to flow from its source 1o its drain). when exposed (o infrared
light. A simple transmitter can send Is by tuming on its infrared diode and can send Os by
turning off its infrared diode. Correspondingly, a receiver will detect 1s when current flows
through its infrared transistor and Os otherwise. The advantage of using infrared
communication is that it is relatively cheap to build transmitters and receivers. The
disadvantage of vsing infrared is the need for line of sight between the transmitter and
receiver, resulting in a very restricted communication range.

Radio frequency (RF) uses electromagnetic wave frequencies in the radio spectrum. A
transmitter here will need to use analog circuitry and an antenna to transunit data. Likewise, a
receiver will need (o use an antenna and analog circuitry to receive data. One advantage of
using RF js that, gemerally, a line of sight is not necessary and thus longer distance
communication is possible. The range of communication is; of course. dependent on the
transmission power used by the transmitter,

Typically, RF transmitters and receivers must agree on a specific frequency in order to
send and receive data. Using frequency hopping, it is possible for the transmitter and receiver
{o communicate vhile constantly changing the transmission frequency. Of course, both
devices must have a common understanding of the sequence for frequency hops. Frequency
hopping allows more devices to share a fixed set of frequencies and is commonly used in
wireless communication protocols designed for networks of computers and other electronic
devices.

Layering

Layering is a hierarchical organization of a communication protocol where lower levels of the
protocol provide services to the higher levels. We have already discussed the physical layer.
The physical layer provides the basic service of sending and receiving bits or words of data.
The next higher-level protocol uses the physical layer to send and receive packets of data,
where a packet of data is composed of possibly multiple bytes. The next higher level uses the
packel transmission service of its lower level to perhaps send different type of data such as
acknowledgments, special requests, and so on. Typically, the lowest level consists of the
physical layer and the highest level consists of the application’ layer. The apphcatxon layer
provides abstract services to the application such as ftp or http.

Layering is a way to break the complexity of a communication protocol into independent
pieces, thus making it easier to design and understand, much like a programmer abstracting
away complexities of a program by creating objects or libraries of routines. In communication
and networking, the concept of layering is very fundamental.

Error Detection and Correction

Error detection is the ability of a receiver to detect errors that may occur during the
_ transmission of a data word or packet. The most common types of errors are bit errors and
burst of bit errors. A bit error occurs when a single bit in a word or data packet is received as
its inverted value. A burst of bit error occurs when consecutive bits of a word or data packet
are received incorrectly. Given that an error is detected, error correction is the ability of a
receiver and transmitter to cooperate in order to correct the problem. The ability to detect and
correct errors is often part of a bus protocol. VERPHNNNGNEND parity and checksum error
detection algorithms, which are commonly used in bus protocols.

o~ 8 L . A L

ESD UNIT-5
STATE MACHINE AND CONCURRENT PROCESS MODELS

Models vs. Languages N

A computation model describes desired system behavior, while a /anguage captures models.
A model is a conceptual notion, while a language captures that concept in a concrete form. A
model can be captured in a variety of languages, while a language can capture a variety of
models, as illustrated in Figure 8.1, '

Let us consider an analogy involving cooking recipes. A recipe is like a model. a
conceptual notion, consisting of a set of instructions for cooking something, and a notion of
how to sequence among those instructions. For example, a particular recipe may include a
requirement of first putting flour in a bowl and then mixing in two eggs. English is a language
capable of capturing a recipe. This simple example illustrates three important points. First, a
recipe can be captured faithfully in various languages, such as English, Spanish, or Japanese.
In fact, a recipe exists independent of its capture in a particular language — some recipes are
never written down! Second, a particular language can capture many different conceptual
notions other than recipes, such as poetry or stories. Third, certain languages may be better at
capturing recipes than others — while English works fine, a primitive language without words
for “boil” or “simmer” may be cumbersome to use for capturing recipes.

Returning now from cooking to computing, consider sequential programs. A sequential
program is a model, a conceptual notion, consisting of a set' of program instructions for
computing something, and a notion of how .to sequence among those instructions. For
example, a particular sequential program may include a requirement of first initializing a
variable to 10, and then adding 2 to that variable. C is a language capable of capturing a
sequential program. As in our analogy above, there are three important points to remember.
First, a sequential program can be captured in any of various languages, such as C, C++, or
Java, Second, a particular language can capture many different models other than sequential

programs, such as state machines or dataflow. Tlllgi, ccrliaufl_l nl:n%u}z;rg;:itxi\\l:)lat:g ::_1?; {:t
capturing sequential programs than others — ;whlle wcz,r S b z . ge like
assembly without constructs for “loops™ or “procedures” may be cumbersome to usg for
capturiu'g sequential programs. As another exampl‘c, C can be used to capture slgte maf:lunes‘
as we will see later, but a language intended specifically to capture state machines might be
more convenient.

P . "-: :.. ‘_,, .
Models = Resipe — i : | Sequent

program

T

Languages English

(a)
Figure 8 1: Models vs. languages: (a) recipes vs, English. (b) sequential programs vs. C.

BASIC STATE MACHINE MODEL: In a state machine model, we describe system
behaviour as a set of possible states; the system can only be in one of these states at a given
time. We also describe the possible transitions from one state to another depending on input
values. Finally, we describe the actions that occur when in a state or when transitioning between
states.

For example, Figure 8.2 shows a state machine description of the Unit Control part of our
elevator example. The initial state, Idle, sets up and down to 0 and open to 1. The state machine
stays in state Idle until the requested floor differs from the current floor. If the requested floor
is greater, then the machine transitions to state Going Up, which sets up to 1, whereas if the
requested floor is less, then the machine transitions to state Going Down, which sets down to
1. The machine stays in either state until the current floor equals the requested floor, after which
the machine transitions to state Door Open, which sets open to 1. We assume the system
includes a timer, so we start the timer while transitioning to Door Open. We stay in this state
until the timer says 10 seconds have passed, after which we transition back to the Idle state.

Figure 8.2: The elevator's UnitControl process described using a state machine.

req> floor

u,do, t=1,000 | reg> "OOf)
req>floor o) timer < 10
,d,0t=10,0,1,0

u isup, d isdown, 0 isopen
IR0y tistimer_dtart

Finite-state machines: FSM

We have described state machines somewhat informally, but now provide a more formal
definition. We start by defining the well-known finite-state machine computation model, or
FSM, and then we’ll define extensions to that model to obtain a more useful model for
embedded system design. An FSM is a 6-tuple, where:

Sis a set of states {s0, s1, ..., si},

| is a set of inputs {i0, i1, ..., im},

O is a set of outputs {00, o1, ..., on},

F is a next-state function (i.e., transitions), mapping states and inputs to states (S X I->S)
H is an output function, mapping current states to outputs (S O), and s0 is an initial state.

The above is a Moore-type FSM above, which associates outputs with states. A second type of
FSM is a Mealy-type FSM, which associates outputs with transitions, i.e., H maps S x I -> O.
You might remember that Moore outputs are associated with states by noting that the name
Moore has two 0's in it, which look like states in a state diagram. Many tools that support FSM's

support combinations of the two types, meaning we can associate outputs with states,
transitions, or both.

We can use some shorthand notations to simplify FSM descriptions. First, there may be many
system outputs, so rather than explicitly assigning every output in every state, we can say that
any outputs not assigned in a state are implicitly assigned 0. Second, we often use an FSM to
describe a single-purpose processor (i.e., hardware). Most hardware is synchronous, meaning
that register updates are synchronized to clock pulses, e.g., registers are only updated on the
rising (or falling) edge of a clock. Such an FSM would have every transition condition AND
with the clock edge (e.g., clock rising and x and y). To avoid having to add this clock edge to
every transition condition, we can simply say that the FSM is synchronous, meaning that every
transition condition is implicitly AND with the clock edge.

HCFSM AND STATE CHARTS LANGUAGE:

Harel proposed extensions to the state machine model to support hierarchy and concurrency,
and developed State charts, a graphical state machine language designed to capture that model.
We refer to the model as a hierarchical/concurrent FSM, or HCFSM.

The hierarchy extension allows us to decompose a state into another state machine, or
conversely stated, to group several states into a new hierarchical state. For example, consider
the state machine in Figure 8.5(a), having three states Al (the initial state), A2, and B.
Whenever we are in either A1 or A2 and event z occurs, we transition to state B. We can
simplify this state machine by grouping Al and A2 into a hierarchical state A, as shown in
Figure 8.5(b). State A is the initial state, which in turn has an initial state Al. We draw the
transition to B on event z as originating from state A, not Al or A2. The meaning is that
regardless of whether we are in A1 or A2, event z causes a transition to state B.

As another hierarchy example, consider our earlier elevator example, and suppose that we
want to add a control input fire, along with new behaviour that immediately moves the elevator
down to the first floor and opens the door when fire is true. As shown in Figure 8.6(a), we can
capture this behaviour by adding a transition from every state originally in Unit Control to a
new state called Fire Going Down, which moves the elevator to the first floor, followed by a
state Fire Door Open, which holds the door open on the first floor. When fire becomes false,
we go to the Idle state. While this new state machine captures the desired behaviour, it is
becoming more complex due to many more transitions, and harder to comprehend due to more
states. We can use hierarchy to reduce the number of transitions and enhance understandability.
As shown in Figure 8.6(b), we can group the original state machine into a hierarchical state
called Normal Mode, and group the fire-related states into a state called Fire Mode. This
grouping reduces the number of transitions, since instead of four transitions from each original
state to the fire-related states, we need only one transition, from Normal Mode to Fire Mode.
This grouping also enhances understandability, since it clearly represents two main operating
modes, one normal and one in case of fire

The concurrency extension allows us to use hierarchy to decompose a state into two concurrent
states, or conversely stated, to group two concurrent states into a new hierarchical state. For
example, Figure 8.5 (c), shows a state B decomposed into two concurrent states C and D. C
happens to be decomposed into another state machine, as does D. Figure 8.7 shows the entire
Elevator Controller behaviour captured as a HCFSM with two concurrent states.

Figure 8.5: Adding hierarchy and concurrency to the state machine model: (a) three-state
example without hierarchy, (b) same example with hierarchy, (c) concurrency.

/ q>floor UnitControl \

udo =100

u,d,o=0,0,1

req==floor

u,d,o=0,0,1

u,do=0,10
oor==1 ud,0=00,1
FireDrOpen

Ifire Q fire

»— UnitControl \

ud,o=0,10

(a)

fire
Ifire

(b)

Therefore, we see that there are two methods for using hierarchy to decompose a state into
substates. OR-decomposition decomposes a state into sequential states, in which only one state
is active at a time (either the first state OR the second state OR the third state, etc.). AND-
decomposition decomposes a state into concurrent states, all of which are active at a time (the
first state AND the second state AND the third state, etc.).

The State-charts language includes numerous additional constructs to improve state machine
capture. A timeout is a transition with a time limit as its condition. The transition is
automatically taken if the transition source state is active for an amount of time equal to the
limit. Note that this would have simplified the Unit Control state machine; rather than starting
and checking an external timer, we could simply have created a transition from Door Open to
Idle with the condition time out (10). History is a mechanism for remembering the last substate
that an OR-decomposed state A was in before transitioning to another state B. Upon re-entering
state A, we can start with the remembered substate rather than A’s initial state. Thus, the
transition leaving A is treated much like an interrupt and B as an interrupt service routine.

[ElevatorController

(UnitControl ’,.\ (RequmtResol@

[NormalMode]

fire fmm l fice
) | Y.

Figure 8.7: Using concurrency in an HCFSM to describe both processes of the Elevator Controller.

PROGRAM STATE MACHINE MODEL:

The program-state machine (PSM) model extends state machines to allow use of sequential
program code to define a state’s actions (including extensions for complex data types and
variables), as well as including the hierarchy and concurrency extensions of HCFSM. Thus,
PSM is a merger of the HCFSM and sequential program models, subsuming both models. A
PSM having only one state (called a program-state in PSM terminology), where that state’s
actions are defined using a sequential program, is the same as a sequential program. A PSM
having many states, whose actions are all just assignment statements, is the same as an
HCFSM. Lying between these two extremes are various combinations of the two models.

For example, Figure 8.8 shows a PSM description of the Elevator Controller behaviour, which
we AND-decompose into two concurrent program-states Unit Control and Request Resolver,
as in the earlier HCFSM example. Furthermore, we OR-decompose Unit Control into two
sequential program-states, Normal Mode and Fire Mode, again as in the HCFSM example.
However, unlike the HCFSM example, we describe Normal Mode as a sequential program
(identical to that of Figure 8.1(c)) rather than a state machine. Likewise, we describe Fire Mode
as a sequential program. We didn’t have to use sequential programs for those program-states,

and could have used state machines for one or both -- the point is that PSM allows the designer
to choose whichever model is most appropriate.

PSM enforces a stricter hierarchy than the HCFSM model used in State charts. In State charts,
transitions may point to or from a substate within a state, such as the transition in Figure 8.6(b)
pointing from the substate of the state to the Normal Mode state. Having this transition start
from Fire Door Open rather than Fire Mode causes the elevator to always go all the way down
to the first floor when the fire input becomes true, even if the input is true just momentarily.
PSM, on the other hand, only allows transitions between sibling states, i.e., between states with
the same parent state. PSM’s model of hierarchy is the same as in sequential program languages
that use subroutines for hierarchy; namely, we always enter the subroutine from one point, and
when we exit the sub-routine we do not specify to where we are exiting.

Figure 8.8: Using PSM to describe the ElevatorController.

E levatorController
int req;

/ UnitControl \ RequestResolver
/ NormalM ode \ :

up = down = 0; open = 1;
while (1) {
while (req == floor);
open = 0,
if (req> floor) { up= 1;}
else {down = 1;}
while (req != floor);

reg = ...

open = T1;
delay(10);
}

LY

!fireT fire
B FireMode
up = 0; down = 1; open = 0;

while (floor > 1);
up = 0; down = O; open = 1j

As in the sequential programming model, but unlike the HCFSM model, PSM includes the
notion of a program-state completing. If the program-state is a sequential program, then
reaching the end of the code means the program-state is complete. If the program-state is OR-
decomposed into substates, then a special complete substate may be added. Transitions may
occur from a substate to the complete substate (but no transitions may leave the complete
substate), which when entered means that the program-state is complete. Consequently, PSM
introduces two types of transitions. A transitionimmediately (TI) transition is taken
immediately if its condition becomes true, regardless of the status of the source program-state
-- this is the same as the transition type in an HCFSM. A second, new type of transition,
transition-on-completion (TOC), is taken only if the condition is true AND the source program-
state is complete. Graphically, a TOC transition is drawn originating from a filled square inside

a state, rather than from the state’s perimeter. We used a TOC transition in Figure 8.8 to
transition from Fire Mode to Normal Mode only after Fire Mode completed, meaning that the
elevator had reached the first floor. By supporting both types of transitions, PSM elegantly
merges the reactive nature of HCFSM models (using TI transitions) with the transformational
nature of sequential program models (using TOC transitions).

The Role of an Appropriate Model and Language

Specifying embedded system functionality can be a hard task. but an approprialc computation

model can help. The model shapes the way we think of the system. The language should
capture the model easily.

Consider how models shaped the way we thought about the elevator controller example’s
UnitControl behavior. In order to create the sequential program that we captured in Figure
8.2(c). we were thinking in terms of a sequence of actions. First, we wait for the requesteg
floor to differ from the target floor, then we close the door, then we move up or down (o the
desired floor. then we open the door, and then we repeat this sequence. In contrast, in order tg
create the state machine that we captured in Figure 8.3, we were thinking in terms of possible
system states and the transitions among those states. Many individuals say that, for thig
example. the state machine model feels more natural than the sequential program model,
When a system must react to a vasiety of changing inputs, a state machine model may be 3
good choice. Furthermore, notice that the HCFSM model was able to describe the fire
behavior nicely, while the FSM or FSMD models would have become somewhat complex.

The language should capture our chosen model easily. Ideally, the language would have
constructs that directly capture features of the model — a language for capturing state
machines should have constructs for capturing states and transitions, for example. However,
such a model/language match is not always the case. As you may have already ascertained,
the most common situation of a model/language mismatch in embedded systems is that of
having a language designed to support the sequential program model, but wanting to capture a
system using a state machine model. In this case, we can use structured techniques for
capturing the state machine model in the sequential program language, as shown earlier. To
see the benefit of using the best model, think of how the fire behavior would have been
incorporated into the sequential program of Figure 8.2(c). We would have had to insert checks
for the signal throughout theé code, making the code very complex. '

The moral of the story here is that often we cannot choose the language used to capture
embedded system functionality — that choice is often dictated by other factors. But we need
not be limited to using the model directly supported by that language. We can use a different
model if that model provides an advantage, and then capture the model in the language using
structured techniques.

CONCURRENT PROCESS MODEL:

In a concurrent process model, we describe system behaviour as a set of processes, which
communicate with one another. A process refers to a repeating sequential program. While many
embedded systems are most easily thought of as one process, other systems are more easily
thought of as having multiple processes running concurrently.

For example, consider the following made-up system. The system allows a user to provide two
numbers X and Y. We then want to write "Hello World" to a display every X seconds, and
"How are you" to the display every Y seconds. A very simple way to describe this system using
concurrent processes is shown in Figure 8.9(a). After reading in X and Y, we call two
subroutines concurrently. One subroutine print’s "Hello World" every X seconds, the other
prints "How are you" every Y seconds. (Note that you can’t call two subroutines concurrently
in a pure sequential program model, such as the model supported by the basic version of the C
language). As shown in Figure 8.9(b), these two subroutines execute simultaneously. Sample
output for X=1 and Y=2 is shown in Figure 8.9(c).

To see why concurrent processes were helpful, try describing the same system using a
sequential program model (i.e., one process). You’ll find yourself exerting effort figuring out
how to schedule the two subroutines into one sequential program. Since this example is a trivial
one, this extra effort is not a serious problem, but for a complex system, this extra effort can be
significant and can detract from the time you have to focus on the desired system behaviour.
Recall that we described our elevator controller using two "blocks." Each block is really a
process. The controller was simply easier to comprehend if we thought of the two blocks
independently.

Figure 8.9: A simple concurrent process example: (a) pseudo-code, (b) subroutine
execution over time, (c) sample input and output.

ConcurrentProcesst xample() PrintHellow orld
x = ReadX ()
y = ReadY () —p-ReadX —p ReadY
Call concurrently: PrintHowA reY ou
PrintHelloW orld(x) and
PrintHowA reY ou(y) time’
PrintHelloW orld(x) (b)
while (1) { Enter X: 1
print "Hello world." Enter Y: 2
delay(x); Hello world. (Time=15)
} Hello world. (Time = 2)
How areyou? (Time= 25)
PrintHowA reY OU(X) Hello world. (Tfme= 3 S)
while (1) { How areyou? (Time= 45)
p(int "How are YOU?" Hello world. (Ttme =4 S)
delay(y);
}
(a) (c)

COMMUNICATION AMONG PROCESSES:

Two common methods for communication among processors are SHARED MEMORY AND
MESSAGE PASSING.

SHARED MEMORY: In the shared data technique, processes read and write variables that
both processes can access, called global variables. For example, in the elevator example above,
the Request Resolver process writes to a variable request, which is also read by the Unit Control
process.

MESSAGE PASSING:

In message passing, communication occurs using send and receive constructs that are part of the
computation model. Specifically, a process P explicitly sends data to another process Q, which must
explicitly receive the data. In the elevator example, Request Resolver would include a statement:
Send(Unit Controller request). Likewise, Unit Control would include statements of the form:
Receive(Request Resolver, uc_request). rr_req and uc_req are variables local to each process.

Message passing may be blocking or non-blocking. In blocking message passing, a sending
process must wait until the receiving process receives the data before executing the statement
following the send. Thus, the processes synchronize at their send/receive points. In fact, a
designer may use a send/receive with no actual message being passed, in order to achieve the
synchronization. In non-blocking message passing, the sending process need not wait for the
receive to occur before executing more statements. Therefore, a queue is implied in which the
sent data must be stored before being received by the receiving process.

Example:

while(1) { while(1) {
produce (&data) recsive (A, &dats)
sendCB, &data) ; tramfom(&data) ‘
/* regiacn 1 */ send(A, sdata);
recedive (B, &data) ; /* region 2 */
onsume (&data) 7 }

} }

}

Communication among processes using send and receive.
\

The identifier uniquely identifies one of the processes that are currently executing in the
system. An cxample of message passing is illustrated in Figure 8.16. Here process 4, after
producing a data packet, sends it to process B. Meanwhile, process B receives the packet,
performs some transformation on the data and sends it back to A. Process A4, after receiving
the data packet, consumes it and the cycle repeats. Regions of code labeled 1 and 2 are
segments that perform auxiliary functions in each process.

Note that receive operations are always blocking. That means the once a process executes
a receive operation, it is blocked until another process executes the corresponding send
operation. The send operations, on the other hand, may or may not be blocking. One reason
for having nonblocking send operations is to allow a process that just performed a send
operation to continue with its execution. In our example, the regions of code labeled 1 and 2
are executed immediately after a send operation, even though the receiving process may not
have received the data item.

| Synchronization among Processes

In order for two or more concurrent processes to accomplish a common task, they must at
times synchronize their execution. Synchronization among processes means that one process
must wait for another process to compute some value, reach a known point in its execution, or

signal some condition, before it (the waiting process) proceeds. ChERSRE RGN

The join operation that we discussed earlier is a limited form of synchronization among
two processes. Recall that here, one process performed a join operation on another process,
indicating that 1t should be blocked until that other process terminates. The blocking send and
receive protocols, a.k a. synchronous send and receive, discussed in the previous section; also
scrve to synchronize processes. When one process performs a send or receive operation, it is
blocked until the other process reaches its receive or send point, respectively, before the
blocked process is allowed to continue. We will next describe condition variables and
monitors as synchronization mechanisms.

Condition Variables '

Onc.way to achicve synchronization among concurrently executing processes is 1o use a
special construct called a condition variable. A condition variable is an object that ﬁnils
two kinds of operations. called signal and wait. 1o be performed on it. When wait is pcr‘:'fnncd
on a condition variable. the process that performed the wait operation is blocked until a;omcr
process pgrfgrms a signal operation on the samc condition variable. The semantice of a want
operaugn is in fact a bit more complex. When a process. say. -1. executes a wait operation. it
Passcs 1t a mutex variable that it has already acquired the lock for. The wait operation will
1hcn cause the nutex to be unlocked such that another process. say. 3. may be able to enter a
critical section and computc some value or make some condition become true. Once the

condition becomes true, process B will signal the condition variable causin process
. 2 . . A
become runnable and implicitly reacquire the mutex lock. : >

ML ratocaes oo ‘.

Monitors

Another way to achieve synchronization among concurrently executing processes is to use a
‘special construct called a monitor. A monitor is a collection of data and methods or
subroutines that operate on this data-similar to an object in an object-oriented paradigm. A
special guarding property of a monitor guarantees that only one process is allowed to execute:
inside the monitor at a given time. In other words, one and only one of the methods of a

monitor can be active at any given time. A process, say, X, is allowed to cnter a monitor if
there are no other processes executing in that monitor. This is shown in Figure 8.18(a). Once
in a monitor, X has exclusive access to the data inside the monitor. If, and when, X executes a
wait operation on a condition variable, also defined inside the monitor, it will be blocked q
waiting as shown in Figure 8.18 (b). At this point, another process, say Y, is allowed to enter j
the monitor. If ¥ signals the condition that X is currently waiting on, ¥ will be blocked and X
will be allowed to reenter the monitor. This is shown in Figure 8.18 (¢). Then, once X .
terminates, or waits on a condition, ¥ is allowed to reenter and finish its execution as shown in
Figure 8.18 (d). ;

Monitor
DATA
CODE
@)
Monitor - Nonttor
{_Waiu'ng] ——
’ CQDE

= = (

d) @

Fig;8.18 procedure consumer example with monitors

IMPLEMENTATION: The most straightforward method for implementing

concurrent processes on processors is to implement each process on its own processor. This
method is common when each process is to be implemented using a single-purpose processor.

CREATING AND TERMINATING PROCESSES:

One method for sharing a processor among multiple processes is to manually rewrite the
processes as a single sequential program. For example, consider our Hello World program from
earlier. We could rewrite the concurrent process model as a sequential one by replacing the
concurrent running of the Print HelloWorld and Print How Are You routines by the following:

I =1; T = 0; .

while (1) |
Delay(I); T
if X modulo
if Y modulo

T + I
is 0 then call PrintHelloWorld
is 0 then call PrintHowAreYou

=3 &3

Manually rewriting a model may be practical for simple examples, but extremely difficult for
more complex examples. While some automated techniques have evolved to assist with such
rewriting of concurrent processes into a sequential program, these techniques are not very
commonly used.

a second, far more common method for sharing a processor among multiple processes is to rely
on a multi-tasking operating system. An operating system is a lowlevel program that runs on a
processor, responsible for scheduling processes, allocating storage, and interfacing to
peripherals, among other things. A real-time operating system (RTOS) is an operating system
that allows one to specify constraints on the rate of processes, and that guarantees that these

rate constraints will be met. In such an approach, we would describe our concurrent processes
using either a language with processes builtin (such as Ada or Java), or a sequential program
language (like C or C++) using a library of routines that extends the language to support
concurrent processes. POSIX threads were developed for the latter purpose.

A third method for sharing a processor among multiple processes is to convert the processes to
a sequential program that includes a process scheduler right in the code. This method results in
less overhead since it does not rely on an operating system, but also yields code that may be

harder to maintain.

-
us

Processor A ST

(a) Processor B |<a—a

Processor C |<t—a

Processor D |-—p»]

Communication B

-

) General Purpose

Processor

—-
s

I

©

ommunication B

B

Figure 8.20: Mapping processes on processors: (a) processes mapped on multiple single-purpose processors, (b)
processes mapped on one general-purpose processor, (c) processes mapped 10 a combination of single and general
purpose processors. g

Suspending and Resuming Processes

If multiple processes are implemented using single-purpose processors, suspending of
resuming them must be built as part of the processor’s implementation. For example, the
processors may be designed having an extra input. When this input is asserted, the processor
is suspended, otherwise it is executing. If multiple processors are implemented using a single
general-purpose processor. than suspending or resuming the processes must be built into the
programming language or multitasking library that is used to describe the processes. In both} -
cases, the programming language or library may rely on the underlying operating system t
handle these operations.

Joining a Process

If multiple processes are implemented using single-purpose processors, than for one process .\
to join another process ¥ would require building additional logic that will determine when ¥
has reached its completion point and in response resume X Therefore. in addition to having
input signals that signal when a processor should suspend, each processor must have output
signals that indicate when that processor is done executing its task. If multiple processors are
implemented using a single general-purpose processors, join must be built into the language
or multitasking library that is used to describe the processes. In both Cases, the programming
language or library may rely on the underlying operating system 10 handle this operation.

Scheduling Processes

When multiple processes are implemented on a single general-purpose processor, the manner
in which these processes are éxecuted on a single shared processor plays an important role in
meeting each process’s timing requirements. This task of deciding when and for how long a-
processor executes a particular process is know as process scheduling. A scheduler is a
special process that performs process scheduling. A scheduler can either be implemented as a
nonpreemptive scheduler or preemptive scheduler. A nonpreemptive scheduler only decides
on what process to select for execution, on the processor, once the currently executing process
completes its execution. ‘A preemptive scheduler is a scheduler that only allows a process to
executed for a predetermined amount of time, called a time quantum, before preempting in
order to allow another process to execute on the processor. This time quantum may be 10 to
100s of milliseconds long. The length of this time quantum greatly determines the response
time of a system. :

REAL TIME SYSTEMS:

We will discuss some operating systems that are designed to support real-time systems.
Note that the term real-time system refers to a class of applications or embedded systems thal
exhibit the real-time characteristics and requirements mentioned above. Real-time operating
systems, on the other hand, refer to underlying implementations or systems that supports
real-time systems. In other words, real-time operating systems provide mechanisms,
primitives, and guidelines for building embedded systems that are real-time in nature.

Windows CE

Windows CE was built specificaliy for the embedded system and the appliance markel
providing a scalable real-time 32-bit platform that can be used in a wide variety of embedded
systems and products. One of the benefits of using Windows CE as an RTOS that supports the
Windows application-programming interface API. which has gained great popularity. This
operating system provides a set of Internet browsing and serving services that make it suitable

for systems that are designed to interface to the Internet. The Windows CE kernel allows for'_:
256 priority levels per precesses and implements preemptive priority scheduling. The size of -
the Windows CE kernel is 400 Kbytes. ;

QNX

The QNX RTOS architecture consists of a real-time micro-kemel surrounded by a collection
of optional processes (called resource managers) that provide POSIX and UNIX compatible
system services. A micro-kernel is a name given to a kemel that only supports the most basic
services and operations that typical operating system’s provide. However, by including or
excluding resource manager processes the developer can scale QNX down for ROM-based ;
embedded systems, or scale it up to encompass hundreds of processors connected by various
networking and communication technologies. Resource manager processes are modules that
can be added or removed from the basic micro-kernel to best fit the functionality provided by
the operating system to that needed by the application. The micro-kemel of QNX occupies -
less than 10 Kbytes and complies with POSIX real-time standard. QNX supports up to 32
priority levels per process and implements preemptive process scheduling using either FIFQ, |
round robin, adaptive, or priority-driven scheduling, : '

ESD UNIT-6
DESIGN&IC TECHNOLOGY

IC MANUFACTURING STEPS:

~ Design Manufacturing 7 .
Structural Mask Layering Wa.fer . Chip cutout
design 7‘% creation on silicon testing [/packaging
Layout // mmmeetesmesic—essaus B
design * -
1
1
]
i silicon wafer !

Figure 10.3: IC manufacturing steps.

Figure 10.3 illustrates IC manufacturing steps. During the dgsign pha.se, a designer
creates a structural design and then generates a layout for that design. The design phase may
take many months. Once fully satisfied, the designer provides the layout to an IC
manufacturer, also known as a fabrication plant, “fab,” or foundry. Because the layout is often

- T e T T g TTTTTTT W m T W mmmeewme—— wv— e v e m—r—

provided to the manufacturer on a magnetic tape commonly used for storing large quantitics
of digital data. providing the layout to a manufacturer is commonly referred to as “tape-out.”
Because part of the manufactunng process involves spinning molten silicon, generating ICs is
also referred to as a “silicon spin.” IC manufacturing may take months.

Manufacturing consists of several main steps. The first step is to create a set of masks
corresponding to the layout. Hundreds of masks may be required. The second step is to use
cach of these masks to create the various layers on the silicon surface, consisting of several
substeps per mask. We point out that this layering process doesn’t just create a single IC, but
rather numerous ICs at once. The reason is that ICs are built on a silicon wafer. A silicon
wafer is a thin polished circle. sliced from a cylinder of silicon, like a pepperoni slice intended

- for a pizza is sliced from a cylinder of sausage. A silicon wafer may be tens of centimeters in
diameter. whereas an IC is usually less than one centimeter on a side, thus meaning that a
wafer can hold tens of ICs (perhaps 100). Thus. the masks actually contain tens of identical
regions. so that tens of ICs are being created simultaneously on a silicon wafer, as shown in
the figure. Think of this the next time that you watch a movie where everyone is trying to get
their hands on some “prototype chip™ that must be found lest the world be destroyed; if
there’s one chip. there's probably 50 or 100 more that were made on the same wafer, lying
around somewhere! (Never mind — just enjoy the movie).

The third step is to test the ICs on the wafer. ICs determined to be bad arc marked,
literally, so that they will be thrown away later. The machines that perform such testing are
known appropriately as testers. They use probes that contact the pads, or input and output
ports, of a particular IC on the wafer. They then apply streams of input sequences and look for
the appropriate output sequences. These testers are very expensive devices. and their cost per
IC pin has actually increased. Unfortunately, with all the steps required to build an IC and
because of the extremely small sizes of the transistors and wires involved, bad ICs are quite
common. Yield is a measure of the percentage of good ICs versus bad ICs con‘aining erors.

Finally. the last step is to cut out each IC and mount the good ones in an IC package,
which of course gets tested again. .

Full-Custom (VLSI) IC Technology

In a full-custom IC technology, the designer creates the complete layout — a task often called .
physical design or VLS/ design (where VLSI stands for very large scale integrated circuit).
The designer must design or obtain a transistor-level circuit for every processor and memory.
After this point, therc are several key physical design tasks necessary to obtain a good layout:

1

«dL Tp-y

F=(xy)
a
=
0 =
(a)

Figure 10.5: A more compact NAND circui: (2) NAND circuit schematic, (b) compacted layout.

metal2 layer
X 'q p' y oxide layer
metall layer
, F=(xy) | _oxide layer
X *‘, Po')ﬁflieon layer
oxide layer
y —-’ pdiff odiff
0 silicon substrate
@ ®)

F.igur.e 10.2: Depicting circuits in silicon: (a) a NAND circuit schemat;
<ircutt on an [C.

Placement: the task of placing and orienting every transistor somewhere on the IC.
Routing: the task of running wires between the transistors, without intersecting other
wires or transistors,

* Sizing: the task of deciding how big each wire and transistor will be. Larger wires
and transistors provide better performance but consume more power and require
more silicon area.

apart a minimum distance lest they electrically interfere with one another.
In the past, many transistor circuits were converted by hand into compact layouts. Such

will be heavily reused.

Instead of hand layout, most layout today is done using automated layout tools, known as
Physical design tools. These tools typically include powerful optimization algorithms that run
for hours or days seeking to improve the speed and size of a layout.

The advantages of full-custom IC technology include its excellent efficiency with respect
to power, performance, and size. Interconnected transistors can be placed near each other and
thus be connected by very short wires, yielding good performance and power. Furthermore,

only those transistors necessary for the circuit being designed appear on the IC, resulting in no
; to unused transistors.

“m’lc%:r ?ﬁ:l: edisadvamag::s of full-custom IC technology are its high NRE cost and long

time-to-market. These disadvantages stem from having to design a complete layout, which

even with the aid of tools can be time-consuming and error-prone. Furthermore, mas)gs‘ror

every IC layer must be created, increasing NRE cost and delaying un_lg-lo-markel, In a_ddmon,

errors discovered after manufacturing the IC are common, often requiring several respins.

| Semi-Custom (ASIC) IC Technology |

As mentioned above, creating a full-custom layout can be quite challenging. A designer using ',
a semi-custom IC technology has this burden partially relieved, since rather than creating a l
full-custom layout, the designer connects pre-layed-out building blocks. The common name
for such a semi-custom IC is an application specific integrated circuit (ASIC). The term |
application specific was likely chosen to contrast with general-purpose processor ICs, since !
for many years a processor was implemented as its own [C. ASICs in contrast implemented a |
_circuit specific to a particular application (Le., a single-purpose processor). Today, however, E
a single ASIC may implement a combination of general-purpose and single-purpose |
processors. Needless to say, there is much confusion related to use of the term ASIC today. |
Thus. we prefer the term semi-custom IC. . !
The two main types of semi-custom IC technologics are gate array and standard cell, |
With either type. the main advantages versus fullcustom are reduced NRE cost and faster ;
time-to-market, since less layout and mask creation must be performed. The main
disadvantage is reduced performance, power, and size cfficiency. However, relative 1o,
programmable 1C technology (ye! to be discussed), semi-custom is extremely efficient in:
terms of performance, power, and size. Because of its good efficiency coupled with reduced |
NRE costs. scmi-custom is the most popular IC technology today. i

Gate Array Semi-Custom IC Technology
i

In a gate array IC technology, all of the logic gates of the IC have already been layed out with!
their placement on the [C known, leaving the designer with the task of connecting the gates
(routing) in a manner implementing the desired circuit. Note that gate here refers (o a logic
gate (e.g., AND, OR) rather than a terminal of a CMOS transistor. A simplified gate array
layout is shown Figure 10.6(a).

Because the IC's gates are placed beforehand, many of them may go unused, since we
may not need all instances of each type of gate in our particular circuit. Furthermore, routing
wires between gates may be quite long since the gate placement was decided before knowing
what connections would be made.

Standard Cell Semi-Custom IC Technology :
In standard ccll IC technology, common logic functions, or cells, have already been

! . requires more NRE cost and longer time-t -market tha
;x::zvé :;:ce there is more layout rema-ining to be performed andgaell maskson'nust sfillltl::n g:le
e wi’: mNnREeac?ldeme4@MMI 15 still much less than full-custom, since the inunsza;
i : cell is already completed. In addition, effieiency is very good co

gate array, smcg only those cells needed are actually used 1 y it
SO as 1o reduce interconnect, Furthermore, each cell may
than in gate arrays, leading 1o more compact designs

A compromise between '
array, or cell-based array. A cell armay is pretty much what we’

name. Cells, which you’|l remember can be more complex than gates, have alrcady been

layed out, and have also a -
together. ready been placed. Thus, the designer nced only connect the cells

~-

4

(b)

- : :
igure 10.6: Semi-custom IC technology: (a) gate array, (b) sunda'rd cell

Pro : ;

o ﬁg:i:n.n:able Logic Device (PLD) IC Technology
: uired to manufact i :

Whije we may accept this ti e onan IC Is measured in months, typically two to three months,

to manufacture our final system, we probably

the number of 1Cs we plan to manufacture if that number is small. In-addition, manufacturing
an IC is riskv. since we may discover after such manufacturing that an IC doesn’t work
properly in its target system, either due to manufacturing problems or due to an incorrect
initial design. Thus, we never know how many respins will be necessary before we get a
working IC; a recent study stated that the industry average was 3.5 spins. Therefore, we
would like an IC technology that allows us to implement our system's structure on an IC, but
that doesn'l require us to manufacture that IC. Instead, we want an IC that we can program in
the field, with the field being our lab or office. The term program here does not refer to
writing software that executes on a microprocessor, but rather to configuring logic circuits
and interconnection switches to implement a desired structural circuit.

Programmable logic device (PLD) technology satisfies this goal. A PLD is a pre-
manufactured [C that we can purchase and then configure to implement our desired circuit.

An early example of a PLD was a programmable logic array (PLA), introduced in the
carly 1970s. A PLA was a small PLD with two levels of logic, a programmable AND array
and a programmable OR array. Every PLA input and its complement was connected to every
AND gate. So if a PLA had 10 inputs, every AND gate had 20 inputs. Any of these
connections could be broken, meaning that each AND gate could generate any product term.
Likewise. each OR gate could generate any sum of AND gate outputs. A PAL (programmable
array logic) is another PLD type that eliminates the programmability of the OR array to
reduce size and delay. PLAs and PALSs are often referred to as simple PLDs, or SPLDs.

WAL e mmm e w——— - =

As IC capacity grew over the years, SPLDs could not simply be extended by adding more
inputs, since the number of required connections to the AND array inputs would grow too
high. Thus, the new capacity was taken advantage of mstead by integrating numerous SPLDs
on a single chip and adding programmable interconnect between thein, resulting in what is
known as-a complex PLD, or CPLD. CPLDs often contain latches to enable implementation
of sequential circuits also. Figure 10.7 illustrates a sample architecture for a CPLD. The top
half of the figure is an SPLD that can implement any function of the chip’s input signals as
well as any SPLD output signal. The bottom half represents another identical SPLD. The
array on the left consists of vertical lines that can be programmed to connect with any of the
horizontal lines, so that any signal’s true or complemented value can be fed into any gate. The
output of each SPLD feeds into an IO cell. The IO cell can be programmed to pass the
latched or unlatched, true or complemented, output to the CPLD’s external output. and/or to
the programmable array on the left as input to SPLDs.

While able to implement more complex circuits than SPLDs, CPLDs suffer from the
problem of not scaling weli as their sizes increase. For example, supposed the CPLD
architecture of Figure 10.7 had 4 inputs and 2 outputs. Then there would be 6 signals in the
programmable array, plus 6 more for those signals’ complements, thus fequiring 12-input
AND gates. Likewise, suppose there were 12 inputs and 6 outputs. Then there would be 18 +
18 signals. requiring 36-input AND gates. Notice such an architecture doesn’t scale well.

The logical solution is to build devices that are more modular in nature. In particulat.
thiere is no need to connect every input signal and every output signal to every AND gate. A
morc flexible approach can be used in which a subset of inputs and outputs are input to each
SPLD. This inore miedular, more scalable approach to PLD design resulted in architectures

Programmable
connections cd
aa\bb'cc da § + l
4t no -
Ii ~l A prosmnoy connection
F—{-"Ac'd
ll
ra
7
v
rd
7 IO Cell Out0
7
i
4
ya
7
In0
D T
i
_ f
? T A
Inl P
L/d— b
1
H
>
o
L]
L)

Figure 10 7: ACPLD architecture.

known as - field-programmable gaic arrays (FPGAs). An FPGA4
programmable iogic blocks connected by programmable interconnect b

locks.
The name FPGA was intended to contrast thesc devices with traditional gate arrava,
which need masks to create the interconnections betweer: the alreadv layed-out gates. FPGAs
in contrast. have their intcrconnections i i

consists of arrays of

do not have arrays of gates

danywhere io be found. and thus the name FPGA can be somewhat misleading.

THREE IC TECHNOLOGIES:

i oo Fullcustom
ot B =
| | ; START
1 1 : " i)
i i Designersare provided | 1y gioners creale layou
i 3 withalibraryof | for basic componeaiy
: : ..l.\-«:,..’-(- : AI‘U
| : 1 il
1 1
: ? WS
: ‘ : Do
1] !
1 i i
1] : .
i igners the
i Designers are provided | ! Des place ;
g with a set of masks of E i components, resulting in |
! predefined E E masks.
1
- Y ' H
- By | |
: 1}
| e i | g
|
5 : SIARL : | Desigers provide the
3% | Do provie e | ity
Zz i connections
gi | gates, whichare | oy e
& ' masks, | |
- 1 ' '
i B o po ; i
Ll'bcmasksarcsanlothcs'l'bemasksmmllothc E'Tbema_sksvmszn“l:’h
" fabrication plantto | fabrication plantto | fabrication pl
| gl i produce ICs.
® i produce ICs. ' produce ICs. ‘

onths ! ! ;
weeks or m | . '

T ' i E e i S
Dwgnasopuuna i [i : ¢
iRl | |
program ; :
lhedziptogxeanc i ICs are now ready lo E ICs are now ready to i ICsb:renowmudylo

the desmu! ' be testedAusad : be tested/used i tested/used.
functionality. ' E E
e .. SN, SRR
1
Figure 10.4: The three IC technologies.

AUTOMATION: SYSTHESIS

We now provide a brief overview of the various levels of synthesis. A standard definition
for synthesize is "forming a complex whole by combining parts." In the context of digital
hardware design, however, the term has taken on the meaning of "automatically converting a
§ystem’s behavioral description into a structural implementation," where that implementation
1s a complex whole formed by parts. The structural implementation must optimize some set of
design metrics, such as performance, size, and power. . ;

To better understand the meaning of converting from a behavioral description to a
sﬁucp:ml implementation, Gajski developed the Y-chart, shown in Figure 11.4. The chart
consists of three axes, behavioral, structural, and physical, each representing a type of a
description of a digital system, as follows: :

« A befzavioral description defines outputs as a function of inpufs. It describes the

algorithms we’ll use to obtain those outputs, but does not say how we’ll implement

those algorithms. ,
* A structural description impiements that behavior by connecting components with
known behavior.
Structural Behavior

Processors, memorics . v Sequential programs

Registers, FUs, MUXs Register transfers

Gates, flip-flops Logic equations/FSM
Transistors Transfer [unctions

—— Cell Layout
-t Modules
—— Chips
—+ Boards
v

Physical

Figure 11.4: Gajski's Y-chart.

e A physical description tells us the sizes and locations on a chip or board of a

system'’s components and their imterconnecting wires.

For example, addition is a behavior, while a carry-ripple adder is a structure. Likewise, a
sequential program that sequences through an array to find the array’s largest-valued element
is a behavior, while a controller and datapath implementing that algorithm is a structure.

- The chart also shows that each description can exist at one of various levels of
abstraction. For example, at the gate-level of abstraction, a behavioral description consists of
logic equations, a structural description consists of a connection of gates, and a physical
description consists of a placement of gates/cells and a routing among them. As another
example, at the system level of abstraction, a behavioral description may consist of
communicating sequential programs (processes), a structural description of a connection of |
processors and memories, and a physical description of a placement of processor/memory |
cores and buses on an IC or a board. '

Synthesis can generally be thought of as converting a behavioral description at 2
particular abstraction level to a structural description. That structural description may be at the

same level or a lower one, but not a higher one. W, ow descri
] . € I i 1
= el bl 4 ribe synthesis techniques at

Logic Synthesis

Logic synthesis automatically converts a logic-level behavior isti i
and/or an FSM, into a structural implementation, consisting of’cgﬁiﬁaggggogﬁz eqm_ugns
logic synthesis into combinational-logic synthesis and FSM synthesis Combi s dn-u!e
synthesis can be further subdivided into two-level minimizati mult n'at.lm‘\al !ognc
rther subdivided i evel minimization and multilevel minimization
Two-level logic minimization: We-can represent any logic function as a sum of producis
(or a product of sums). We can implement this function directly using a level consisting of
AND gates, one for each product term, and a second level consisting of a single OR gga(e
Thus, we have two levels, plus inverters necessary to complement some inputs to the ANﬁ
gates. The longest possible path from an input signal to an output signal passes through
infm t"vo gates, not counting inverters. We cannot in general obtain faster performance L
Multilevel Logic Minimization: The previous paragraphs dealt with minimizing the AND
gates and their sizes in a two-level sum-of-products impleméntation.' We noted that a two-
level implementation has excellent performance, with the longest path being only two gates.
However;‘. perhaps we don’t need such great performance. Rather, perhaps we are willing to

LI LoV A SO TIPS R e/ Aot 0

~

AP

B et L]

even the best two-level implementation. We can achieve s . :
levels of logic. uch a trade-off by using multiple

Register-Transfer Synthesis

Logic synthesis allowed us to describe our system as boolean cquations. or as an FSM.
However, many systems are too complex to initially describe at this logic level of abstraction.
Instead. we often describe our system using a more abstract (and hence powerful)
computation model, such as an FSMD. .

Recall that an FSMD allows variable declarations of complex data types. and allows
arithmetic actions and conditions. Clearly. more work is necessary to convert-an FSMD 1o
gates than to convert an FSM to gates. and this extra work is performed by register—transfer
synthesis.” Register—transfer (RT) synthesis takes an FSMD and couverts it to a custom
singlc-purpose processor. consisting of a datapath and an FSM controller. In particular. it
gencerates a complete datapath. consisting of register units o storc variables. functional units
to implement arithmetic operations. and connection units (buses and multiplexors) (o connect
these other units, It also gencrates an FSM that controls this datapath.

Creating the datapath requires solving two key subproblems: allocation and binding.
Allocation is the problem of instantiating storage units. functional units. and consicction units.
Binding is the problem of mapping FSMD opcerations to specific units.

As in logic synthesis. both of these RT synthesis problems are hard to solve optimally.

Béhavioral Synthesis

In RT synthesis. we describe the actions that occur on every clock cycle of the system. using
an FSMD. However, for many systems. we arc only interested in having the output be a
correct functior: of the inputs. and we don't care how that function is broken down into clock -
cvcles. Therefore. we may want to describe such a system using a sequential prograin.

Behavioral synthesis converts a single sequential program into a single-purpose processor
structure that executes only that one program. Behavioral synthesis has also been referred to
as high-level synthesis. .

A sequential program differs from an FSMD in that it does not require us to schedule the
system’s actions into states when describing the behavior. Therefore, implementing a
sequential program requires not only allocation and binding as in RT synthesis, but also
scheduling. Scheduling is the assignment of a sequential program’s operations to states.

In Chapter 2, we provided a simple technique for behavioral synthesis. First, we provided
templates for converting every sequential program construct into an equivalent set of states,
thus accomplishing scheduling. Second, we provided a simple allocation and binding method,
namely, allocating one storage unit for every variable, one functional unit for every operation,
and one connection unit for every transfer. While this approach results in a correct processor
circuit, the circuit is clearly not optimized. Thus, behavioral synthesis tools use advanced
techniques to carry out the tasks of scheduling, allocation, and binding in order to optimize a
circuit. They also typically include standard compiler optimizations that are applied before
those tasks, such as constant propagation, dead-code elimination; and loop unrolling.

Hardware-Software Co-Simulation

More generally. a variety of si i
and precision/accuracy. For a pj

simulation can vary from very detailed. like a gate-level model. to very abstract. like an
instruction-level model. An instruction-level model of a general-purpose processor is known
as an instruction-set simulator (1SS). An instruction-level model of a single-purpose processor
is simply know: 2s a ». :tem-level model. Lower-level simulations of either type of processor
is usually done by “reaiin: a behavior. RT. or gate-level model in a hardware description
language (HDL) ¢..vironinent. Because of the past separation of software design and hardware
design. the simulation tools for cach domain liave evolved quite independently. The emphasis
in software simulation has been on ISSs. The emnphasis of hardwarc simulation has been
models in hardware description languages (HDLs).

The integration of general-purpose and single-purpose processors onto a single IC has
incrcased the need for an integrated method for simultancously simulating these different
tvpes of processors. Thus. there is much interest in merging previously distinct software and
hardware siinulation tools.

One simple but naive form of iniegration is to create an HDL model of the
microprocessor that will run the software of a system. and then integrate that model with the
HDL models of the rcmaining single-purpose processors. While straightforward to
implement. simulating a microprocessor in an HDL has two key disadvantages. First. this
approach will be much slower than an ISS. since the HDL simulator represents an extra layer
of software that must be executed. Second. such an approach ignores the fact that ISSs have
excellent controllability and observability features that designers have become accustomed to.

As it tumms oul. in many cinbedded systemns. those processors do have frequent
communication. Thereforc. modern hardwarc-softwarc co-simulators do more than just
integrate two simulators. They also seck to minimize the communication between those
simulators. Consider. for example. a systemn having one microprocessor. one single-purpose
processor representing a coprocessor. and one memory. all connected using a single shared
bus. Supposc the microprocessor’s program is stored in this memory. and that the coprocessor
uses the memory cxtensively also. We can simulate the microprocessor using an ISS and the
coprocessor using an HDL. But wherc should the sharcd memory be modeled. in the ISS or
the HDL? If in the HDL. then on cvery instruction. the 1SS will nced to stall in order to
contmunicate with the HDL simulator to fetch the next instruction from memory. If in the
ISS. then the HDL simulator will need to stall in order intcrrupt the ISS for access to the
memory. However. note that most of these stalls are probably not nccessary. For example. the
ISS accesses of its instructions in memory are rcally irrclevant to the coprocessor. Likewise.
the coprocessor’s manipulation of data in memory is not relevant to the microprocessor.
- except in cases where that data is being transferred between the processors using the memory.

In order to minimize this communication, we can model the memory in both the ISS and the
HDL simulator. Each simulator can use its own copy of the memory without bothering the
other simulator most of the time. The co-simulator must ensure that the memories remain
consistent and that shared data does get communicated properly. Co-simulators using this

speedup technique exhibit much faster performance, with some reports indicating a factor of
100 or more.

Reuse: Intellectual Property Cores

Designers have always had at their disposal commercial off-the-shelf (COTS) components.
which they could purchase and use in building a given system. Using suchi predesigned and
prepackaged ICs, each implementing general-purpose or single-purpose processors. greatly
reduced design and debug time, as compared to bujldin'g all system components from scratch.
As discussed in Chapter 1, the trend of growing IC capacities is leading to all ﬂ}e
components of a system being implemented on a single chip, known as a s:VSlem-on-a-clup
(SOC). This trend, therefore, is leading to a major change in the distnbutipn of 'such
off-the-shelf components. Rather than being sold as ICs, such components are increasingly -

being sold in the form of intellectual property, or IP. Specifically, they are sold as behavioral,
structural or physical descriptions, rather than actual ICs. A designer can integrate those
descriptions with other descriptions to form one large SOC description that can then be
fabricated into a new IC.

Processor-levei compoients that are available in the form of IP are known as cores.
Initially, the term core referred only to microprocessors, but now is used for nearly any
general-purpose or single-purpose processor IP component.

Hard, soft and firm cores

Cores come in three forms:
* A soft core is a synthesizable behavioral description of a component. typically
written in a hardware description language (HDL) like VHDL or Verilog.
-®. A firm core is a structural description of a component, again typically provided in an
. HDL.
® A hard core is physical description, provided in any of a variety of physical lavout
file formats.
‘Note that the three forms of cores, namely, soft, firm, and hard. correspond to the three
-axes.in Gajski’s Y-chart in Figure 11.4. ‘

- A hard core has the advantages of ease of use and predictability. Since the core developer
has already designed and tested the core, the core can be used right away and can be expected
to work correctly. Furthermore, the size, power and performance of the core can be predicted
quite accurately. However, a hard core is specific to a particular IC process, and thus cannot
be easily mapped to a different process. For example, a hard core 4 may be available for 1C
vendor X’s 0.25 micrometer CMOS process. If a designer wishes to use vendor A’s 0.18
micrometer process, or wishes to use vendor Y, then the hard core 4 cannot be used.

On the other hard, a soft core has the advantages of retargeting and optimization
potential- A hard core must be designed using a particular 1C technology, and thus can’t be
- used in a different technology. In contrast, a soft core can be synthesized (targeted) to nearly
any technology,-as long as the user has access to the synthesis and physical design tools for
the desired technology. Furthermore, a designer can modify the behavior to be optimized for a
particular use — for example, deleting unused functions of the core — resulting in lower-
_power and smaller designs. But, soft cores obviously require more design effort. and may not
work properly in a technology for which it has never been tested. Furthermore. a soft core will
likely not be as optimized as a hard core for the same processor, since.Fard cores typically
have been given much more design attention. ‘
_ . Firm cores are a compromise between soft and hard cores, providing some retargetability
and some limited optimization, but also providing better predictability and easc of use.

Design Process Models

A designer must proceed through several steps when designing a system. We can think of
describing behavior as one design step, converting behavior to structure as another step, and
mapping structure to a physical implementation as another step. Each step will obviously
consist of numerous substeps. A design process model describes the order in which these
steps are taken. The term process here should not be confused with the notion of a process in
the concurrent process model discussed in an earlier chapter, nor should it be confused with
the IC manufacturing process. Here, process refers to the manner in which the embedded
system designer proceeds through design steps. ‘

One process model is the waterfall model, illustrated in Figure 11.9(a). Suppose a
designer has six months to build a system. In the waterfall model, the designer first exerts
extensive effort, perhaps two months, describing the behavior completely. Once fully satisfied
that the behavior is correct, after extensive behavioral simulation and debugging, the designer
moves on to the next step of designing structure. Again, 1nuch effort is exerted, perhaps
another two months, until the designer is satisfied the structure is correct. Finally, the physical
. implementation step is carried out, occupying perhaps the last two months. The result is a
final system implementation, hopefully a cormect one. In the waterfall model, when we

proceed to the next step, we never come back 10 the earli ike w: :
dowtj a mountain doesn’t return to higher elevations. T e

nfortunately, the waterfall model is not very realistic, for seve i i
almost al\‘vays find bugs in the later steps that shlguld be fixed in an :]rlri:sst‘): f-‘g:t;;;fnwll"
_when l&stmg. the structure, we may notice that we forgot to handle a certain inp!;l combinagoc,
in the behavior. Second, we often do not know the complete desired behavior of the s sterrrlI
until we have a working prototype. For example, we may build a prototype device and sl{ow it
to a customer, who then gets the idea of adding several features. Third, system specifications
commonly change unexpectedly. For example, we may be halfway done designing a system
when our company decides that to be competitive, the product must be smaller and consume
less power than originally expected, requiring several features to be dropped. Nevertheless
many dcsxg'ners design their systems following the waterfall model. The accompanyin :
unexpected iterations back through the three steps often result in missed deadlines, and he):’ncg
in lost revenues or products that never make it to market. | ' ,

Behavioral Structural Behavioral
Siructural
Physical ' Physical
(@ ®)

Figure 11.9: Design process models: (a) waterfall, (b) spiral.

An alternative process model is the spiral model, shown in Figure 11.9(b). Suppose again
that the designer has six months to build the system. In the spiral model, the designer first
exerts some effort to describe the basic behavior of the system, perhaps a few weeks. This
description will be incomplete, but have the basic functions, with many functions left to be
filled in later. Next, the designer moves on to designing structure, again taking maybe a few
weeks. Fiually, the designer creates a physical prototype of the system. This prototype is used
to test out the basic functions, and to get a better idea of what functions we should add to the
system. With this experience, the designer proceeds to proceed through the three steps again,
expanding the original behavioral description or even starting with a new one, creating
structure, and obtaining a physical implementation again. These steps may be repeated several
times until the desired system is obtained. P , "

The spiral model has its drawbacks, too. The designer must come up, with ways to obtain
structure and physical implementations quickly. For example, the designer may have to use
FPGAs for the physical prototypes, finally generating .new silicon (a task that can take
months) for the final product. Thus, the designer may have to use more tools, which itself can
require extra effort and costs. Also, if a system was well defined in the beginning and if we -
would have created a first-time correct implementation using the waterfall model, then the
spiral model requires more time due to the overhead of creating numerous prototypes.
Nevertheless, variations of the spiral model have become extremely popular, both in software
development as well as hardware development. : : '

Architecture Application(s)
./ |
i‘ Mapping

Ana{ysis)

Figure 11.10: A spiral-like approach represented using another. Y-chart.

However, even this widely accepted approach is beginning to change. A spiral-like
process model, illustrated in Figure 11.10, is beginning to be applied by embedded system
designers. In this model, the designer develops or acquires an architecture, and develops an
application or set of applications. The designer then maps the application to the architecture,
and analyzes the design metrics of this combination of application, architecture and mapping.
The designer can then choose to (a) modify the mapping, (b) modify the application to better
suit the architecture, or (c) modify the architecture to better suit the application. This last step
of modifying the architecture was previously too difficult to consider. However, with the
maturation of synthesis tools as well as compilers that can generate code for a variety of
instruction sets, this last step is much more feasible. Furthermore, as mentioned above,
designers are increasingly obtaining the microprocessor architecture in the form of intellectual
property, which can thus be potentially be tuned to the application. This is in stark contrast to
the past, when an obtained microprocessor IC obviously could not be modified. By
coincidence, the depiction in Figure 11.10 of this process model is referred to as the Y-chart,
but has no relation with Gajski’s Y-chart described earlier.

Refining to lower abstraction levels (whether behavioral, structural, or physical models)
narrows the potential implementations, as illustrated in Figure 11.3(b). Such narrowing
proceeds until a particular implementation is chosen. '

NOTES

88 - INTRODOCTION

> —
contents -

¥ émbeddea Systerm overview

* Design ajq lenqes

* Pvocessoy Technp foqy

x IC 'rec:hnotoqg
> DCSTQ?') 'TCCth[D(}tj

¥ Tradle -offs

Ernbeddey Systern ouecrview »
SySter -

= N sg\cﬂ.cm ':s a C.OO.(J of IO Kfr-)q oT mq&hfﬁf'ﬁq
ke . oy ANy toakd g Seli of rules.

N System s an Arrangement of many wnits.

€9: Microprocessor)

{ mcmovg e:lc):, ,

—> Embeddeq Systern g Pothing pat ' ke a
Computer baxdcoare o'th Saficoare PYOQram empeq.
~ded {n 4. '

— The mogt ropovtant g 10 Operate i

reot ~ tifoe | Sysie pss
CC‘”S‘tTQfﬁts:

real fl'f‘hc~ Tt
]
1S Quled

TP AN tinbedded SUStem s bavdwaye

Softwavre PYoqram -¢g Keep
Constvalints

desg (q P with

tn Uicwd +the -F‘ollow?ng three

Aré to be token dnhto consideration.
" WA vatlabee SYys+ern "mory
‘.:_-Qvafla_bu: PYOcess gy Speed
3. POoer d‘l'&S?poJ-fOD

AT TR

e s

Evamples of €mbedded Systtm :

* Srnavt phone

f * Digitot camera
|

| * A ctormotie washing machine

| *OATM @t

| ¥ rafee tight System efc
Ppplfecation s of Cmbeddea Systern ;
(D) Mokt e C.‘Orhpuﬂor)?

i@") BQﬁk?nq

;(”:) Defenge

vy Aatormobile

W l'\le+c_omk7r'1c3 Systems
D Roborics

(vicormn i cation .

' ' s
-f-h&“rqctcri’sﬁcs of E€mbedded (Real Time syste

. Sf’ﬂqle {Unctioney Embeddeat system

2 TighHy constralmeqy Crobedded gystem

fB-Reqc+TUt and real time E€EmMbe dded 8y stem

;-Si'r‘)q le

. PP embkedded Systern wsually

Lam vepccdedhi .
‘case by

LuncHoned €mbeddeq 3yster
evecutes a Specific Progr-

" When +heve ave Qpplt't;(lﬁbf")s

Perates as gl

(7 B Uide o qarme.,
embedde o Systern

mgle HUnctionea.
cadeciin: A MISST e "Larcach?'vca the oppoment and [0 king
vts Fange 98 e emMbedded system Operated al single
1 r)c:"h'cr).

Tightly CONStraiped Cmbse dge o System ;

_TBU«S,'U’)C CMbeddeat Systern cxteqovised
CONStra e
et o

e -t'\'(ah’UlJ

's o meosure of Mplementation sith design

Coﬂﬁ?d(’_r?ﬂa Leatures such Qs cOst 3ize,
P@Y%vmqnce

and powe-.

——

ize fit
€9:1he desigrn wbich 18 made fox OW cost, S '

= le s wen-
‘to singre chip fast process and comsume €55 po

Reactve and eeat Time embedded System ;

€Mbedded Systernm contnuously reacts to changes

|
. : |
HYE oo Qiues +he result colthoudt chto“:f-l

|

fn reol
i
:'Gg". Autom ok’ ¢S (cand ’ MQ\,qu_‘ tan Systern CRADAR)

Classification of €mMmbedded fReal —ime Systems
le Sl Scaje SYSte g

a- Medium geate Systemng
3. Sophisticated Systems
Smtl” Scale

¥ The

16 bit

€mbeddeal 5ystems :]

EMbeddeat Systern desiqred (nith a Simqtle 8 o
m‘?crocmnho{fers.

K _'htk‘-{ hauve ittt e havydeware and Sl%plc goftcoare ProQram.

Cmbeddeo 8YsStern peed 1o (ienit the |
ci?SS?qurt'on and |

ROE 4o Pik cntebrlrs e e oy, |
S\JS*'C"Y)S;

* e SMaut geate
Powiey

anNd sof+twoase complex .
to employ _Assp CApp(taatio
MmN ang UsSe 1Ip.

* Thege SEHmMy are wsSedt
SYStermn mvoqrawm
Soph?si?ccx-t,cd EmMbedde o

Sgs&m&:
® THEY) . bhale ENBrmous hardicoie oA 8oftwoayre .
* T’r)eSc{‘ embedden sygtermns are configur oty USing
PLAs .
* ‘lhc\Se =

Are ugsea in !
_Ch"?"‘q ~PQ.Q?‘0rfe§5
et T'he\Sc

P oPachimayies anad Manufa .
B¢

Shoauty bave additionat Speed and bockup,

f:\\--' .

o
1 De '3;('df') chat lrl')rgp‘s ;

1he ermbedded aystern desiqncr must construct an
meicmcr‘)‘l.(\-lfnh it Cutfs

desired ~fumnetionalify-
1'“"3(‘ - rﬁil(‘(f‘? f')q are

the desfqr mietrics of ernbedded Syeteny,
I* NIRC cost CnON recurr m
Ea' Unit coot

per]

Q engfneer?rxa cost) |

13- Size
!|L1 + Perormance
| 9 Fleadi bty

& Time o M ket

N the des?tanmeiri’cs Ape three mincas Wil | worgel

.

reduction | -ﬂdop+i’nca 40 New ﬂcbnolocagjﬁhrf):lcaq-
- t?-x.ah"c.ﬁn

Wb e hatduow e and Softwame -
=2 04 coe
1

reduce -ihe Size 4pe performance Magy Suffer.

'_> - o o
T mmeet +he op—ﬁ’m-mﬁor‘; chcutcnc?es e desgrer
PPUEL maoke all +Hse wnits comfortable and reliable

ard gsof+ware -{*echr)oto?t‘es "

+to bavdware

— e dcs?qr)cr MmUust also Hhink +o Mg rate LEom
6:7‘)& *H:CHr)otoqq 10 anotber -lﬁ’d')r)olocag Lov est
troplementation

.ﬁjc \..‘.l‘ |
g P! |
© 10 manket desigmretric S the mravket

Scale qp ? 3
cart:xph +re (p MOOThs\IS reverge.

T

L
J Tiene
N f f
9
%
(7]
Q

L

h .l
=mMe (P o s

—————p e —

lm.uu.s...,....... S

l Thas +hc aboue Ptq,ure Shows +re

| |

o doed-

——he Pyooltet paeeind hauve i

y bigkheat Sales Yn e peak |
Atene -
\Mod £ ey o)
RrRewvenue
/‘\
. Peak revemue
Market /°©°
| it Moy ket
_ Coul |
| peak reuenue 4rom
! '/ d(‘_[cl‘:!ed QWH
| / -\..‘- !
'. e Delayeq e 1
- \ N 0
7 Time
Procegsoy “Technalogy |
Brocecgor |
techmpol |
€Pnbe—dd U.ch reloctes o +he arebitecture of {
“ded SYsterm dest |

v Ge an oy desiren -—Funcﬁor)ahh(.
7 ?')C_FC\{ P&YPDSC pYDCCSSOYS)

PYOCec5S0Ovs
Spectere

Puypose
7 Geneyay

PYOcessors are réeloten 4o S(}PtLDC‘L*c.
ooy

{
. §
Nearg, AVIEDE e PYoqrammolote

i
l §
|

2. a¢
Snncalg PUYpoge
> ﬁpthQﬁon PrIoc
e
jSnC"th SS0O~ws

Processons

1‘7 e ol 0(0?09

]
SpPecidicotons are congfered. E
ram Neroory Y |

path |

Glpwo%
G Data
VALY

—> AO embedden 2

YSte rnm desfcane ¥
PLI Ypose

PYOCesgoy by
E.‘-O CQVTH Dut

tuses o qenerad

Ehowq on%ro’“m‘ﬁq PrOcesson mCrr)ﬁ

reqelived Lunctiomality,

= = e

-

e TOCQSSD‘YS .
Sieqle parpose p

. tnly
are deSign
- They qre meant Cor hardw :

{
ecate exoctly
a dlQital clreuit desigred 4o ez

|ONe p’YOE]VOLm.

?
— The ?oliot_o.‘ng

;{.) Performance (faay

i

i) Shae Csmart)
é(-‘i'ﬂ Cost Crow
f(fu‘) POy Csmalh
--=>'rh¢ emMmbecded e
PUurpose (PYocessor ' for
;cfrcu.‘\t'

iﬂ PPl ca+on Specific
—> Pppiication
both hordwaye
L{b& characterigiic

PYocesson S ¢

Specific PYOCeSSors are Mmeant {oy

S Such as
;comrnur{:caﬁ’oo- ete.

™ ™S touoives

) Pey oy X ce, CC-';OOCI)
ity Flt’m'uleH(i

‘tl) »
(1 F'\‘E‘;.'I.p (H1cyoconi-rol!C_r

—> The

Specific

oY OSpY

CMbeddecy Suysiern des?cancr ws

Proee SSor g are 0Oy '\'t‘ﬁtt,'d

Dege ternag ¢ setear s:Ix]lc

P'-*“F’DG(‘,
Te ‘recbnowag .

I Embeddec St (qeq

A" he falowioq
ﬁechmolcq{es QAre used

]
Cov *"'f)p[cr'hcr)tQHO""
O Feay ng-}om/vf.SI
(Y Se oy Custom ASIc
‘:‘cc:nPLD

! Ocesy
are Specified (N Sinqle puvpase pr

Wt designer enake wse of siegle

igta
designing any custorm digite

and softwave pudtverment hcw:n%

CO_hHOlIl'hca ’ s:qml P'IDCC'-SS;’YJ

i0q applicarion

1O Business clasg .

1

.

b o o b e e

T ——

S -

—= TN 4Rz ¢ Techmology atll +he layers are optirnged
g7

L4 -
erbedded gUcHm fov pavtieulav diqital

Al custorn /vLsT Je Teehnoloqy

ezcellent Lerforeramce , Smalt &ize LD PRLQCY -
]

W dcu:\op?ng FUll cyetpmn [VLST 1S

¥ Placrng Hransitioes
| = 3:2153 "‘YQns;s‘H:rs
= Q?LLH(Q tolres

—> i dvawokacks are
x cQoz%

CLsSormrm =

> Semi cusiom I ‘Lecbho{ogg make use

i of Qate Qvrays
e Ernteddey Sy 8+erm des?can-
=7 Vrese T ;

Qre Eavtiotly o v v fatly Hith low layers .
2 The bencfiia are
F Good Cerformanrce

| ¥ Good gize
! » Less cost

E—->"i"‘£ dvatckack 'S 4qwes rove time 4o deuclop .

w1 commections C"‘?CU‘C(J

destrea Functional T +y
Very populay qe tCCh")o{Ogg

- 4 this qur layers exist

! melCMtPAcd ¥ . =
> I0 Mhls 4

s Fpep

% loeo cost
* CAN bLe moade in tess Home
i Thﬁ d‘l’ﬂ.wb(lck.s Qre

|

; *¥Gize 1S Ligger
§ * POweY hunqry
i

* 3loer Uy performmarce . 2

e Siqn Techrology :

Deqr technOlogy wuotves in which e corcept of

7 P 40 an MDEemMmentation.
esived systenn wtth Lunctionatity
I

|—:\~’ In 4bls de5fgn ‘techmology e —lel&ﬂ?oq are Shoulg

lbe takern tinto congidexatior .

iii- Sysiern Speciftcation
||‘_1- Behaviouval Speciication

13 Reqister —ransfer Specification
; “H Loﬁ'i 2 Specification
| 6y
P System Specification;

.-i W dcs"qmr deScrikes

+the deslrea fumctHomality m o

Nlanquage referably exccutable (apquage with S0 e
P ¥ NQuagq

%‘SPGC:‘F*GQQ’F?O”“:: of design s krownr os gystern gpecification.

Behauiswral S;pecfﬁ°cc1ﬁon .

| The destigner yeflmes e Speciftcations and distribul-

T10% Povtions ~to (oovk accordinmgly by rmeans of
Procee.e.ov and program embedded 5 kmown &S Behaviou-
|~ vral Specification,

iReq?stcv Transfey Spcc??fcq;—foh.

cﬂﬁucrh'_rpq‘ -f-he bebauvioural 0 adsembly code €ov

Jto Stote machines represents +he Req istey

Tr ansfer
? Spccn%mﬁon.

FoQic Specitication :

The des? o : !
LY refimes -the CQIStEr tranefer Specifical -

rePresenting toe operation |
18 detltmeq by

[2)
00 18 baolens equationg
™Mode

Dore localc Specification .

—

The cholce of bCl‘rclwo.re ard Softwoare Loy a po:rhcu-l

“lay fFuncrfor g defimed by Trade- off .

OFf depemds om varfious desigm ~etricsd
3-4-21

|
_!
of f depernds O PpProcessoT -
1S a digital
o tagk.

=2 A (Process gy
~form Com putat]
> A Processovr
T Tous e followo?

|
cireuit desigmeq +o per-

mq “tECbn?qlugs arée wuseol inm desfgf)'nn&
) oMb natiomal togic

G Seqetential

U‘.;')Qustom S?r)(a\g_ Purpoge Processor d(’_-S':tah t-echnf%ue.
| G\;‘)Qeg'istew transfer (evet

Custom S'nr)g}c PUYpose proce-
1 ~ Ssorn destqn

|
(WDP’C’lm'il?nci custom gingle PUrpose processoy desigh

lo gic :
i—?C bT‘—)C’CﬁQ ad lt)ca‘ic 1h’“)\;'()'\\ief; 'tTQﬂSTStOYS,IO(aOiC (a(xtfﬁ]
|
Qre useq. .
"b"’%‘[erc

bQS;C P *{oaro‘mm:r)? ‘15

inwolved im combinationa |
logic de sign.
[Thus T level 15 Emplemerrtc’d 10 comporents .
i
Thus the Transiatovs My be slmple oy belongs +o
Mos 'Tecbr)olocag,
€9:crmoe
|
[Thus 'R e XS tevolved ave répresentec (n digitql-
Tn

acadition 1O e 4he
’ ”"Cll‘c?ple'm-r

I SEC‘, We nt%(}_\

— The OMPOrents tnuotued
1 pelops.

> tic re

reqlred COMPOnents are
y decoqey

) Qdde“’) Compqw ot 4 AL_U- !
LOS?C_‘ 3

i Sequential logfe ave

e s .

also QT lewvyel

€recution g teauoluved.

of progrcxmm'{ng 18 wuged-

coOmMponents &ased are 'C".a:?,)tc(s, COunters
Nft register-

. 3ﬁ+evmed‘:mc level
5'9 Tie QA tioma)
and

B |

Q-3 , s .
}Custom %"{f‘xale Pur Pose PTQCCSSD"' d(’S?gr) .]

A basie pProcessoy con be buitt @ith conmtyoller Ck"x:li
data path. :

A CONtrolle

defines 4he coofiquration -0 data path.
—_

D o 4
7 e abeye el be registers multiplexers,

@
S0als) fanctionay
7 Qﬂg'i’stefs Qre
— Multipleyer

Wh commecHon units:
used to wad he data-

1S used 4o Select the signals-
— o% \ - %

XS are meant Loy cayrfevy data-
™ fuvctional

r'
|
UOTLS Qre 4he baste building blocks used‘
o operation .,]‘

T CONNection anits are defimed for coorkimg the precess,

THEre bigh fevel programming s used for nplementatio,

= eDe
i tOch_

RY

CAD apply combinational as well as Sequential

deslgn techmiques o built o controller and data

lewvel cultomn S?Y'XHIC Purpose pProcessoY de&fgn'.
;-—>T1')e baste “Fechniqaue
I

converting the seauential progra.
D & cuStom Strgle purpose processor is defimed

Processor desiqn techmique-

— Heve fFop controlling fs used -

2 FSM gtands Lo« Finite atate Machime.

q."ﬂi‘ﬂﬁ TO4S bere L level custom simql ypOSe proce-
iogle parp P
TO80Y design uses gequentia techrique design conslsts|
of Yc.g 35+er5,‘mu !t'fple:zers and .{.".r?p flops and also
“3edq e

custorm anqre PUrpOse Process design ‘}t‘rbm'q'ueé

SThus here pigh levet programming 1S used! Loy
(enplermentation .

.Op{‘"imiz?ng cu&.t—om simgle PUrpose processor de@"cj"ﬂ'
optimization s +ke task Of making desigm metric

values the peai rPossible -

— optimization iovolves 4y

|

| ¢ Lollowing.

| . .

(1) Original code (Saitakble Programming is used fon
7mplemahtcxh'0r>)

() FSM B CDado Felevant ¢
() optimizeq data
> Thus ¢t 44

i
I
: Oite State fMachime?
i
|

Pat? and cortrolier

P
s +echnique at

+Hoe algon fthms ave mMore
e fficlent.

!’

> These VYNUBNS pedicns toe Hene cormmpleaity.

L

— Thus bere the Famp used erqges e relevuant
|o°d reduces the algorithm.

| opti m?zimg +he

data Path arnd comtrolley
L iOvotues, o tHre e

Nain tasks Suek as
*5Qh'1du.17r>g

, * Allocatiom
* E‘:‘-‘nd?r)?

h-%"‘S)Chec:h_m‘fr',wc:J refers 4p mMake +Hhe

— Al l0cat+ion refers to
—> B‘fnd‘ir)ca
2 Thus g
't—t’(‘_hr)?que_s,

progpam by ready,
RT compoments wuse.

refers to gemn Operationsg.

™MD operations

involves +wo optimization
relacte o to ¢

SM. They are
V< State ev-)cod?nta

2- tate minimizatrton

1 Stote encoding
to €ach State
—2 State m‘ir)’n‘m‘:'laﬁ‘on

S the tagk of ‘T)e_rgl'ﬂg relevan
Stateg

DS o gfngle state.

"

quc_,roﬂ'as :

' Design challenges ¢

Perfor amrxe

Proce ssor Technology ;

N gemera

NRe cost

PUrposSc PI0CesSson ;!

Controller Data pat b
e)
contro)
ngnC QCQ'IE tev
and . N
State
re_qﬁstﬂs
General
u
] e
N\ | y
- Program Daia
Mernoy Yy MemoTy
A S Sembly
cod e &
Total =0
oy Izt to._..
=

BEER L can

|
!D_* ApPl ‘cation 5pec7f1‘c PYocesson ¢

|

state
req toters

(1
Controlier pata path
comtroll .
onte [Regtsters
and
State e
veqisterg
\ customn
1 ALV
TR Pc
4
L L \
~Proqram
memovy Data
bﬂﬂhorg
ASSsembly
code
B
Total - p
l Foru I:ltb|~==-
3 Single purpose processor
Controlley Data path
Lorﬂno1 Yrde
togic

iTOtali
+k

—_7

o u-3 i
=

.[li“-%" "T!C;"‘r‘a‘-c?“-" :

|
compilation | — l
SYyntincsis ¢ Systero
2
Au to rrates - s .
i SPCCVF\ cathioon :
eploratiorn of
'fmp!gm&hmﬁm v ‘L
detioiis B locrer level
bebaviorod ,
specificaton ’
LTb'vo-';ge,l_TP 2 '
;hccvrpc‘)*atfs Pre I’
df_e_.‘lghfd o L |
]
TP emestation e T
[0wer abstraction Specfhication
leuch Nt h:ghcr lewel o
Teat f\.FEr'\'F:'(‘ClHOT'):
ErsScaures correct
furcHooati+y ot each .
Level s ve dacing Srecication
:' Costly Tteyo.h'ong -
| betweer leyuets-
r |
:' A

MO fimal imnplementathion

18

Trade - of (g

"
/ B

l /

| /

v

e

Contiol outputd

Contoller H Dada path.

Custom single purpose Processor :
Ertermay LR Sl
_. cqontrol Saia,
| npAts output
_ \\' \/ data paib
| | N comtrol NV
| inpuls 4
Controlley B pakrs
L
dato. posh
contol ' ‘
. A
€1 te
¥ Do Cxte r ool

dota oudtpPUtsy

Com+ro Lle. v

| -

Next — State

L actal pathy

X

a

K_1?'e_q'15+¢f5 t

-Ard
COontroy

7|

3tote
\ngLS'TEv

(Dg"’ic |

2 FUnCHomy

unity

[0

VA0 o1

120 r

250 2240 ST WO L

i

AMOMUAY hrouua\N

1

14> Fadsa

wnody) aandinw

1

A2\ OO 02 042N

3

*;u:OICOu C_ZQ

—’ 29p02 badr

:

Gla

1

»0552204d0D |2 xd _

s

L0056 2004d2.4d

a o

alv

VA0 ﬂd..f..‘mwﬁﬁ

(o@iniano ubisop wshg _ou_uﬂuﬂswu a2 191bY o - - 31dosore Wioichs pappaquuo E.\;

e T — . e - S Pt T

————

15 ez b : e e PR e

Trcxde of g :

— Thas bhardwlave

arnd sof+tware de.s.::,n +echnor‘oq:es were

very differesttip EMbeddled sygtern d"—S"ah

— There ofl! be different voriatHons » view of ”')Qrdwc,\rc

land software.
—> The pav+cutar o deoare

and —+hbe¢ correct Softwar e
used (Cor

eMmbeddect Syste m d&sm}r) s re_pr-e servted by
|Trade -oef .

— Tn Simple, Trade-off
5_3 e chaoice

:de_:“-_-cr‘; bcd

mMeanrs hordwaoare and softwarve

.

of hardware Versus Software %8 a FurcHo,

bg Trade - -of £ .
Trade _gpe Alesi

372 Metricy
-—':b'r’r"e .-
Ocst embeddey SYStern desiqn can be made by
CxXpecryy .
tise col+h both software omg haraca re .
— Thk.LS F)de_

QL d.es:gncr roust

be comfortakle w0t iy
‘f‘e.i‘_hnC)[O%ne&

|
’UQ" 2
! oS {nOvde v 10

clhoose 4re best -

[-

R
0 4t
vy 54 Stem They are ypes of Fr ey veg iy
\e prlmq_“‘ mcmﬁ"'rl,-,’
| 2.
| » Second ary Mermory.
. s v >
oy eqrasariy ve Presentarion of
T b embedgea Systems % ditCerent tuses of
S 5 a8 shsion Belyg, .
Mcmor?cﬁ
| \L\Ixi
> mar roe F
'1 o , Cmcfﬂ:' Second ary mMemory
i
J ¥ (A
| Raw ;lém Tr‘r.{':: PLeudo Sec,uerytal
‘ ROrvior earxiomn) earciorn
. Pecess Pocess Pocess s
* Slatic DYrmamic RoM L '
RA™M R A CROM S |
(5RAM) Coram) F“’f‘ s Mogneric opfica)
PRUM pDri ve T)’\ P Dk s
Cperrifive) e
FErEe L eo)| '
+iard L
ELPO esp A DVD,
Jy 1/ csold OB 20 Dmg
{ poublie de a 4orte DSk
4‘* Data Dot Oigk)
$! Rate Rate ™.
dass | wo® CNVREM)

R M grards fov RANAOND _fccess MermnoTy:
S I -bpu&ﬁ‘ch g veoadk Of Worite epemony -
Tt ctores doto ~empororily:

V PN is a,gcd.n Sub divided thto +wo cateqo res.

(O Static epm

1/11

* DY harssc Reyy, - '

® Dinareie o ~3
& ROM 5. roocy
® 1t o R mage o Mo, -

fov Chavae .
C QQM i i e
W“”GM Starxs (o,

FTLY operarion

Reacy Dhlt;’ N\errmn‘n
'.I" "YC Processon

g 1 stove PPN ca o

! ferce s ;”m?tlﬂinh c‘qig,Pfoqrnm“me
‘ ¥ ROM s cateqortzed inm foowing +ypes,
QY Mas ke POM
: (S Prom
. C'Q)QPRQM
I m@épnnm

ey Flaskh Pam
@O Masked rom :

® Masked gom i One Hrde prograrmmable deyice.

® J¢t ases bhavdwived “rechnologies foi B‘m'q”fi' dafa-

® Masked ROM 5 (0w o5t and kigh Volume prodaction.

& pRoM ¢

® PROM giands ~for Proqrarmmmable Read only memory.
¥s main operation i3 4 crove PIRgRRI IR

aki-

Stands oy grsable programmabt Read only Memony.
the nformation s stored in +he Fformd of -b""é' .l
EPROM veprogramming s rossible and previous dota can

’ I ¢ Eeod
M staods for etectrically evasable pEvogrammabl
m R . . i tSe
ﬂtx.rﬂwm-f{en 'S altered using electrical Signe

» RoM ! _ il :y embedded
AP T mostly ased dechnoloqy i €

g 4 il : ' PROM -
;;mb?nm!an of Epeom and o ﬁﬁ:r:h capacity:

A

2/11

. e R
%! x ._ “‘*—-—-. ™ . —
~5 Sy :::; VAt Svove 4me o
! Ll ¥ - a3 g
1 Seco raay T Stove e g SOl
h ™ e;ibmc'm‘f ' crt Quaict
e de
e &-ppm-ﬁn?m Nidinkaia 3¢ cor
Tt SQC‘M‘ mmﬁ?q " OrYy pap :
N X . St for aceesst '8 rothing
oy True me.mq 'S af - lee &%y,
i Y typeg
t?'.i, ' O..QCes
U“‘JPB#MO RO csass,
' -~ 7 . rando
Tae g ™ access
i |
ldu:ra OM access Tt s r')mhtnq il
[PSauae Accessing Hhe orinad
?v
EORy o qo.rc;".dﬁm OLCESS T TL 36 novks |
Sequent; il

s ey §iral ona s <opy -
& random Al

:g?;h %?o:: © (Pemdrivey l

€550 _

p €.- SD carqg CNVURAM)Y |

>Pseudo rc}ndo:n ACCeSS e again cateqorized (MO +oo "E!P""*

ﬂ.-‘\h-gf)c.‘hc DiSks (4lava dvives) ',

: b optical disksccp) puo) i

mposiﬂg aeihEsh ([dumping the program) |
£ Fot composing memory P am embedded System

movy &’;13‘_ Y v_e,qft.l.fred-

Thus mermovy Size 18 main —for composing memory-
YerOoTY 3‘13@; A fers -from different Size of readily
Sze.

avalilable memory 13 targer Simply Tgeae’ e

4

| w’mpee;?ng memoTy the oodvess bitd and dal&
should e Haken (mio consideration: :
mposing memory high order address bits and
a (ines ore rcequivect: |
: e roemory ‘5 amaller c-m,-;tmg.cgpm.bxw
w mernoty (e ame \argev MG'TJD“&"
vo be “ollowed For cornpesing M e
side by 8lde 45 ncyense oNATH S f“’*

3/11

= .(Iii-f- ;.{:r:.mvij B

gormms f{:!;' .-lf,‘..:- At

it £ ..E'}m“ AR b e soip
e u v . il | . o1 owe &

My | EIEL 8
. M e] P Y e e i)
Lt i & LTI ey SRR ‘,. j:)

LT R T | BT
h ‘!J'-"" o :.‘a

i

B

A R N S |

L

L g .
-I-'- ;"?"‘_."t‘? -
S i

o
Pt Y

4 /11

% M
- T i S
J "\‘ﬂ! % -\\
| os. 8t i ere aye three \evely .
\ L P il
| 2 ey
] Ve |
. c. ara .
g tvel
::) R D SR
Be G Sy Bkt T 1B TV i
* _.m Collowing. T OF blerarehy Yhere ol
Process gy
¥ Reglater |
| !
‘, " Cache !
D2 eyver s
P B0 e
; 2 lever : .
: > Main emovy \-:?.UC v s Y
Jest a4 (30 S0 bt wype ey
:: _ veS he entive Proqram amel gata -
| --pc.sahue_ Qd cache IS +4ha :

¢ . ; 8mall amd otso {ast ene-
P Some +Hmoe Stoves «he copy of +he memory,

=

; ,-rbc""ﬂ will be disk ama tape-

'RESE. are rothin but fotermal and external meme
.L.L-E)Cd for QCC¢5.‘E){ﬁ'? data. . T

ermbedded SYStemn -

mMemonty hierarcbq

\ Proce ssoy \ \

r reqisicr }

cache

-

caln memovy

A

@.l&et ol Y Vmat
! 2 Y R ‘ v
s e - NAX]]
L T X g
t_-' i 5] _1-,_ A P Ve "
. - TN o v *
o I“".‘ ‘ca.',r’ s L add

5/11

bes a'_-: tPUolues pord rRom ard rB™M
[SEOTRARMY. Temovy, s : '
mﬁ'ﬁmﬂw

3

POt 7 but Qddl"l‘fg-
.’rq s e

6/11

e o i X
E3TO08 leve, e ey [T
o Cht oY g 2] TPU ary et{&ﬂ
I"")T""HS NFER CWQ'“_.’ CQth ‘
=This (ewel s = Setoee, 25¢ w5 d &12
4 K and stk
LD Lenie) S -C‘Cu':l'r A U e, X . B
:I—)“T‘h'-s ‘EVCJ:L l‘g hfgb Lt d’ﬁ?t“hlnq The ?h&{fuf‘rl.!)ha
{ ee¢
ELevel 3 cache oY wain e
—> Thls leve s T
| cache \S Shia
HThtS

Legrel T3 e

IMB o g |
e G O Sharing of tevet 1 and levds)
3 8 ugea 1o docble +he gpeed of ppm.

™ his teue|

PART 2 —INTerFACING
f——— —

7 T vlo.in o &

||- atetd . L rmh‘“ﬂ bt U connected and cormmunic-
|

T—éembgddcd aystern imtrch_?nq 16, 4hve - mercepradll SteEie
between

| elecnical amd compudter
s Here ot rfaclog
1S responsible

engineering o design qood.
oy {.'rﬁpo'\tfb.rar\- becauge ernbedded System
fof o wide rorge of geuices ama equiprrent -
—s 1O dCSTCj'") Propediy ama 4o communicate a5 per +he n?_qp-l
“ved communication —+he :,—-Herpac?nq s essential or recvu.?md'
Avbitroation

R e cuent (08K ot otk o pvoqre.ss) toa or rrove
roaster deuices n:f”fﬁmp't o ?c%\'ﬂ a transfer o Same
H‘l..m?-, ar urbfﬁﬁhon \s.chcrm: 15 encuplogm 40 —force ogne
Jur roove rmodSters o give -he bus- ¥ o 0
| euleas eontinie 40 Aransepit dhe qota o

“?'ﬂ')ﬁ masStey :ﬂcms e "'J':ﬁb wbhile gtber +ran-

|
1
!
1_

one roosSter
ot A device

-_..,_&m“fﬁ “+he ; 3 . Bes i

R e (i oFbiroron: Schme %_ 4

|—-="|+'”-l3 e h‘i‘f&h wntl be qet op:ru—f_c{ Q!

oot & _

oo erne 7t .

' a (0w o\ Sop Lor Somde moment
: o dg‘t&r— e
' process does vRt sl -the transfer

R Joitration

dotﬁ- %&15 e_rfPlo.qed) re__PTL'.&ﬂ

Nt “+he Pf‘\'m“‘l
%S
e achernm<

. . eousky o™
Pbr.r-ads request geruice 5.multdf"

ice.
: a0 deside tohleh onC get ser

—

7 /11

Porates i itiple buses, atowing the

: ._ % .
,iﬁ_iﬂ.!'?:f-"lb?ut& L Y Stem uscog -the various luse
) cost

o repYeserrie “ﬂ")f.wt:'r
:-g-‘ﬁ";uﬁ "’m'"- equest q,e ode op o COMMBn (ine |

'S Vepresen-ted by busg YeQtiest (ine CBRGY- @ SHamgs o
Query.
-:"‘ﬂ?qs F!&I’"— "“)Q SE.TUICC “+O bd'. qQrarsed t)‘*;f Ql’b:ﬁOd';m
|5 Qiven by bus qvart: sigraj egy.
™ Here QccesSed gy Qantcd ot e Qiver by ackne.

wole QP o Signal acknowle dgerpent (SACck) .

MU +f vt

: 3
and pcr-Fbr mante neeqs Of parHceular

represertation of roultileves bus
0N e jJouw .

| Memory
Contolle _

8 /11

X Cache

* pc"?Ph‘tmls
(]
"’M'C'QP'OCCE,SQ-‘
OLtpat
—> QQCh.Q
Cpu

repreSentation of thput
a

e TP ’\:QMPGTQH:! 8
ancy Primar y

Wmnvq 088
"-*rMemonJ corytrolle

roerone bclated csiiy
v *a
lowy of data tao?r)ra
[DAY contraner -
DM contraley

MOLONY Accegs .

(‘l’rru?t
T ang “rorm oatn
OME slands e

: %thcf MErMOT Y -Access
D a bl cocve

deuice usSed 401 direct

o
—>»Th e OiCroprocessnr

cache k|
Controlier aqve BrEss 2 ; Memary controller ard OM g

O processor tocal b .
YO cess oy \9tat bus ' g

2 high Specd wide apst
-?recw.mr)t com munication USeet. 1 ’ : 1
(=] -
—-}Grsd(ae.- 9 a S?nt:alc PUTrpoge processor comnerts

UNICotTON . betoeen bus
—> Peripheral g

cornm-
es.

ng-fh?nci Bt con nectHon oy bus tnierface
—>The bridge and perfpherals are linked +o perfpheral |
lous-

—>The eeriphers! bus 3 o
Lot corpmubication ased .

|

1

0w gpeea mrrowllcs&l‘gvtww

1

l

L& s ‘

ﬂl-hd\!th&d communication principles -
~—> In oadvanced communication P"fﬁdP“s the +evm ‘0“‘5””*
'S woostly used for represehtotion: :

— Loyertng 8 defined lhg it's bve_a.!f complexsty of comm-
L anfeation protoco! nto pleces easier to design and

[T A g € 1 \ to hr hCi'
.'B Lew |5 p‘rDut,dE, SCI'\HCES e
Lmje.r\ tQ

_’m

] *) h“_e_
| ' [oener \euet YY'):'{]}'JT 00T (Oidb bits WPt
e Thas.. bere. | ets of dara-

i' o0 | ! fgbl ccovr Oith PocK

i ;_f,',‘a-hcr lew® g 5 feal layex-
Loyering s eoainly implemented to phus

i ‘3 Teo) loger 9 tower level O hievarchy

> physic

ander stand- \

|

|

9/11

'ﬂ "Ser ‘al

: COM roun;
Mearton Prineip :o.ﬁeh il T L8 PSSP
PES o plermente e D
- to

pPhysieat (ayer whiey
bite or
o oclud “ofa. .
chistamees, . s 4 bigh qa "rhrou.tahput with Shore

._ﬁ Torg paraltiel c.ommun‘cﬁ't‘fnﬁ s [

m&m Per cost with hulky
—..3.%3‘&11:.1 COMM N (catt or
; \.I"ﬁ bl‘

v ""Dﬂ"""*a but

tory paratie] wair e
ah capaq-tc;r;cc Jvalue wohbiafy ?

requires move

al
3 \ cemmancca:hm -Follows advarmcey coromunication

ith
O 3;nglc. data cofre PO&N bie 1o contro! ard

_ *e coovds tracsmittead ore bit ot o Hne .

*&Ef'm communication bigh dota +hroughpat w'ith

._.ﬁf_;s{;arxes

agrtm commmiL 'OTCQ‘H.BO 9 loco cost td"'h less bu.t'h‘.

?&L COrpmUnICaion \e5% DL\ll‘;'irCLaQ mpacitancc- So
1S anit of Hme are +vonsSmitted:

e &Tmunlmﬁm cornplet !'H'trfcxc-ln? tﬂﬂtc ‘S

g LOge meams gender meeas to decompo
5 wobercas receiuer meed8 rvecompose

C : follngt . .
Q) Paratie commmﬂm ; ek

10/ 11

Y OO D

11/11

PPT

Embedded Systems Design: A Unified
Hardware/Software Introduction

Introduction

-

Outline
[B i e e e e
* Embedded systems overview
~ What are they?
* Design challenge — optimizing design metrics
» Technologies
~ Processor technologies
- IC technologies
— Design technologies

Embedidod Syrtems Disign: A Unifivd 2

Embedded systems overview
o e e e
* Computing systems are everywhere
* Most of us think of “desktop” computers
- PC’s
— Laptops
- Mainframes
— Servers
* But there’s another type of computing system
— Far more common. ..

X E-WA:!IM-: Dergn: A Unyfied)

Embedded systems overview

* Embedded computing systems
— Computing systems embedded within r,;....___ :ﬂ
electronic devices kb E

~ Hard to define. Nearly any computing O @
system other than a desktop computer

— Billions of units produced yearly, versus

millions of desktop units PP
— Perhaps 50 per household and per = ,::,Mj\,
automobile e,
though they sest & lot
e mach
Embeckied Satems Design: A Unifed 4

A “short list” of embedded systems

[r— Modemn -
At sameris MFED dewodens ,@
At allr machioes Network e

At N O gt
A syom Fagry -
Eiaflery chargarn Pratoes
i) Powd-ct-asle rysens.
Gl phoess Portable video purmes
[T r———— Fromen
[smsr— [r——
s comtrol Scarven
arts b e
o momas ooy
Dk ceresa [—
o g "%) .

Fax machm ™ ey
[S———— VER's, DVD player
[N ——— [T S————

S Vibeu phusca
[S — L -

And the list goes on and on

Embetied Systems Derign: A Unied s

Some common characteristics of embedded
systems

* Single-functioned
~ Executes a single program, repeatedly
* Tightly-constrained
— Low cost, low power, small, fast, etc.
* Reactive and real-time
— Continually reacts to changes in the system’s environment
— Must compute certain results in real-time without delay

Embpckde Systems Design: A Unified 6

[

-

An embedded system example -- a digital
camera

0-”: 0 —— [} i 0@- ‘?
(=] =] ==

(] [] []
| [V — || [T i UART | LD el]_.
% + +

+ Single-functioned — always a digital camera
* Tightly-constrained — Low cost, low power, small, fast
* Reactive and real-time — only to a small extent

Embacded Systems Devign: A Uifind T
Introshection, is) 2000

Design challenge — optimizing design metrics
e e e T]
* Obvious design goal:
~ Construct an implementation with desired functionality
» Key design challenge:
— Simultaneously optimize numerous design metrics
* Design metric
— A measurable feature.of a system’s implementation
— Optimizing design metrics is a key challenge

Embadded Syviems Dextgn: A Unified L

Design challenge — optimizing design metrics
R e e s ey)

* Common metrics

— Unit cost: the monetary cost of manufacturing each copy of the system,
excluding NRE cost

— NRE cost (Non-Recurring Engineering cost): The one-time
monetary cost of designing the system

— Size: the physical space required by the system

— Performance: the execution time or throughput of the system

— Power: the amount of power consumed by the system

— Flexibility: the ability to change the functionality of the system without
incurring heavy NRE cost

Embedeled Systems Design: A Ungfind 0
Harsheare: Softeare Introdction, (o) 00 Vshel e

Design challenge — optimizing design metrics
T e e e P L PR B T = o e R

» Common metrics (continued)

— Time-to-prototype: the time needed to build a working version of the
system

— Time-to-market: the time required to develop & system to the point that it
can be released and sold to customers

— Maintainability: the ability to modify the system afier its initial release

— Correctness, safety, many more

Embedded Syatems Devign: A Unfled 10

Design metric competition -- improving one
may worsen others

pover | * Expertise with both software
) and hardware is needed to
optimize design metrics
~ Mot just a hardware or
software expert, as is common
lmm — A designer must be
comfortable with various
technologies in order to choose
the best for a given application
and constraints

7

Time-to-market: a demanding design metric

* Time required to develop a
product to the point it can be
sold to customers

* Market window

- Period during which the
product would have highest
sales

‘ * Average time-to-market

T (montha] constraint is about 8 months

* Delays can be costly

Revenuas ($)

Embeckiedd Sysivms Design: A Ungfied 12
i

Losses due to delayed market entry

* Simplified revenue model
» - Product life = 2W, peak at W

€ r-“'::::- - ‘ff‘mc of market entry defines a
! triangle, representing market
st Market fall penetration
— Triangle area equals revenue
* Loss

~ The difference between the on-
time and delayed triangle areas

Embesied Systewes Dexig: A Unifind
frteds =

Losses due to delayed market entry (cont.)
e e e e]
* Area=1/2 * base * height

— ~ On-time=1/2*2W * W
. . ~ Delayed = 12 * (W-D+W)*(W-D)
& Peak revenus from
! | dwedemy o Percentage revenue loss =
e (D(3W-D)2W2)*100%

* Try some examples
~ Lifetime 2W=52 wks, delay D=4 wks

(" o w o — (4°(3°26 —4)2°26°2) = 12%
l)ll-liu! Delayed Time ~ Lifetime 2W=52 wks, delay D=10 wks
culry iry = (10%(3*26 -10)/2*26"2) = 50%
~ Delays are costly!

Embedded Svstema Desigr: A Ungfied

NRE and unit cost metrics
R e T ey

= Costs:
- Uhit cost; the monetary cost of manufacturing each copy of the system,
excluding NRE cost
~ NRE cost (Non-Recurring Engi
designing the system
~ total cost = NRE cost + unit cost * # of units
= per-product cost = totad cost /' # of units
= (NRE cost/ # of units) + wnii cosi

ing cost): The one-time monetary cost of

+ Example
— NRE=82000, unit=5100
= For 10 units
= total cost = $2000 + 105100 = $3000
= per-product cost = S2000/10+ $100 = $300
\.ﬂ_.’

Amortizing NRE cost over the wnits rexults in an
addinanal 5200 per unit

Embeded Systeser Detgn: A Unified 15
dh feh

NRE and unit cost metrics

* Compare technologies by costs — best depends on quantity ‘
- Technology A: NRE=$2,000, unit=$100
- Technology B: NRE=$30,000, unit=830.
L— Technology C: NRE=$100,000, unit=52 ‘
J J ———

e —-—
= | —l ———
s £ L L £
= Wi g W
i P Trreeeranaeed
‘u
3 s ca s W
e e
= =
2 T il ® W

P 8] anlsi £ g

* But, must also consider time-to-market

Momner 1 o ol

Ebeckdedd Sprtems Design: A Unified
) 200

The performance design metric

L | B e T A SRR e e B DRt
* Widely-used measure of system, widely-abused
= Clock frequency, instructions per second — not good measures
— Digital camera example — a user cares about how fast it processes images, not
clock speed or instructions per second
* Latency (response time)
~ Time between task start and end
- eg, Camera's A and B proceSs images in 0,25 seconds
* Throughput
- Tasks per second, e.g. Camera A processes 4 images per second
- Throughput can be more than latency seems to imply due to concurrency, e.g.
Camera B may process 8 images per second (by capturing a new image while
previous image is being stored).
* Speedup of B over § = B’s performance / A’s performance
~ Throughput speedup = 8/4 =2

Embeckied Syrtems Denign A Unifiedt "

Three key embedded system technologies

[e . e e s e
* Technology
— A manner of accomplishing a task, especially using technical
processes, methods, or knowledge
* Three key technologies for embedded systems
- Processor technology
= IC technology
- Design technology

Embedded Syatewes Design: A Unifled 18

Processor technology

Processor technology

* The architecture of the computation engine used to implement a * Processors vary in their customization for the problem at hand
system’s desired functionality piinD
* Processor does not have to be programmable fori=110N loop
~ “Processor” not equal to general-purpose processor total += M([i]
Coneller Dauty | £ [Comtalier Dutspth Contrallr Thmapaih ; end loop
| Desired
iuen) functionality
(=)= = _
I
=] =] I B < R
General-purpose Application-specific Single-purpose
processor processor processor
Application apectiic Whnghepurposns | “rchurnre |
19 Einbecti Sysiems D-w-,;‘::m 20

General-purpose processors

* Programmable device used ina variety of
Comtroller

Single-purpose processors

* Digital circuit designed to execute exactly

applications Detepath
~ Also known as “microprocessor” i Register S Egiam .
fogie sed file ~ a.k.a. coprocessor, accelerator or peripheral
* Features gisted .
- Program memory General caluresl 1od
~ General datapath with large register file and W] [P ALY -G only the comp to
general ALU $ i execute a single program
* User benefits Program Data ~ No program memory
— Low time-to-market and NRE costs) — * Benefits
~ High flexibility B ichon _ Fast
* “Pentium” the most well-known, but otal =0 ~ Low power
there are hundreds of others frite - ~ Spiall sz
o S Syt Frar A Vel 21 Emboded Syatema Design: 4 Uniiod 2
Application-specific processors IC technology
e e e
* Programmable processor optimized for a Contoller | | Datapat * The manner in which a digital (gate-level)
particular class of applications having oo, (|| | Regiter implementation is mapped onto an IC
common characteristics Ktule regisied — 1 Tntiasted cifciiit, of “chip”
~ Compromise between general-purpose and Custom ’ gral i ‘p o)
single-purpose processors 2 — IC technologies differ in their customization to a design
* Features — Data - IC’s consist of numerous layers (perhaps 10 or more)
- Program memory Proges || memary * IC technologies differ with respect to who builds each layer and
~ Optimized datapath - when
~ Special functional units for: o
« Benefits pociet W [—
- Some flexibility, good performance, size and 1C package ©
power
E-Ws?nn: Derign: A Unifind 23 Embedded Syatess Design: A Unified 24

IC technology
e 0 i S e s |

 Three types of IC technologies

- Full-custom/VLSI
~ Semi-custom ASIC (gate array and standard cell)

— PLD (Programmable Logic Device)

25

Ewbckded Syatims Dextgn: A Ungfled

) 2000

Full-custom/VLSI
L T R W L B i T T e =

= All layers are optimized for an embedded system’s
particular digital implementation
— Placing transistors
— Sizing transistors
— Routing wires
* Benefits
— Excellent performance, small size, low power

« Drawbacks
— High NRE cost (e.g., $300k), long time-to-market

Eavbadsed Systams Design: A Unfled

Semi-custom

» Lower layers are fully or partially built
— Designers are left with routing of wires and maybe placing
some blocks
* Benefits

— Good performance, good size, less NRE cost than a full-
custom implementation (perhaps $10k to $100k)

* Drawbacks
— Still require weeks to months to develop

Ewbedded Syatems Destgn: A Unified 7

(s

PLD (Programmable Logic Device)
R e e e s s

= All layers already exist
— Designers can purchase an IC
— Connections on the IC are either created or destroyed to
implement desired functionality
— Field-Programmable Gate Array (FPGA) very popular

* Benefits
— Low NRE costs, almost instant IC availability

« Drawbacks
— Bigger, expensive (perhaps $30 per unit), power hungry,
slower

i}

Enbeckded Syatems Design: A Lingied
1 LY =)

Moore’s law

= The most important trend in embedded systems
— Predicted in 1965 by Intel co-founder Gordon Moore

IC transistor capacity has doubled roughly every 18 months
for the past several decades

10,000

1.000

Logic transistors 100
per chip w

1

001

togaridmic scale ™
[

I

z

Embedded Syntems Design: & Unified

Moore’s law

* Wow
— This growth rate is hard to imagine, most people
underestimate

— How many ancestors do you have from 20 generations ago

* i.e., roughly how many people alive in the 1500's did it take to make
you?

* 2%~ more than | million people

— (This underestimation is the key to pyramid schemes!)

Embedded Syatens Design: A Unfled
Introvks el 200

Graphical illustration of Moore’s law

1984 1987 1990 1943 1996 1999 2002
| e "
m o 150,000,000
transisiors
Laudirg achpe
- whip i 2067

* Something that doubles frequently grows more quickly
than most people realize!
— A 2002 chip can hold about 15,000 1981 chips inside itself

Embedded Syatems Design: A Unffied 3

Design Technology

* The manner in which we convert our concept of
desired system functionality into an implementation

Conpilations Librasion’ Tomt!
prae— [g

Verfaten
Bywem oS’ el nevesdat
e, [= T =
el
dmadn b Lorewwe bevel
it wral Bebwres Corm Htw
L
o 4
lerwat abutractm evel
L | "7 RT BT ML mwson.
e rmibens componets
Tt o ifhon: Ermars /
& freis
sy coutly peations Lo Lops e’ [
twnem levels. pecdnatam oy Catle o
To liewd eprimnestaien
Embedded Systems Desigre: A Linifiesd n

Design productivity exponential increase

B ity
(K} Trams. Stalf - Mo.

Tl TRV &l Tal T&l T80 T30 Tl T80 T30 T3l T80 Ty g7 1

* Exponential increase over the past few decades

The co-design ladder

* In the past;

— Hardware and software
design technologies were
very different

— Recent maturation of
synthesis enables a unified
view of hardware and
software

* Hardware/software
“codesign”

e
The choice of hardware versus software for a particular function i simply a tradeoff among various
design metrics, like performance, powsr, size, NRE cos, and especially flexibility; there is no
Sundamental difference between what hardware or software can implement.

Independence of processor and IC ; i
Design productivity gap

technologies

* Basic tradeoff
~ General vs. custom .
— With respect to processor technology or IC technology

1

~ The two technologies are
Ueneral- AN Single-
[pose perpose n :
Geseral, processor processor melm
Flexibiline
Mainsainabiliny {::I E"} P‘:’ wiivieg
NRE cost Size
Time- fo-proforype
T Cast il volume)
Cost (Tevwe volwme)

WS:-:W'AL!W 15

S S e et =1 |
» While designer productivity has grown at an impressive rate
over the past decades, the rate of improvement has not kept
pace with chip capacity

10,000 100,000
1,000 10,000
Logic trunsstors 100 = Lo
Gap Juct
per chip "0 o ¥
(im millians) i IC capucity oK) Truns Sudf-Mo.

L] = 1
. ol

anl

Design]Sroductivity gap
| e e e —— e et TS

» 1981 leading edge chip required 100 designer months
— 10,000 transistors / 100 transistors/month

+ 2002 leading edge chip requires 30,000 designer months
= 150,000,000 / 5000 transistors/month

* Designer cost increase from $1M to $300M

10,000 100,000
1,000 10,000
Logic transistors 100 { 1000
10 x = _p—1 100 ¥
ek 8 ““m 1o (K) Trans/Staff-Mo.
ol — 1
= prdectidy al
OO T T T T T T T T T T T I T v TT o
EEEZEITEEEEEEERE
Embudded Syetems Design: A Ungfied n
in i

The mythical man-month
| e e R P e ey

* The situation is even worse than the productivity gap indicates

* In theory, adding designers to team reduces project completion time

* In reality, productivity per desi d due to lexities of team T
and communication

* In the software community, known as “the mythical man-month™ (Brooks 1975)

* At some point, can actually lengthen project completion time! (“Too many cooks™)

1M transistors, |
designer=5000 trans/maonth
reduces for 100 trans/month
+ S02 designers produce 4900
trans/month cach

Ewbaddied Syrtamy Dexign: A Lniffed IR

(%

Summary

L e e e 1 e, S SRR

* Embedded systems are everywhere

* Key challenge: optimization of design metrics
- Design i pete with one anoth

* A unified view of hardware and software is necessary to
improve productivity

* Three key technologies

Pr : general-purpose, application-specific, single-purpose
- IC: Full-custom, semi-custom, PLD
— Design: Compilation/synthesis, libraries/IP, test/verification

Himbwdded Sysems Design: 4 Unfied a9
[.

ASSIGNMENT QUESTION
PAPERS WITH SCHEME OF
EVALUATION

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH - 11 SEMESTER, ASSIGNMENT TEST-I, APRIL-2021

SUBJECT: EMBEDDED SYSTEM DESIGN

DATE: 22-04-2021

DURATION: 30 MIN

MAX MARKS: 10

Q.No. Questions Course Knowledge Marks
QOutcome Level as Per
(CO) Bloom's
Taxonomy

1 List out the challenges in building an embedded 1 Remembering 10
system. (K1)

2 Explain the possible steps involved in build process of 1 Understanding 10
embedded:systems. (K2)

3 Explain about the structural units in embedded 1 Understanding 10
processor selected for an application. (K2)

4 Explain the typical Embedded system architecture of 1 Understanding 10
digital camera. (K2)

5 Draw the independence of processor and IC 1 Understanding 10
technologies with explanation (K2)

6 List the characteristics, applications and trade-offs of 1 Remembering 10
embedded system (K1)

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH - Il SEMESTER, ASSIGNMENT TEST-I, APRIL-2021

SUBJECT: EMBEDDED SYSTEM DESIGN

DATE: 22-04-2021

DURATION: 30 MIN

MAX MARKS: 10

Scheme of Evaluation

Q.No. Questions Course Knowledge Marks
Outcome Level as Per
(CO) Bloom's
Taxonomy
1 List out the challenges in building an embedded 1 Remembering 10
system. (K1)
Fmbedded S\dslrem — & Marks
Ligt (Poini min. 16) — ¥ Maxks
2 Explain the possible steps involved in build process of 1 Understanding 10
embedded systems. (K2)
Embe,c\(; ed Sustem — QAMarks
D\'a%-fqm Relen arl — 4 Macks
Steps Explarabon — 4 Mayks
3 Explain about the structural units in embedded 1 Understanding 10
processor selected for an application. (K2)
Rdc vant D\‘a.gmm — 5 Maxks
E\P\cmahoﬂ Eech — 5 Marks
4 Explain the typical Embedded system architecture of 1 Understanding 10
digital camera. (K2)
Avehiteetuve Dia.%mm —SMayks
E\qunah on Fach —5SMavks
5 Draw the independence of processor and IC 1 Understanding 10
technologies with explanation (K2)
D faa'fqms RQ\@\J qn't e By MQ‘I‘KS
E-vplanakion — SMavks
6 List the characteristics, applications and trade-offs of 1 Remembering 10
embedded system (K1)
Fmbedded S‘\dﬁtQ m — aMarks
Chavactevi ele® — 3 Mavks
Ap plicahlons 4 trede - 3t

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS):-NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH - Il SEMESTER, ASSIGNMENT TEST-II, MAY-2021

SUBJECT: EMBEDDED SYSTEM DESIGN

DATE: 13-05-2021

DURATION: 30 MIN

MAX MARKS: 10

Q.No. E Questions Course Knowledge Marks
Outcome Level as Per
(CO) Bloom's
Taxonomy
1 Explain the Combinational Logic with transistor and 1 Remembering 10
logic Gates? (K1)
2 Construct the Combinational Logic Design? 1 Understanding 10
(K2)
3 Explain about the RT-level Combinational 1 - Understanding 10
Components? (K2)
4 Construct the Sequential logic Design? 1 Understanding 10
(K2)
5 Develop Custom-single purpose processor Design? 1 Understanding 10
(K2)
6 Explain an Optimising Custom-single purpose 1 Remembering 10
Processor? (K1)

-

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH - 11 SEMESTER, ASSIGNMENT TEST-I1, MAY-2021

SUBJECT: EMBEDDED SYSTEM DESIGN DATE: 13-05-2021

DURATION: 30 MIN MAX MARKS: 10

Scheme of Evaluation

Q.No. Questions Course Knowledge Marks
Outcome Level as Per
(CO) Bloom's
Taxonomy
1 Explain the Combinational Logic with transistor and 1 Remembering 10
logic Gates? (K1)
Diogyams Relevant — S Mavks
E-aplanadion — 5 Marks
2 Construct the Combinational Logic Design? 1 Understanding 10
(K2)

Diaggam —5SMavks
Eq:?thon - S Mavrks

3 Explain about the RT-level Combinational 1 " Understanding 10
Components? (K2)

RT-' lGUQI Ccmbina}‘:onn}—l{ﬂmh
fxi)\anoﬁon each — 6 Maks

4 Construct the Sequential logic Design? 1 Understanding 10

(K2)
Seﬁvucn'hal Lagtc sien — 3 Matis
Cona¥ocHon £ E‘i}l‘lha for -] Mo
5 Develop Custom-single purpose processor Design? 1 Understanding 10
(K2)
Gushm-Si pﬁh purpose Ffommﬂ- Y Mok
Deﬂﬁam Deudopm&h’j f:f Eu.r\amh'on — b Maiy
(2424
6 Explain an Optimising Custom-single purpose 1 Remembering 10
Processor? (Kl)

OPh\nisfna Cus{uﬂ\—st‘ngk g T

potpose Pmm

E tplanadion in dc!an —5S Maske

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH - Il SEMESTER, ASSIGNMENT TEST-II1, JUNE-2021

SUBJECT: EMBEDDED SYSTEM DESIGN

DATE: 02-06-2021

DURATION: 30 MIN

MAX MARKS: 10

Q.No. Questions Course Knowledge Marks
Outcome | Level as Per
(CO) Bloom's
Taxonomy

1 List out the common memory types. 4 Remembering 10
(K1)

2 Explain the INTERFACING arbitration process in 4 Understanding 10
embedded systems. (K2)

3 Explain al::’out the memory hierarchy and cache. 4 Understanding 10
(K2)

4 Explain the typical multilevel bus architecture. 4 Understanding 10
(K2)

5 Draw the side by side and top to bottom connect of 4 Understanding 10
composing memory (K2)

6 List the advanced communication principles of 4 Remembering 10
embedded system (K1)

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH - 1l SEMESTER, ASSIGNMENT TEST-III, JUNE-2021

SUBJECT: EMBEDDED SYSTEM DESIGN

DATE: 02-06-2021

DURATION: 30 MIN

MAX MARKS: 10

Scheme of Evaluation

Q.No. - Questions Course Knowledge Marks
Outcome Level as Per
(CO) Bloom's
Taxonomy
1 List out the common memory types. 4 Remembering 10
K1
Cemmeon memer ’rapf § — 3Matks e
Lisk (atd) = Bt
‘Ex‘:lomujn‘ on { Bach) — M Maks
2 Explain the INTERFACING arbitration process in -4 Understanding 10
embedded systems. (K2)
Fenbedded S\dshams — Q Maskt
Tnbes QOL\‘I‘L%’ — 3 Mari
Faplanaton — S Moiks
3 Explain about the memory hierarchy and cache. 4 Understanding 10
(K2)
Memo rcd ht‘emmba — 3 Mavks
cache ~— 2 Maiks
Ex p\ana:ch — Y Marks
4 Explain the typical multilevel bus architecture. 4 Understanding 10
' . . (K2)
Molhlevel bos avchitedoie —5 Mok
Fif:lcmc:;}fon Indm{a‘H\ — 5 Mavks
5 Draw the side by side and top to bottom connect of 4 Understanding 10
composing memory (K2)
Side- bua- Side Connedt —2 Motks
top —to - botiom connech =Tk
F xp\pmo}ion beth ~ YMake
6 List the advanced communication principles of 4 Remembering 10
embedded system (K1)
Ndvanced CommonicoHon — Mesls
Prindples (aboul) —3Mais
List and descuiphion — 5 Masks

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH - II SEMESTER, ASSIGNMENT TEST-1V, JUNE-2021

SUBJECT: EMBEDDED SYSTEM DESIGN

DATE: 23-06-2021

DURATION: 30 MIN

MAX MARKS: 10

Q.No. Questions Course Knowledge Marks
Outcome Level as Per
(CO) Bloom's
Taxonomy

1 Classify about models vs languages. 5 Understanding 10
(K2)

2 Illustrate the finite state machine model (FSM) with a 5 Understanding 10
neat representation. (K2)

3 Relate the HCFSM and state charts 5 Understanding 10
(K2)

4 Interpret the program state machine model (PSM) with 5 Understanding 10
neat representation. (K2)

5 Explain about the communication and synchronization 5 Understanding 10
among processes. (K2)

6 Outline the concurrent process model. 5 Understanding 10
(K2)

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
LV B.TECH - Il SEMESTER, ASSIGNMENT TEST-1V, JUNE-2021

SUBJECT: EMBEDDED SYSTEM DESIGN DATE: 23-06-2021

DURATION: 30 MIN MAX MARKS: 10

Scheme of Evaluation

Q.No. Questions Course Knowledge Marks
Outcome . Level as Per
(CO) Bloom's
Taxonomy
1 Classify about models vs languages. 5 Understanding 10
Modele — 3 Mavks (K2)
Languages — 3 Mavles
dﬂi‘.ih‘:a’}{m” Y Marike
2 Illustrate the finite state machine model (FSM) with a 5 Understanding 10
neat representation. (K2)

FSM — “AMarks
Re &,mgcmfcd'?on—— Y Matks
:[__Must'fajﬂlon — Y MatkS

3 Relate the HCFSM and state charts 5 Understanding 10

HCFSM — 2 Maks &5
Skali chatt — R Mavks
Relakon £ E\katonc\}‘ﬂ'n — 6 Marks
4 Interpret the program state machine model (PSM) with 5 Understanding 10
neat representation. (K2)
 PSM — % Marks
RCF'NS.Q'TL‘:G_HU'“ — 2 Mavky
“Trtex pfe.i'a}rio'n — S Navks
5 Explain about the communication and synchronization 5 Understanding 10
among processes. (K2)

Communicadion amoryg proceses- 9.

Stdhc}u\f onjzoen amerg protases— s
Empl.anaﬁtm beth —6 (24 3)

6 Outline the concurrent process model. 5 Understanding 10

cl')h(‘ uie nt_ P’*o({aﬁ mcdd —~ G Wlﬁ’ (K2)
Owtine £ Exglanabion— S Mk

NARASARAOPETA ENGINEERING COLLEGE,

(AUTONOMOUS) NARASARA?PET
- :" (Approved by NCTE Now Dolt & Porn wnontly Aliltatod o)0 11 1 Kaklnta) f‘@
NEC ASSIGYWENT TEST ANSHER BOOK 1 N

s

Biuch H-.-*I.Tnch.fwllﬂ.‘#\ F.M.(I.I_f) Ccf, Lzuz] [n]' 5:})) J ! J

Year ‘jy_ Semester: {1 Sec: C TestNo: 1L LN Lt e
Suly E‘BD _ _ __Date: /2 - r__\ ?] L i | U\I (. ”(.-KL r HO 1)
g e e ol 1o o] qJ Dl R

I i e
f% M!\RK%| ! 7J erk in words [p (J (}MJ&E
Sr viature of the Principal Signature %mw;/, mm/mm ffn :’trmmm I

Ly @m}z&m gﬁ&m, . 3 \ :
X Ewkedded o TR TRt IR N 1L

.:,as\em i a. (‘«»’mbﬂuk.oﬂ 9” ‘Pn
hikqﬂo\ e ¢, %,,P ‘@ﬁb‘e

a1 "'

o ok e
Coledkd Sytem o h{-mu&e, Degan, with Sfiahe
PV egrmm 4o keep '”Je

Ilmmry (‘mr@nw ;
o R\Joqhhlf [\]Q.may Q‘Pl(

> Avadlable ﬁ—uefop %&4 v ,
k L\Vm]@b}&m"ﬁ)bﬂ gP’CE,' T (YD / i.‘.'._r
A e A58l yei (18
In Pewice TNk et F\thle, Nemy Qihce,‘
ke S‘t‘%& U-e G:Jﬂ o ffutts bl s

Mt pgeon e L 8

T pevice caﬂ@n m}ta.m ?37&@@ QPLQ,;

Preccae Pogd 10 vl b e‘((:cubg Ue %
oQGQHy

Loty #2) i
R WAL

w ‘)O\E&-‘ mg&hdﬂ“ e S i '.-:"' A fate
|

___.___—_. —_—

Jn Embedded Spatem Bortoa mqmmn Low
‘Pomcéﬁ DI Pl .

— R = VN e
'/.' o L (&] o

Erind ded PR 10wkl b Rear b ARP aatiene,
W“Wmm ¥ Omledded ¢ .y*'%(m

< S vt herrp
b.f

(N
‘

OiFtan caynd
H -F\“‘lﬂ APP”(M‘,,W
>< rﬂ\;\«‘ty AP cabana,

G*%hcs%um;c > @ Grkeiod gracn

[—

—

"ﬁm« e uﬁpp types @ Crimdded Yekon

hi) behenictico,

= ‘23'11")31(1 -(u{'}c\;mﬁjl. -%Iﬁr'l:(ﬂi " R
K Trthy' rﬁu‘t }:'.1'07;34 Sji!_si‘_m, t s
7 Reactive. amd fas i

| pliaf

S‘-Ir}]\.c .-'Ln'rf,g,ﬁ-rt ‘%Qﬂ)'. %5 L 76

P

; *Tn bty Smt(m DXovicen eveq, ke ﬁe?bnk.a “‘;khmb
| Pm’ﬁmn RCMAW NPT F Iy

‘-‘\Q.,'l {n'{.'n U‘("» Tﬂl.f‘.{‘ne {::J:rtt:l‘:p Ei:e %’h"b

o TRangy B Bfanve, this Bae Qb ddgy ?ys‘ccm
ack ap nw J‘“T*-*G* Rty i

mH ,)’ fmmm de:n

Thae Swem e Ml Uy ‘Dcl.hcc, Qu Ha,
GU
TN Conftrany A it Bl Q—:nf&wm ¥ !
)
‘F’h.ﬂg‘ PIS‘P‘\b“ : i

1
|
e |
o
T
4

4 | Explain the typical Embedded system 1 Understanding | 10

architecture of digital camera. (K2)

ﬁ_ . R . (e, _ i .

“The @m% Qcteyn ke Yo g, P N \}eh
}Ej—bhfﬁe, Pelice ke Jek Retslkt in Reas bing

O irhibeape © Digtar Gonsm, .

_—

NARASARAOPETA ENGINEERING COLLEGE, NARASARAOPET

(AUTONOMOUS) / b
~.." % {nppmvudhymf‘TE New Delhi & Permanently Alfbatod to JN T Kakinadi) 5{’ l@j
NEC ASSIGNMENT TEST ANSWER BOOK i

f""
B Tech./M.Tech./MBA./MCA. /_ 3Tech @Br)e CE [2[]2] [ml 55008
Year G Semester'—d/i___ ac C_Te%lNo 0 — .

HALL TIC KEIN())
Sub: QS_D__ - _Date: 90 —pYye20n ’ }_’ l ’ I I | | |
l , Y o4 |G |s

Name :. .&_— .Tagadeezh_ahandm Qe LA IA {

I(r|= Ones

fﬁV s O O] s [0 [T
=4

Signature of the Principal Sigenature éagﬁm Signatire n 4{1’1; Jvaminer - 11
|

Design Spec'n‘Pm‘_@__tt‘on,g ‘hvelved to bu'ld an ernbedde d

e i
— =

X tQﬂ’lg A N
25 { []
N
= De31gn gpeerh ng bt Jho, condrivton
o c(ongrdevalron tha. conRiyvc bhon ‘n

Of on emiedde d Syre

=7 Thave., ane. cevha o ong ‘awvoived '
Tthey are

Sy 2eecrfica brong
o~ Lohavy eu¥ ay e e\‘,ﬂ‘ga (o n
S pedf'gn onRPev Xee oRicatton

o rtogfear epecifeatvon,

NARASARAOPETA E

(Approved by AfCTE New Delhi & Permanently Affiiate

.&"l\?-_'.

NGINEERING COLLEGE, NARASARAOP
(AUTONOMOUS) o

10 JN.TUK, Kakinada)

£0% _ | &
NEC ASSIGNMENT TEST ANSWER BOOK S
t b 2021 (| °7U98
8.Tech /IM.Tech./MBA /MCA/__B-1ec _ _(Br)_E:c-E-
Year: fU Semestor: T Secic Testho: 1 —— HALL TICKET NO.
Sub :Ermbedded Seystermn Design Dale ! 230422021 gl il ol olels
Name - M= Sri_Bhavadtbi - — —
MARKS Marks in wordsEZ! QJ« (‘ AN l
t\J DI“!
.
Signature of the Principal Signature of (RExaminer - 1 Signature o fie-Examinet
ad =
3. ¢ .

Sygiem

A systerm g 4 way of woiking or oqanizing tasks ata
Set of raules-
Embeddecd Systerm Cr

Embedded dUsterm g nothing but o computer houdconre et o
50‘ t(_,l:‘D.YC prw'am embedc{dd 11" ?1 . //
Pfﬂg_islsa-f "-E-Chnolo%,g:
—5 A pProcessor s o cormbination of a contoller ana o datee path.
—> A processox 1echnoloqy yveferS 10 +he arvchitecture of the

embedded system-
—> ¢ bhave ~4hree
2+ Single
3- -Applicaton
G]E_I")!:Iro.\ purpose
~>The designer
a0 embedided
Py poSe

Syste

— General

— The

9

Srf_ﬁ-ﬁi‘& Purplbse Py
— ginqle purpose

&Mbe dded Systermn

ApPlicatton gpecis

— Appllcatfon gpeciflc proceseor

h&v dware anct

1* General purpose

PU.\' pPOsSe

pv QcesSSoT !l

wses o geperal

CO"*I.S‘I d C_YOUH‘On g
I placing tansistors
& &

Sizing +ransigtors

3- Routing cobres .

PrOQe 5%0Y

—> The designer wses a single

+types (N pProcecssSot ‘LEC.hnU[O(lq < They are

ProcessoY
PI’GCEEJSD‘:‘

Specific processor -

Purpose processon Hor designing

™ that €alfils the requirea fumctHonallity.

ma{r‘)lq refers 4o t+he hardedarve:

Abet aye

proce SS0Y

10 ke taken are

0Ces5s0T ¢
refevred +o +4he gofiwave .

pur po3e process for d@f)fcdr‘)\’h(}

s

of digftal elreult .

ic processor
¢a o combination o both

softave -

2 Tbe embeddea susiern design mMade for application

Processor ave asea 401 musiness coloso.

Qeneral purpose Proces sox ;

f ;
[|
corvollev Data po h
' -
I
P ——
contro\ k
togic anrd ———————— | |Reqisters
(ogic grates

’ 'l""“— encrol
TR =Yd G

| _ NnLw

i Fi9: Qeper (
i eneral purpose processon
qle PUr mOsSe Processoqx -
controlle v
Data path
CONtyp | j T ' i
Ioafc and ch:s*ﬂs
) : A e S M E LAY
(0qic Stales B
CusStom

__'_"_"‘"‘_-“-_

-_‘_‘_--_‘___'—_—'——._;__

r:".g:s:nq{e PUrposc processoy

':Pr'ff(‘tc

A

i 3
L embedded system.

Explain about the Processor technology for an

Understanding

(K2)

o I e

APPYcatton gpa ter
e

Pr

—__-----__-—_---—-

E

oce 5807 ¢, R SSEE TR
1 TOdta. qu-h——_“

\ i ; {
£q: Application SPacific Processod

MID EXAM QUESTION
PAPERS WITH SCHEME OF
EVALUATION

IV B.TECH Il SEMESTER, MID — I EXAMINATIONS, JULY - 2021

SUBJECT: EMBEDDED SYSTEM DESIGN
DURATION: 90 MIN

-

DATE: 25-02-2021
MAX MARKS: 30

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANSWER ALL THE QUESTIONS
Q.No. | Questions Course Knowledge Marks
Outcome Level as Per
(CO) Bloom's
Taxonomy

1 Classify the processor technologies. What are the 1 10
benefits of using each of the different processor Analyze (K4)
technologies? .

2 a. What is a single purpose processor? What are the 2 10
benefits of choosing a custom single purpose Analyze (K4)
processor?

b. Distinguish between combinational and sequential
logic.
3 a. Illustrate how program and data memory fetches can 3 Analyze (K4) 10

be overlapped in a Harvard architecture
b. Discuss about the following
i. Pipelining ii. Interrupts

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH Il SEMESTER, MID — I EXAMINATIONS, JULY - 2021

SUBJECT: EMBEDDED SYSTEM DESIGN DATE: 25-02-2021
DURATION: 90 MIN MAX MARKS: 30

Scheme of Evaluation

Q.No. | Questions, Course Knowledge Marks
Outcome Level as Per
(CO) Bloom's
Taxonomy
1 Classify the processor technologies. What are the 1 10
benefits of using each of the different processor Analyze (K4)
technologies?
-— ‘
[Focesset lukm\oamc,% — 3 Marks
Rene fits — QMarks
Df‘%ﬂeﬂt Pmcmse‘i fedmol®feg
clowsiication — SMarks
2 a. What is a single purpose processor? What are the 2 10
benefits of choosing a custom single purpose Analyze (K4)
processor?
b. Distinguish between combinational and sequential
logic. =
& e S\\na\,e. PU-fP o Fxc-(ﬁ.q&bq - 93
BQ_&Q h/l\t& o 33

b - D;wef@,m& beliveen

the CombinaHon £ (;ﬁ 5{})
S&Lﬂu)enif oJ ’

3 a, Illustrate how program and data memory fetches can 3 Analyze (K4) 10
be overlapped in a Harvard architecture
b. Discuss about the following

i. Pipelining ii. Interrupts

a. | Lostvaton — 9 Marks
glf&PS[P-rccedme, — & Mu:tK,S

b Pelinin _ 9 Marke
Ihte_wmlgbg — 3 Marks

F

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
IV B.TECH 11 SEMESTER, MID 11 EXAMINATIONS, JULY —2021

SUBJECT: EMBEDDED SYSTEM DESIGN DATE:10-07- 2021
DURATION: 90 MIN MAX MARKS: 30M

ANSWER ALL THE QUESTIONS

Course Knowledge
Q.No. | Questions Outcome Level as Per Marks
(CO) Bloom's
Taxonomy

Construct Memory Hierarchy? How does Cache
1 Operates? Discuss the Cache mapping techniques? List 4 Apply (K3) 10
its Merits and Demerits?

Describe Concurrent process model? and
2 Develop Hierarchical State machine with Elevator‘s 5 Apply (K3) 10
control unit?

What is Hardware Software Co-simulation? and
3 Distinguish various IC technologies, and discuss the 6 Apply (K4) 10
benefits of using them?

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS): NARASARAOPET

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
1V B.TECH Il SEMESTER, MID -1I EXAMINATIONS, JULY - 2021

SUBJECT: EMBEDDED SYSTEM DESIGN
DURATION: 90 MIN

Scheme of Evaluation

DATE:10-07- 2021
MAX MARKS: 30M

Q.No.

Questions

Course
QOutcome
(CO)

Knowledge
Level as Per Marks
Bloom's

Taxonomy

Construct Memory Hierarchy? How does Cache
Operates? Discuss the Cache mapping techniques? List
its Merits and Demerits?

Mgmb-{ -L-Hq_-{'(_\;fch'd — 2 Mavks
C,Qc.l'\e oPcicthvm —~ 2 Masks
qulna ’technicuuﬁ.ﬂ — & Marks
MGT“S cﬂ'\C] Dem(.ﬁ'kg = 3 Maiks

Apply (K3) 10

Describe Concurrent process model? and

Develop Hierarchical State machine with Elevator*s
control unit?

Contssyend pocesy mode] — 5
DescTéPHon - 3
Yhevaschical $tobi maching -2
Flevator's certrol untt =3

Apply (K3) 10

What is Hardware Software Co-simulation? and
Distinguish various IC technologies, and discuss the
benefits of using them?

-Aatqlwo:fe goh{;uaaﬁp (ge%!mu[aﬁco
— 3 Mavks

Javievs (¢ -technnloalq
— 2 Moy kS
Discussien — U Max ks

Apply (K4) 10

a

> | # ; g el %
“Wi>) i | . . Z/ E‘
nARASARAOPETA ENGINEER g%%LLEG E, NARA‘%}RAOPET. |
m (Approved by AICTE New Delhi & Permanently Affiialed to J.N.TU.K., Kakinada) < tYe

NE MAIN ANSWER BOOK

B.Tech. / M.Tech. / MB.A. / MCA. /. JZ,_@A—/ (Br)—J=CL 2021 (ll] Lan0E \

Year:_ﬂ_Semesie[: T SecioD MI_d,No.:___[___,_‘ HALLTIC(E. ¢35
Sub ; B -1 . .MDate:_Oj ljl ‘)gaz.{ r‘ ’Z, ,I/'T',? ol IO”OLI ’ 2
Name : fV 5\ o T) ATV T i)

\ % |
‘ iy s j xtiminer - I1
. -\\ Signature of the Principal "' /' Sr’gnamgqf the Examiner -4 . Sfrgnatzlsre 0 L Igee *

L} / |

. 1’_._ . o 9 o OL o

)\ ;. otk agastize éeﬁje ﬁzuq?as, e ,sslw'i s
i . " T puipst t /
T T e e R

j] tpochosd) G gt i)

Reai'd

Loreo (]i“ /J”f‘}&'?j“:f*d
(ﬂ, fym.g i “)/L

Tens ' Ones

A costous s Mgl f b 4
g o duchos B0 \g.-,_l =1 Y
taxs ‘—a%ﬂ oy BT b’ gt

+/ (IL otom 4‘@?}’5 Wﬂ%. | M%VLI e /ﬁejgtl ?W.L_
bg.}:at &iﬂ_.}\,rgvl?"’} so thslﬂlj °?7{ ..]

g o e ety v 2l T8
o o ﬂ“ o b e . __M?JULI

j,’)‘/ /ﬂ/; r}wi%["‘f pufd f} cMe/ ..Fweh[sv WJ ("Zﬁ ‘yhgcuj

e g AR —
N el ‘gt

il g g

skt o g ol b

H e
i) AND.._*}J&. ' b o

_ e)]-;wfi ‘?4«-](II,-'
\i)Uy oJL EUJ{

'I I\’TI) | "|I't.}‘;;-’t.'-ld\'*y“ W AW " '-\?‘

1) b L@Q&:}%ﬁ'«#
f,l,c VO w?“*“’j @(j
v b sepitlee o shift my:s—’»r

| (]L uow\\roﬂ-“v Jwateé_.f..

~—

Il CoMLIu.wL\eI,:.I (Raj'gt ;LL’!“-J Fr

Sl e SRR e

e

wﬂx#d‘%@f{’g onfde/ gouseond

'1 oy o A o LE eoebe
. :’JM i, iiﬁ% ﬁ:-;w j _(fL fsﬂﬁf"“’fl
ozlocmifJ : J%\ Ib‘j}ff{# bl B

U&ay v

G

o ot

NIRRT
I.g‘laﬁ';-ﬁ,*{} purd PW'E’LO"'O =

{Pmom” wird *‘J-o

R N Y
lg,[d‘\vc’-*-tt ov J‘:j-p-|“l b%“d 4_:1./12&4 Ef H

ﬁiwvj /(L:in{— ; d?.»m«'r! “04--. c{enﬂ‘ '. M—J '”lto Cm;{““-‘f 3 |
\,} (]L_(taLL’\‘ij . o-u- ‘ ?l’lob'cl hl-qj}-L{'“‘(.Jpclﬂ .m,f ')“v "‘1“"9’;’/*"‘“4 ‘““llt;

© r}[
S Flop

M ok Hop wrd of b P ek)
J‘Lj.w:‘] *‘L j&u:t\ f_uo“-"L’*'I"‘*’Lw I‘% {7{‘& ijdal

[ocer,

!
i

c-LF W"L“A

il 7
b by e A ol o

dde r\w{wci to

i}lﬂ o @rf dluﬂ.{ei.{

e dob
Z]:&? /[L'T ot] %ﬁjﬁ'%"« i o

sod aj-]w M Jnfad o gede thd .J%”L
M\Tdr‘l*j

9 b

: MW Y&l

F} ‘1\,_ _ ﬁuf'

| 2) (\Lw ;«o’l‘ hosse .

:fi’j' ‘_JtA""l S,SWJ ajclu_;_,'
o e |
Qon?va\u»l g’)wmﬁ

‘fl'-"-«._;;Ma pohel “i aA :J,) o 7

e g el

1 COM zp}u\-_l\u.w'

uf| £_1fl th‘z’
apety o

1) i fod shiod b
aJuA 'f,,eﬂ ‘{u- |< . , .
c-h’-“’" 4?“'“‘[

57rfl:s ¢ o e ([L

. ﬁas:-l't (fwj,m ﬂ"’w

bl AND, NV NAND

(Eoflm L freges el RS TR O f
be QUNW»C\ -‘\iru Hovves d qu’ Lwll*/ - "
bY ey fb Aol wy SR
) ppeeeg il pb
ol aphit g e A P
.) *_..‘ o '0’*"‘;‘)"*‘?’“‘ b |

o 4 o b e .
\ﬁ'lr -H + } | DJLL 91 (]'L, J{%&A‘ pﬂf"‘W
TR R
i £ L
\ed ALH TR '«Jru[/,wxbbﬂ:! | ¢
- J , p = Y CL Valyy
jov 8 A "»“j’[‘ ' (lt‘;’r‘ -7 /i /‘

: "f\} Cn)rfvl

;{L, e pdl mf,#w g_ul,wu A’L\,oco,

e 7 MM)MJ—LJ"{U d[* &wl\w-r ﬂ']uﬂtu} .

Aevoe oud gan ..Fwa |

—

'lub\g"'“

_—

r[L 91@«:1?-&# e d g\,a./(|
M'L jo)r”‘{ ‘1 (rlr ‘\N‘J*\(t“”d ij '7"" {Mﬂuﬂu

L —

rLV"‘— ZFWE"‘({ 7 (I’L GSML\JMU-;

g
. I
Y

|

- 4
i
i1
_";‘l:
bk
%
B |
i
]
5
oE
1

1
|
a
:E
i

gl
et

bt

St L ne S B s) S0 SN e LD

d &4 v d ,-“A\ a?mru

f e F”oca._f.

prgp b o |

.-r"_..-";:";ﬂ_‘ .) | X \ 1

CQD pwt*’ff*"v

g T

i
v
1

ol o
L H Nmow wep P i 6’9 P
A P

| od

e ﬂww-&iw ¥ el

Y e sahed 'J:O (ri; PVACY: Y, p.jfl-)‘ : ,
o cou*’*"‘”*”J"uM /

O]Vatﬁv} w{f’llw (rL‘J ()L

r’r][‘w 00 def

W‘U‘CU\ QQIA\QlL

Nj;’f‘w JHJ ej;c?,;{fl;/ k)

]
i [Xl _‘ll
L

[y MW\”*’”Y LK ;ﬂm o R \\
k (74 CWFWCWW L}@
FJ

h&‘p‘ ﬂ”’“f‘ﬂ Uﬁ%ﬂf I I : , .r

¥, c@vywt%‘#v

Wy

N :
.+a _ -.wawmp«r‘_’l PJ—J DQ»J“‘O'V _‘ G_Hw (,L;_

e — " a—

]'// u,-t-‘t’l‘- &J- Ad LDL ,gz "‘/J‘“L'»"‘ L{ .
R
[(,}(D) I
— _ ‘L .
NRVRY, u‘,';.

I \)—’L\l C‘)
g wlile Cgos)

3 oot

M 9/t
H CDt “J) _
1]
l 1 Crxbi)
3o

§ o o iy

4L,sa wa o A“] ey, '1 seldudee gl
AL e U o W,m; 7) e~jal bt ?‘“ euthkd
14 ke e ol ofe BN st g
4’1'-' cobived e r‘ hy ﬂ”ﬂ P
g pr B g i,

qL ch-cluu“tl 'Sﬂ & 4 ‘{f‘ b'(o.?hf‘- Rs ‘«;.I.L]

r\’""""é bu,l,»? -,{-ALLLL .Jrc'{c»' qL-I du—l{" !Jo,‘g(_

(4% -L‘-UN'-J et d > ad EV9 far!
@,Hl J.Jﬁ ’tu.ff-f-\i | ."d’ go}wj(sttt |}/ j.‘ i c’ ot
Y,

ol b e ey

alt4Af q{k !“I"*"Q

S

e.

(A (AUTONOMOUS)
(Approved by AICTE New Dethi & Permanenily Affiliated to JN.T UK., n“ﬂhnada;

NEC X MAIN ANSWER BOOK/

\/
B Tech. / MTech. / MBA. / MCA. __B=Teery " "{g %ﬁ [m
y 13070

y n . nd . ; .

Year: _ ut Semester : _J Sec:_ D Mid No.: HALLTlCKET
g edd ed A2 es; Date : _ . . p

Sub ._____"m_____.__—iii\f—ﬂi f‘d."b_ IS e S S [l\{] D =

. Tens Ones

Name : K - Raket D _ .
1) i o |
MARKS[o0 |]Marks in words %0 115 ¢

([| Lif A <§‘\'ty
I \ {
W S'."g'f::.fmnc*gﬂFE.t'r:r:::'fra*r -1 Signature of the M

NARASARAOPETA ENGINEERING COLLEGE, NARASARAQPET 5,

sep)-| pivelinith .- (@(L

Signature of the Principal

) 'nedreetton
* ‘P!'Pf”n;"? i a commen way +o nerexl ~the (T 3
LRy ! maKCL a
mEtIO),m[eJmJT ‘ we -{-fa.l-‘-l _ i
pte a@thr"} -he choge 0+

one QPP*MGh -rh@

-throug b om.H pu{— 0~l Qa

Lmpla ar\qtoa, N- -H.do Peo
wsaththy and daping pdithel T
gosk peauen | yathel an " e dithes and thed -H“{L
¢ MMJ &r_&q'n“\} ' m,nuH

{ [|

eclend pe.ﬂ.!bn et an

o PEASON —thif ‘qp;siodch qequiael 16 min

pe aith
The qppreach s Cteﬂ\i'j— " Mu@n** Amce at an%
Hme | end Y one Pamt)n A ,,,_sogu:fﬁ’, and —the pihed
B gdre s Obylowl 4 bed(A qpprach 1 Ton the
gecord! PeAtOn o pegih 69@;"‘?#‘!\0 o+ deth anm.’crﬂ%’

oD T ‘o) been Wathed .

I3 gach ddN. 1 1@ an' Prtbubiton and “re w0
Hted ob wakhing and dading aae fike 4ne oL

1A)
ARl qued abO. 5y g A tepagany it

o2
€k gage ,
We an PiPeling uhit decode

™ wnip ~the

! _{-G{I\PO"lji’-f/
N ERON fededy Ot timdl
‘&‘4—61\6_‘ I.-{hg Nent

Franchet POC q paoble
i GO xew ane
) -I'

CU(S\-‘?‘LQWL-))

M) eyl pr’“”@’ Lined

Gy,
pent]I’_P"H’LLC-‘HO“

“Hen At yeathed —the eneant]
Mg :

ke |
(') TH S Ay L]

4

—

P

A dﬂ:t&qpi- CQU-UG.J—H\@ ?ﬁ&ééuom - _N_lp(’r\d |
er\e;__q{-t@h i 3{_ ‘_me :__T;Q » Y no by)

D pasrame and rr‘-"‘Leg‘d
\ 1' 1‘1 i Jl,u\ } \l"JIﬁ 0 (Yo

_JLU\'\P 'hp Q.ﬂ H\J((s\aupi‘ __Qesw

<f"’tl_(a

Ve Rowtine WL&H
.ﬁ\oa’f‘%{a 1, POELg need)

1)
*H\e PSGDCEA‘_;@J aGJum@ eh&’cq'r‘"on
(;ﬁ'}QI) FNMO :?7(@{8:11 N p P 9\3&1-0-9(‘“"\7/%@ PC .
—MhE

~Lpe CEQ
anfr’cq 403

(e,

kg

2

| 0 8 ~the
ST i oA Poceoy
'-"'*dit\cf""mkij#;' o otl 4 I..-'fL_f,lZ_! when Necece
ey
n Uty enh v (ryleer Voo \I'\Pl IR ASL qa}.%e
AUt 6ol 4 Lar_g'-mk‘}fﬂ ’P"Qﬁmi
. =ad
MR Qg sPeCc'*‘fC,l aucfr‘eaU, (n PO bar, e ’
~the L ek ol LWQ““:?I@ Programmey, M
do
aro e
&o:ﬁ\r ompieat AMoLtiq preigrammie, -
—C€>9LC(’_ c\ .pYDceduU(Q"t@H—aq+ R i

'an*tc‘c'{iq.az
0{) Wiyde Aecognyo Pl 1y
9(“"(%«“13 &R ltreq

S e ey B N NARASARAQPEZ%

I

: : 21y) =

@l nen~pipetined) |]T- iR | u r €la (P
Ve G (0 1 i I R P = Py 1! 1. "‘ Vhatad Sl)
11@ 2 u 5 x|

1 [;1 9 3) q} J‘r_éw <+]—3?7 y

(b) P:Pc’hn&

VL e whe

) PE:’C@C' e'ln-.) VeI
Fcteh +he 6/ P

) Aoy g hrgneetH o g

14 [}) I
) t Y IJJ '1‘|_ | y J' b ! '|] | J
| (o VT et) \:
Il';. | |) :'
AY
: cnate pua Pyl € oot |
== = = Aok I
)
Vet
£ W ta il {le:!]ai' h A0 e Inetds
ALY coln'wd‘ o7 eh_,t{ﬁ“ﬂ) pd-&-‘? hf\e_J
tf Wi e
i3
oxtanal putpdt D
e enHmng /

o -

! ¢ LHN
*® ¥ batt! poccetses can pe but
comtrottey and data path
. '
y } ; l ' { qch du}ﬂ—f
contre tep = 1 gy by [et ng d Iniise
= 5§ o §oE" . | _
put

that H0Q qode. ULSEN e b mmlocl_

Pot=x path | Lol [k

(1 { J..'

£ o . ’
FE _gpvowveld (ne au the '_,m-rxﬂ:téoan on ! H lrke
i "\"* "*J'P‘“@'" T sontio] J,_qmu et

1‘ j \

£ —the dota pq—!-h leranet | dota alld Nlnq?q{aPtJ

2.

.‘0\-} TPQ)' -é%r\@_féle&f\g} \)ﬁr{‘ .

’
__-%’{p{ L ‘“ﬂ‘\@ Aot L‘_c J\:V-gn t‘_j (Xj;ir:_gﬁe d ‘_m ..H-\e

ReQUHI —thyoudh Frput pocts |

LHPR (= —he contolte) Wit Hakel ke data—o
N Q@ _anetona) | ORL g8 alathamed ¢
and tef gL unil :

raliigh I‘ﬁ\@ e [= S _PQ‘H') JJFI"U(\O.@MO .@P_'gm{-goq
oretordiag 4O gived Cuttem

i -
o A

Skewt o vrf\@: do&-}a ,}9(0(‘@.”60‘ Wit 'be' Yaien o

' b i
seti | foge |] / .
—he ‘ae,ome d Q,QFH i ks

Q’Hf@” -w -H\Q

| irJ -the <IN |

: vee
T N ~Hh o

-. _____________.__—
1.,'/
\ rlaeged ._J ol 1 Jad 1 1§ Al

e c
r pedined | abou T QM Y b
') d%ﬂh

'n embedded -?““’H
hit tnetud e’ _tactons oeh &
©) pEgam Memod s

) Pala . me oKL
) ALY

(¢) tjrg@ pyapose preceldor echno

noaud waxl
petined gbeut flod HV teeh weed

Thi fedel ~the dactoal _raeh A8
h) pee«;#osw\otf\ca (hign)

L) oin C_lmmﬂ

(¢) cone ¢ Low)

(4) powen (‘me

PrOCE’SJGS'l +eh nolog;}/
—_ f.J,-_TH o \ vif "i"l\',i “ff"_".l gl | / |
ot paocast03] tehnopf
YL e alered | 0 (PRI TERE
“Thvj, qa_@/ PR I i 1) 0 I'-.i-'}i.' | b1 ‘i: | v
\). ¢ 1CC ol:ﬂg;_j
') Ceneaal w&?ﬂiﬂ ;pm')c@ﬂﬂ i o]
= | "-.. ' ‘,, Y1 ™)

-

tog |

N €f5P

. 4 Apdlication

PxOCelloy “c ehrote Y
I LT R LR
s

X
' Petnes arout Hole faper AW € —-‘['U
[)-Ue_d_ i Eth -@:ﬁ’b by o Y Pope, g Il K
Thes 1 »

‘J'.'I[1.,' d
e
1 ‘ . pkxl% Imﬁ ‘ *
+@J. —H AN 39 golse iordearari U
2 elrt
’ C i bl J—% |
Pr.::a '
P C hfm COF\"H@WQ@ 4 AR |
L i -
y A Rt I 7 o
| |] |(J|f,l‘] ﬂl'!(’”—iﬁ“ ;:-I.
) A i .‘ | EEY
{) 7 '..':r‘«-'}.w " 1
VTR M . l '3 g (g
/1! T -hl.l‘r\q‘l.l ey
_l \4‘ oy e) '('rl'”
RILAISTE J
| | POy f
| \’.’Q."ﬁ"q'l'.;;/’ﬂ RR NG Loy
[i |
| Vin '
¥
‘ l\,rr’;in N CRY R N A o
| PN 10 g (' s TS RIS
|l Tl S A I | I ll '
TR o ol e N
oy iy | (0 1Y G LT !_'i 9]\ W ?\f', | 1.'_!‘\“,'}\‘ 11. | i
l 0 1 i
i) 4
Lr ri'l'u LY J v i A
-y ANy, Sy) "y} ‘
‘ | 7 -) fﬁ '|i ’“I)]\:"Il l
' Ii i o N i i
f / .I‘fj'“..'.'-"'\. 1 O I['I’!f,'f'1..|r- T r
. V&1, |
|
ll I U 1 A '
I! AT I - ”
| {17 E
1 My (
I
'l'_r'r 4 ‘TT r.]
| ¥ :
i

" equential (ojga".‘g' 3
:.";}ll 10g1C S; R 4y 8
| T - |
> . €
} d £ o owputi i cetamined
mr\G
J{ oot U dekam -L L e presest and
‘ pq ANC P’f@mr“+ \L’:lt“'ff) ? L ovawet 64 ru pnpat
| T+e -'Fh»f*"l @I’L-P‘-f; Od'\d le?'-f’“t' 4
._ » ATk A ‘merosy A
) not ' ‘have 4
p 3+ \Clof # et back ,'PCI’H'\ f
N\@_TT‘OPL‘{ ard ,ked btqf‘l"\ b .
pact oy &
| i -7
< i) l Hon can be
[S o§ 8 @'P’E"&ﬂ*’ﬂf\ @Q[\ be ' e A oy=F 0 PeX ;
tab(e i d@.ﬂ 20 M
& Vel ’;’_; cem?lé’ﬂ
chrea+ gimpre. £ QI doa
“ J+ doer rof rav{_ A T+ have & ICEDCR
0 otk «fgra) e
e pesiel EYRTAEE P o} 0 R A ey +415 Y Evg pim o A
€ buitB g e ety s Religiz. Barie
pacle ' da+y oPLY g and - conb ki
egie ckHd
|
{ | LA ai Vb i -
\
\ byvey (N , A £} 'l) y |) -]
f \ A f Py iy].f ; Ori
19) |.,)« |
1)l '
) | ¥

e

T T [e e ~

X
' ‘ (g
3'?8\%‘_‘_—!‘ '.-—. ESRR ek 17 il I
| Doy i g drten ') A rtgdal g8 L
I[, | U ‘_L PR RN fspyd 22
boeontd ! LN ,.J___»_____‘_______‘ oYY
[\1" —
i } Re—g;’sﬂn
I 1 Pyt A Jid
:t[O E |
l.1 {
Memoay A gy
Gl ;
T .
1_
Ty] Yeinlas § N " i i
wolse | cin el o
1l S yvae) 1 2
{Jﬂd\v\{}_’ld‘_'—f‘ et \ ragp) J 'y
= e | Yl o " L contaln] fopadad
-71‘4’5 a mmpu.-Hﬁ -&#‘Chl{—m‘w\ﬁ@ t r-) — o .
Lo _m-qm Ql"'@‘l :cépq%ta'H I,b..{..t_eJ —[‘53 ;Weﬁ’q n
AR " Yy .y IESARE b ey |
ORI A4 1)
‘l!(1 % | hdif%. q Ho.39 |
f .) I
. . -. 5 F
L gaeosg o boaiaty govetoped o ovexcem e
i. @ boH{@ hect o+ $EN -pedman arehe Hag e
il I i
.] The M ‘0 Muar\‘i—elg ¢ ol }\Q\!;v\g/ LapasQ .{_{
| bu €3 pos fnebaciton il 3
\ N ecedf _pprbucdont & Bl davy
\ a+ ocame-time . |
1
! {

'

£

Th Ragwad d aueh ot ac —the Pagram mewpoiny—

' 'L;-B[Lif be

LA nI\D'—'E%

3
-4
i

Qpacl § abdnct Hom dala M emO2y ¢ pace |
-ft{c}\ fe{ﬁe}\t"{'ﬁﬁ"'{?&e‘ 9Leqdil9{el <0 Aadto C@'\ﬂf:’(‘ﬁ’on‘l
B o Lfmple <o fmagine Tt obtve cayp
B0 froapore Grat) ase etetutd One_

atH X q%eg) %e @qc-’_cwf‘é@hfﬁbm@ M’ ‘}"M%QO

o

NARASARAOPETA ENGINEERING COL
% (AUTONOMOUS) LEGE, NARASARAOPET
(Approved by AICTE New Delhi & Permanenﬁyﬂﬂ" liated to J.N.T.U.K., Kakinada) N

MAIN ANSWER'BOOR b

NEC A
MTech /MBA./MCA. fﬂab— (Br. I::E—@ﬂzl mil

BTech f
D dN O\
Vear: ly_ Semester: & Sec: Wb HALL TICKET NO.
Date : . - i it
e glozl2om\f T T To o [ulE]s| |
Ones |

Sub : I g L ! ;

Name J“'-M'ﬂﬂnm"//—/ il s
) I ¢ L rd | T E

MARKS 'r., © Marks'in fwords | Pl n/ee - | ngv'v_bw

by "Sgg'nafgﬂ’fﬂéifxairiifrerT—’f'P'- J LStéfﬁW ,a"ﬂner g

Signature of the Principal

e r.'_,"," 5 Jf (-' :
|

If-' i “J"

Psocessoy Techrolagy :-
- The pROCeSS0Y r_{cgq,hndlégg defines the

haxdwaze and SofHtwaxe Q‘j‘f’tﬂms USéd Jm a pXOC(S’SSOX
ek (y7! f | .
M Qazse o—?— -thasee, chpes They a¥e: o)l \a.--._'qﬂil--'-;:».;;-;' (1)

a8 SRR DIe ISEE AN 2. o BV
o) &ehexal PUPOSE PEOCESEOs -
{

@ Sl’n%le puspose. paocese@x’--; %4
9 Application gpecific. pyocessoy: %)(\'\

@x\\

0) Gienexal puw¥peSe i
) Sel, PUESE, ,r%%ocf%scx. | QA\
“‘”"’ p3ocesso¥ defheg the

1” 1”{H } Jf}”]" .I’} i \1 ,';.\ Lff’

hosdwaxe Comp0nents uced n the embedded sygtem:

l.']'_'l

about the f‘?oHow\rB -?qgms%

| Lie i) T4
y f LA

e de%"

(® Maintaincess]
0 1ine o e BT
Uoie G) IPJOQQ’me m?"?%g,(nl_f:f TR -,v,'.!
(i) pota —— S
5 Y 09 10%]

() A

na\e‘ i pURSPOSE y puoce%aoa’ i

| .
é EJ 82 OB0G 1'(?"-'I ."‘.‘i"'}',-'” (1 Ly 'J?I1 ..‘- '

i .
| | 1 Fiisar . . p - .-I .
COr\{tio\\@yw'- < R/ Do SUD I S T A R [j")'_{";}“
eaternal _ T
npuk H[FJ i Kany T2 i
j & K DR IS e "Iﬁ‘pu_‘t |
| (P & ot i ;j'j 4 ‘_:_—#_— \- r V. I
| Condan\ley { Y 5] ”/.;”. &1 |||
| Data \ines:
) ,'! /
3] i A r__,j.- ‘."I
next il -I‘(“ [
fi o N "{.{_h B
-' and ST M
(C)T‘\,\-m\ 4| == e H , =Bl
“%'\'C_‘ {\; .)}’(li} ;_r_‘:l.(\ t;lry
J 1 % | o i)
A&y 14 !%E((r&_\< i |" 1860 1.] "
¥ & SRSTer G
KeQ Sl y
i el Al
| Fe 4 | contwoller -1 Ry ‘ilﬁd"to\'f?'
* : ey dernal " = a
botbadriy whl- ’}‘G DAVBURPURTH() 1o/ exkerpol

output : -

Flg @ S\%\e m”m m@ggo?rh] oy

1

% We cugtomn Girgle puppose @n be used ug‘mg:

contsollex and Poctoo path -

e ————

. de,v»cer - hich conksolla

i {54

The contolles i

= R

pkl"C‘—:J Clna i OLLJ(’PLL{Q

g:_

-
g
—
-l
—
W
-
—
—

- e dolo poth i3 Ahe PYOCESS of fendim

=

| wk iyt wrDsT
| . T.‘(—"-J e I {4

LV cmd cor kx50
! dO:tO" ,CD 'Ene' ﬂ 6y I 7y ;r J g v/

I P '-r\ f{ J.

. ; lj-—,r';‘.“m._r'}! -i"{---:::f(,- e lcll j

Regiotey - | o otose dotds
| A ey o¥e ueed ey
. e 158(3\% sso e ”‘{I_-:()

| ’ e
| i
| I . s e g ,ll’,J ._;r” 1
| CJJCE—-—-—--P L;[_l-\ sl L o Nl -*mlj the, Con’c?So\\e?s
\ wen
ouk W Q . 1
' m T & f"i,l:"'i'.""-.‘-f_, 104
A ()

obepP R .- G
N Kes e ppuit and Sends
The contoller 1 aop)

il
GO)

(OMX (V)

f?f"i{-;'j/j M}
il The omm-l:{ors ase dote 4y ALL -

-'Jr i) !i f:'1 {1{6C ."I' Nt al J_."_JH'I._.-. HaD 2 J (47

Te ousput s stomd . ths spalStey -

. Q*SBE);,

Te outpt g
tput send 4p @ntwolles eacteyna

cutput-

R . N A S
Q) | ‘Fb> COH‘\b\na-hoHQ\) Logi(", ."*. ¢V rvers oo

r'

| - _(rﬁe 1 Con!"b:\mh'm ,.Logic' t

S o { " '
device which axe kv ng ansistors and

l’ i'c_ ga.l:e% ’“-‘ ‘l_t ' 'ig".l'l"‘ f ’.rle
Uit g g Yy G (!) .i"f- L ": JI 5 ;

|II |

C Y¥ansistoy ;- o)

ORI 0N, J' [/

| { N L 1 ¢o A | i
I L) [I gl J “
‘.r We tmngctor g q device which performg
bosic opegations . |
v])"j_ Y eRe Ii,l J]J "
) f) "l AB 1T . g J BN . 2%
logie Gates:- it
The ic
/{)?7 }'1 Tl

/
! /

Jeo] Gates uged (n cmbinationa)

TS s .
D
(-

.;]‘J!’(if ‘I_'(j'-‘

G

A AR sz, o ol L m N s LU i

Logic design o

() AND
(WoR . e 2
GNoR
(W) XOR RE
() XNoR |
@ NAND gyl ¢

o)

Sloned brnes T Fuatii

LA rir offeds |61 (V14 O]

yThey oge ueed o perdosm lagical | epesaiiong i ke

AP v I, a | “: b i ot ':r J ik
ﬁddr\t{Oﬁ o J""’Q(Jﬂbkk achon — et

L dapat 1t e 'Rl
J‘a; TR 5E]k u U 2t !
y - e

A‘;i?‘_ pr’f .i‘_

| Sequential LogiC & —
| / = TV\ ‘ H y '
| = NpFlo0z) Aoy Q;Ucﬁ'd‘; W e
| _ \
| (0 Adesdh
! %]uen‘hal Logtc \%]r {1804 112 | I/
: i Y (309%°
I (L e T & ' b 1 yian) , ! .
;ﬁtﬁé' o g fiipflop R 5R ﬁ"'\trﬂbp oL ueed N
basic ! {/ (5 ue D il ollipicasd v 1LY
ettt A A9 gle P
% (ounto%s -
45
o PR QY unkess ase Aherr dthCE?;ouhlGh |

L leed 47 Bnif Ape valugr o Il 9:
P 1) A] 13 'r"fr"l

b

F '|| yia (2 L |
- gt {
ey o of o bg;pegr Trey oue
LV 1) 1 , ”rl-. .r } :
spocl) o] o dds X vyl
i (J “':azd G)Uﬁ'kfb’ - -_-}"It i A ;4 I/
)k 'y i
1} e/

(i) Dowonwosd countex

(Dupwasd Ut i- | ’)
cseoses e yalve 4"

@ Opeonuoasd (oUNtEs & o
=T i the. valve by V@

axd Countey increments by “4" +the

Decse rment

3 Tre upw

dooruosd | aoupkes '+ dedy¥ émen’cs l(g .I“(‘f(

i H’(}WQH& YOGl -
ﬁ"'\-——-...__

X TL ¢ U ‘bhnputezs

ﬂxc\n

" -

)l}

BEREAE

’ceCeme Btaire 99?1&‘{@

\V'\SWJC\OY\ and dd‘[&:

Tt
é\! i5 bQ%\CQ\\B developey <o ovestome, the bottle :

Nk o+ von

| ~NeUmann Bythitectuxsp |

|
'I%‘W\e*' ‘Mafny

|
INSEy0 on ¢ dotou

3 el

PR

[— — e ——

‘ | | i 1 (27 | SINGE | 5
T g o .‘S'imp\e +o (mgtn@ |

a\\

Cfd\i(lﬁln%e, 6f }"quca’ ge‘xfxo_{e bUSQS —ﬁ)}-

| =1 -H'{Q:E“ ;c_pb @mfaccess st
on
: % EQ Qm&\@“{ﬁ, c\cxtoo oc\: SAMe Ly .

)0 B S UL e

‘that above Qse
Qax B LB LU,
€ executeq ‘Ohe afley
8"y i X0 (4

i Wy J N))
orld 7y [Tlioﬂ"“”‘”’”’

2 FYy i3 Rachikectuce

;J O'F ;;‘\'\QEVQ‘SA .

|
' |

O Ppelinng”

Reelining 1 V_he*fndd of Peﬁ-?ogm{rg +he

| | | | ' ’ .
| oPezsa’c'\oh 'qu'\ld-dg w'\’thoultl \-mrmg voasted Hme -

e pesfsms ()ekch

jit
b i j ' | |

(it)oecode
(i) execute.

" ;. . ,;f i;l; E]p-} _f}rj:r':“
FO¥ example if we lake dish woshing as @ exanple

|
' |
|

frese am eight plates which ase te e eboched and

ded by oo loexsons. The eighk plakes —takes 2
| | f II 1)) :.',] '

wiikes Lo | wash: G
, L i
A r 1 n

¢ e gk pobe oue dmed bg arokher «pexsor in

|l§ J Ay I_I_f’

Tarother €ight iy

% w ; %\, {;me,'ﬂm_\mea}r\é‘ (" ;J|6 "*3h°:'ﬁnu@ 4 ()

l%&k\: \% uae U%e'. Px{?e\ln\rg m?tbod O;HQ),- ‘—DOQ“T\% 4he

\H 1 l"

fixot p\a’ce e ceond pate © da\@d

TPsOMT ryeigs g,
$So 4ne dme. oreumed 8 seduced 40 Q mingtes
USR] ."‘Ir pypm . *
vEHCEG ."."|z"l.

§ A he SaMR 0Y the nugsam execudion
as

seduced -

({f ’I.'

(1]

orh)-

.
o ol AL 5 ‘ﬂ
|

'T-trho

#9 @ Non- p\()ehp\r\g I ey
/ ij e [J%W -

| (———— — e

Y {6 {6)""r‘

F"" 1 n—

Tl’r'ﬂe

| Ppcode Aheyinput
| BT o

Fetch “he guipu b

ol i £t i‘]’]."-' e 18)

The \%j‘.:l_ka)bq”r” T Cﬁ\lﬁﬁi “b:) "H’E P@Qm

0® . 40 ke - famputes i @lled » Tivesyupt -

i S
Ji! (4 1Y) J)' q"l,r‘;;} vy (r’.:lf 1.}.“
¥ Toe mk“JKUPES OBE o{‘—-f:mo 'tl:\peg _“:‘@B 44
! JJ J,I/il - Jn j ! ' QEQ
(DL e Jd)

= ': '|' .l) il %

@e:tkezma\ m-\ezstp&S | k

‘-‘Ii;‘,}(,} '-.i'.{!r ! ;_J‘*I J) ”,” 2y
. A)& tl) . . .
() intesnal \n-\exwp*% THOVD Erh ey .
= Tats R e = P 5
=) pARR L < ””"'#.',-' A S] ll‘_}.i',:‘),_ 9l -
] " i

f

@ exicezna\ intess LS

J

e eke® nal @ouzCe!

'Wﬁe dlatur bance- cauged by

_\(Qﬂ\jpt% i

@ tieyna) 30
s The. Aistuy bance caused oy

We ompukes inkenallys
gThe lntemupts ose amuged inkrhally by zupning
multiple - pagIAMS -

¥ The inkssupt is He distux kance caused by

pyogiam to -the. ompute?

N The example, 08 dlesyupts S the ALU -

y T @n be Stopped using TR (ITrdexsopt

copfice Rouking) -

SARAOPETA ENGINEERING COLLEGE, NARASARAOPET ‘

(AUTONOMOUS)
(Approved by AICTE New Deini & Permanenty Afffated 1o UN TUK, Km;f 3)
MAIN ANSWER BOOK
I MTech. I MBA I MCA |/ @r)_fe€ |[2[]21 (12114 j
ﬁ_.ﬁ___Semesterr Tl Sec:_ ¢ MidNo: Tj'd . HALL TICKETNO.
. ESD __Date : JDI————EM:I . I | .'-.'i y < l alo l.* ¢ a
me - Gr'f’ro‘fﬂl.{[,lj L : Tens Ones

_Signature of the Principal

| MARKS G| Marks in words Huw O Sy
1 2
‘;‘u,numr%mm / Signature Qm}mﬁfmsm -

‘]Norcs&ai |

Tca.s‘ict

Cac Fc_ I

__ .So(u{-ion 1)-|r -was dx\tmma-f{-o ng{c C\mcmoflJ
' ”““M"] i ok o oA T

-~
' - m
> ke can use fin expenstye but also macun Riasd to

. '.‘I | ¥
{}bm al) the daiq.

R B |

0w Bk | ,. ..;.“__.. . i' r‘ﬂ-‘{q

TP P eh v AR i i
memvf‘l to store Copfe fle ©

'H\c oaliny V‘T\e.rﬁorrd.

)) & _-

4 L £

g A0 §i.

A R i [; S
Al sfmllc_ Cache! §s c.mlcc}ou; to ¥ ‘

©all neds 4o el phone -

&, L) c&xte { -

| ;I ' »r‘f'.."'H o

L5) X 1
g Sorre. 5"'13{:t:ms tneludv— eUen 1017:1 ana comC :
. L

C\n =

‘k‘tfm‘i 0{ meﬂi « tueh o¢ dﬁsl?‘ C'I : .':

04 {-hc“l’f('_ S{—Oﬁaqt (?S f‘n‘:(‘_c{ﬂ'.cl . _
cache - ¥ _-

: -ock: Ri

CPU »)mcmtﬂ‘i
.
g
&
i

—> {.Tn cache the .Cln{C_l .Q”d p‘("}mm ‘. gt j
— The Cpu tends the {'afjno[.s 1o :
. N Cae he g 2 :
1 {‘0 _S{'(\T{- _t"\t' CJ.Q{TQ ITn J(_o ‘{h 'Y\C'm‘_’r\/ 4

-
W\e,ﬁt\.‘.ld. 1,

O DA PR

. T r()'t’.ﬂdlr‘ F{— {0 'J":L_h,(! i
— Then the cache me,amml

|
'I'|.| T W |

hut the

Pr'?rnm”'o\ N W\J \
n{L
— ee AnpeYP J ,
c-rmoﬂtﬂ'li"""" ,

&cc@nolm‘a mcmortd 1S o] 3
- et 5 - A{o‘fr:o& 1N Aecordor

— frnol dato and PrEATI fe, FHT /
”'1{’_ "Nn &

m:mOﬂar) # |

R
9 st |euel mcm(’nj cache: tPT{fmanj mcmoﬁp
{ : -

t;) &“&‘ [c.uc[mcmﬂ‘-[

?) 3"01 [urtl mcmo"'T cat he ["\Mf\ mcmo)
b . :)) .'\I | J'
. 1t [waD\ mgfj'r KSEE £ PN |
: -‘C;_:_;{if‘s'k leued mc.mmj 4q nowr?ﬂ’ .L%L ,, p »’7 mcﬂ"i

— Tt fs o ssotiotrolat’ to“H-Ht'PQ ‘

o el ATl o

— 25""[\c,um\ mcmo¢7 '(:5 no’Hme] Bu{‘ é_L_tonoLo«ﬂJ
| muﬂ'ef\i ‘ | R

B e

3‘IJI level yae oty ¢
i — o | | |

—5 g lewd memon "fs,vo%’?ﬁc] bt rralin mthJ.

,.9 T 18 asseefuhd Ofth xeeo o 017 me@f}fﬁ

= T -

09 Concuw‘m% -";-Prol'(‘_eass mo_g_lﬂ-:'

E————

pseuds tode '~
il X= Rmdm 0

k{ Rmel}iu, %
tall Ceﬁcwrrm{[t(yeri 0
| Preat Hmmwlel @t))-ahol

I o
TR (AR AT a8 1% il

Bint ol ate Yooty

print Hello World 1)
hilet) §

prin t ﬁ Hello Lovds

SR |' eyt fH i3 i'. II : :
dclllj UL | j

yy \ Fa Rl i II
_' ,j ' W

1'[.1|r"'."' | !

I,!il]-]l

Prent HoWARE yoo (;cj

i eonile) g
prink ! Hold ARE Yo"
deleyty)s

Sar?_p’_ \DF_LP.
' ER L'f){ ! |
Endley Vi

Wetlo Wosld ~ (ime=1g) -
‘Htlh) Mor\ol (Hme =35)
HoW ARE tp0 ({ime=15)
Helto Wold (tme =49)
Hold 4REYo0 (Wrne =5

1D

Tn concuyrent Process yoode | -tha_,.,PStt&Q’? tofla Y8

{:fompr &40-(,SQMP[C @U&pu’c

_} Hcrc \K coan 'rcads ‘tHhe cl&“m in Helloor (d onc'&
Lo 'HDL‘-‘ -A-IQE lr[DU I'

¥ can reads the | date i

—> “The ohtle 1) 1S ~+true slmbement TF means that

H\c. [N}P Ts Qon{—muouj ,Ld Yc’_[)cclﬁc{

._—3» ™ & on m-Fche- l«mP and and[css Drocess «

—> Tn Concurrert | Process ropdel the Haken bo

Pfint onc 5‘(:&‘{“6’.""(‘2!"1{-‘ s one seconol

[T

,—; —Pmci :’)c,tpnol .Can -E&[cc J Seconds ¢ H‘T”POQ S{Qﬁmcn{ /

/

"EQE:U -3 SchanJ

‘__? ! A~\; ‘H"ILL OU{Pu‘E T-f— Ldou enter X Haen ;0{_ P'ﬁoﬁ'l*
||.

-H“frslc JJtcﬁj.mcn‘[: fee, Helle borld - ‘
: oy pk the ou%pu% F Houl enter i then Tt prfn’c

fetond statiment T, Hold AME Yoo

3> 'LC {Ct"\no locf' -‘5':“:' [8l ey

' I ar
1 1 OJ
n?
“’\CTC". Qre th‘riDLLJ wpu D" .,LC’ %cc"‘
’ festlt sxf | wika 41

Put| cgsl,ipm (VLS'IJ .-:EO- ”‘3’! ﬂ al

E—

-~

\})

' He Jcai'l-lmj e E;'
"' 0 X'?’cj.c um-ltf'
Metall tmjaﬁj '

oxrdc ! L&Ju

phpaet e 3
] on fol e [(\.L.J ey -

PolIHus'fm M &fHung E
S?Utftoﬁ schsdrate lﬁijc{,

Al
AN A
-
I'.“T{lj
.\—-— ¥ r-——____\i: .
EE— i S

T e s R N, et Oa il - 0 B e cabamc B

SET:——?__QQ“%#‘_OM CASeT) Te ﬁﬁhmlm? Ty

Aot cotormnt
= — —_—

FRJ'— beret outorn Lo *[-ccf\m)[ch}

— S ety seret b Te Hrhoole gy

e —————
- —

——

pu—

P A

NARASA
RAOPETA ENGINEERING COLLEGE, NARASARAOPE
ET.

UTONOMOUS)

Signature of the Principal

NEC fAPPfOVEdbyAJCTENewDehr&PermanenHyAmrafEdYOJ N.T.U.K., Kakinada) 2R
s MAIN ANSWER BOOK o &
Tech. J s
- [MTech I MBA. /MCA [__R-dech Br),f,c;f;_ﬁlﬂ M| 12017 T

'sb —,L—Semester M Sec: & Mid No.: A ', 'HALL TICKET NO
u : ! : 1
N')\ Datemoa;;uqqg?}
PETS: Gr\/en haJL 0 inﬂ ulels
\ul s Ones
' MARKS’I@ 'Marks'in wurds| 6N 2¢10

ngrmrmgﬁ M

HQHUE’? N f{f)‘ ! '
\l‘-l'].r.(o \
PO ' .I v hitj 0 ! S :
“In meHOBRY neaacky Foae are W /[.g./ e/(_g,
e hvee. Hogeds i e, Vet nerd ‘"4} =
3) by s (1
') 1 Aém'{ /)SC@
A
\/ [i\

Mg 'g8d A eved b

elfegel s

uj;i.‘#g @}.Aevdl
40, cfo/uowmg .
,,“’pmeé&sazg
CRegisven
. (alhe

—The

n

Proeas 135 Req 1$de 75

¥ sllame Wil o

1\.'!, Wy

ahd edere cacke

& peved of pownody Arwczé'@

f 4
014 poved:

a1 07)
. ‘| AIEN T Y L4 G ﬂ,{g/ﬂ 4
. e
v e Ao Gond peved | fome wil se
‘\! ey L el v 1 Lol Bh) aﬂ J %yfg H@ﬁ@
| ¢ Rt s »
i . - L aﬂc{
I [le () Marn ﬁpﬁg?y | /¢ /(ff'?y@ gﬂaJ’j o
M
v Ty Sloves ey dule foon

olle cndime PO g 71an

J !
of ety
. Wheae ke cqhe s sHaM and ’% "
e o0 7]
<154 of
v Ta Somedines sdomes o
o N, 51 iy KL LA/ vt
H (3%1 Level
Y R ek ST Jig ' ¥ it *
\ ¥ 1V ZARY ALY, [df.g ;{

; be
g j-n. W{'{Q Sra Af\ff/{ GHQIG Ib”/“

Tese owe ol

ne ‘:10'33 - uged Jom acass’e) Yo dada

'ﬂj }aﬂ ‘j—_ﬂﬂ(fc{hﬂ'/(‘ j @CZ?MW{

’j,n He 1 z¥d fever o He Herody

i) Wz oy J‘!! vy : .
}u‘ea:aclg f ofle disc and dape ave Hose

s “flese aVN@ wsed dem 615955‘7'({7 e
|)3
deda Whek ave ‘Yo Taderaih g oo b |

re Hof’?j

[R SR S e n R s s el R s S S, R S A A

\': 1“\\ 'I}n' \ . \) h
RN -l e 4
]__1’ AN O) AT
; \\I.l’l\

OC@&S.I "m‘ \ 1y) Iy 1 II

)

. |]
e sl ||
l

|
\'1|‘r” |
- 0]
vy \ |
2 | |
I. -
; |
{ i,
))
. ,1'
A R <)
\
L)
\ b FE RS |
— i i\
\ \.{._\; 3} 1‘ li

A BV ‘/
T L 4
Ca-’,..c.-.ﬁe : .) X Wy I'r = b |l.-' g hl' y PN 5, an \
. X !

")“f’ Ny Pvi2e Oy

o e .-Ca:zfxe, m@mwj r_S_an ech‘:)!rnA Méwa-ay

fl Y3 5y S \F4 3N Yy

jonon Assoct 24 WJ& e @MJOH foss “@“‘”?"ﬂ |

IAN| 11y '.] g (

X

| |
’1’ Nl

He (ondrod Waceﬁﬁf@ und PO

i

T4 holds e c{xodét " Tasdsucdt o ﬁ(ﬂ/‘jﬁ‘mf&,

= i

m ~J>- cathe m?hoa:j

. — TR cacke MOMEBY X {B-Coa‘u&’cJ Wifh Hhao
ARNS (P

oo

¢« —Jo D?‘%mﬂg

Cacke Memody s el 40
|

rafla Meno
DL TS’

/qu 74(!2-9-9 ~te 0#;

il (i |
> ey
PO |
; =)
e S
ZC R v
11__- (FaMan]
-TE 4
- CPO

S He . Qadsul | paocssi'n
OUHQL \ Y- ‘]

“ se \ I| A0 S
LS |
Lo e é’arrmaj 'VOAVES o e
S _ RAM

¢« T o eroqdﬁwy .
acwsfﬂj o dufl

l_"'\' ¥ A A

AY N A ey (\ v

RO)\
e
(UVARN l"(![}%\e,, 0&’@1 UBQJ ,010 QLese We b
. CETNEY ity 1\‘| , : Q(a(_QCL Ll
anc(o &QPKQ&eﬂvfmgwn of ol p |
b . bidiuds Yl poyy
A ! 4 J'-,l_,{'l ‘t)!'\' S
W i v
Fol ; I..lll X
Lalria il
) \ |

)

coche

-

Cacte agyiag

—Tla (aChe e Moy dda s Neunfessed ol

blovk &on pailhasy menosy O cacke NCHIDY

> ache naPP)'A
1 —Rese (oo €% 1S known ol 7

Asset mﬂ@ ﬁd@m‘nf r

T Asocinde rapln b Qcess te dale o
o rerody
"ﬂ\‘s ‘¢ PhoxlbAe on e Acess ~qte HOHOY

oo Jke SJOU.@jQ devi'ce

v q(:} \‘H.,e_}f; bek (an eSS ofe dﬂé{ 0%70:»7
6‘5{9 MQMO?Jj

s —

i
e
.

Eﬁhatuﬁe of the Principal

M= Tlas v e ST
T oL) tg b,
- e X

g RASARAOPETA ENGINEERING COLLEGE; NARASARAOPET

AsLE | (AUTONOMOUS)
. EC (Approved by AICTE New Delhi & PennanenﬂyAmhated oJN.TUK, Kakinaga). |
| i |)
B MAIN ANSWER BOOK
B.Ye
YeeCh !MTech IMBA.IMCA | R Tekh |, DO Br) L EAE) [20211[“] 112018~
! :r LSemesler | Sec:_¢_ MidNo. i \ HALL TICKETNO ,
i _ e 5
N \E&D | DTte‘:’JmeL%—OH—.». g [4 | idas
ame | ¥ f_ilf-(—’ |]1.-A,|Q If'&—r;é.
Tens Qnes

MARRS

Matks i i WOI"CIS one |

|ive

W

Stgnarur%mer 1 ngna;me § ﬂéxamﬁr 11

r

Mmgrf_d H—:e.rac,hlj —~ N

[

ik %BMICQ,LL(‘j b\LI"&L’)H Mm;)_g1 a_{
I Lere N *}be Me,mgﬂ{ -L)Je.rzu,b?,

Armaunged ™ the System.

(=

|

2 ryky il

|
— TThe AnFFefeﬂT’ Fypes of | ,Mcnqone,s]

m‘j ot ‘_("bow F() -F'a'll HOra e we ir i) W] 13 II, o

Ia’]"\l: [

|. J”) ;,p__;‘f'\)'.’_.I
'CHy !

let of pmd@pmﬂd r,v_aho!u\

Noinlid o

{ .
{)LRULA n a hre.f’CLCblA’
Y "; l')r N i} ! .._!..r

IR _/_‘-, 23034 'y
Hesil

i

(1 [AR

- A29e1 ;
0 Qg
F3by) £ b '.‘I.Ji‘;_fk:l L Selaery
Ars « B}
f A gy I/é/'
8 b [] MY tfely T ¢
JIJ i .‘
| Z J |
Vndd i ey |] H)t |"
]
.JJ]} 1
lIIA] ¥ ”\J- i 1 Hrd 40
; e)
i1
L W | ;
o ! | i &
w‘l I A I s SIS 1 T
Ij) =4 / ! 1y J
‘ Madn Hemory e (1R _
ray (1 -
l | RO LT TR |
{ (e : | N
T
-D'l_o-L |) il
1.’ _.I-. L
l nt | 1
oy fit . - aY V0
e e e ; I | S P]
] ' |
Hq- Memory burauh? :
\ 1
e

oy | oS o
"'Iuhdr'j ‘)fcmubcd Auuauj il g of | |
Mt‘ (s]
ey &u3+DSwa&w TheV& !1
Q"‘Pm-i
o7 FoWi
'—> e Wie \ 5 ayl,r::‘ Fa‘s -]—b

tve

R .J._I a...

'rzu})f"\)J
“‘Nrm gl B, T8 a0 s o .:l’ﬂ"-'*b'g'f-_--u‘-l@
' .‘F‘.’]ﬁ?‘ balanw. oy MY _ i
_ ldﬁ%. ! 'iL-”'-¢n~ o
Ill‘t."\'-;..i.‘) . P(A
| 17y (”f, 1 ;
= IN Memeop, o

5
Y htﬂmbh_q K1ode| ! S t—c_onﬁl_
Pm&j"“%/ r?_(ﬂr_(t’(—_’,f:ﬁ, Cﬂtbe-mmarl}j
t i

: BEN VX

f er)
> And The Memory of) dare ot Sored t“')

Fiem g, 'Ta-f?a_ e Dnsg
Chlb&h*[e_morlj - - PERTTY
- i Whith

o In C&U)E_hf{e_moﬁd .ol wie enpensive aud fFout j
ce Acpeutt eur fre eHHciney Mo More-
1= =0 CM& Memory, We e Roib HP&_;’ ofF Bxpentive aud
£ Enpendie-

S °
ik : iy Ditr |
Sn Cathe, ﬁ:‘tv Ltores UL dmljim‘ . I I-hdpe_ or Tﬁ\]ﬂ&
Heﬂ‘?ﬁﬂd-

- Cathe on,mre.k ot Two @Punho,m &
Fay aud o E’?\fxns WitHy Sloyy . I
e il |
—> & cadhe ""lﬁ.ﬁ)‘?nﬁ e U-Aed “b Mdre -

Grored 10’ ety

auri Tryee %?f'm

tw.unﬁh

— And TR Moppings \
—> Tirett mﬁvmﬁ.

& - =i NP N
technioye .

— Fut- A SSOU"‘IQ waj "
o AL
- Set-of ”"‘&7?'79 —1-u_PmGV i

Add re(ses
fn Memb'y
of M

r |
3 | e s | SO
, e e o) b
iredt” MopP] ‘
‘ or)/.?f'iie‘af' 'b
’ng 'S ed
s bouo S 8
Ll G
teg (Conhe S7E) i .
, L BNE)
: i We We Dn“j \
ect MapP g !
L
ot P |
[RTAY VERN BIRE AL -,r“‘l_,I ['I l

=T JIJJ [y -«.;,1
\"5 S 1d 14 LV A T\:\ 1[.D‘f- 4 ERISNE o N4 Ly
—f—
w
= e 4_" \IJ- '1‘51 ,_‘li y o r‘r- T PR I (Y 5. 3 - 2 S i bl)0
/ "‘f.'.[""
At Tl

el S TV fW"'l“-'] [s Y i R
| I e

.bnrl'."v TP g

pet npt- Mg elith Tuden. Becawe Ty ¢ Boted on .

Qizeof cohe-

i‘ﬁ T FUl Aodlare Mappﬂg

g K ob i

Set-of - Atcounte Mapp.‘rxa [

Ser o~

- T et pfF Albuate Maf)prnﬂ Kle wse
" MAPP . Thet ""{f.awi e wie lm'\"f’ "f"“mj or Quﬂcui

3 Bl vued of Expensive aud Fasr Whicth ig
Affreatt Bus EFHu‘mc%

— > T -thie Serof Astociade mappirg e wie bpth

':Didef'MaPP‘.ng a.ud Fuul Aol te
-? _:C{;— wry\.PrlSe!. the bﬂ'f‘b 'bm“f MQPPnca sl
_';mu Atcbuate. | M"‘ﬁ""‘ﬂ . LM p

<> n bl B coniider “’”’F M“’“f’”ﬂ 1""“\3 qma” _.
pr LR WRAM . * | |
v 1 ol v
'‘NMOoPP ie

1 \ i

Yy | o 1° =} " i1 . N i
- T o KONy

Tog | erede | 0Pt

g iees

con
=y Jn coh

I (DU
= Anothe?

<o
)

mbc‘_uj.

D

<

cwrrent pmzﬁ_s___i_________"_@,,f‘_“‘i‘
__-—————_____—_'—_____

carresd” P‘”’W
ot 0o P

N i i ¥ TR e,

of Astouare M ”mﬁ-

14 1§ ff\,':
rem
|

. e ;SL}(‘
we {dale‘,__::“ Ty R
o] oufeh. cemm unleare
f’ pmc.w ! | ‘.1‘- I* III .r P 1711 f'l 5

Q=0T Ny e A Azt

.

(r
. CWPYD&M emar\,PU M
= Ready
- Rﬁqd()

Q‘:‘ﬂ(q

& \
AW b Currentty

Prinr Helloworiy ev) ond

PYingt u
Heltowor(g v

dé—latd(x) .

Privg How Are You -

detay ey

'S T {0 TR e }
Enter x:
E'nmr:d:}

Heoword ' Cthme =)
Hletlovoortd [Time=348) ',

| J
"’16’,'-*\1‘ Av?tjou(Time=29.
Yo -Are %ou‘z T 8D (5 v,

. { i

—How) Are YHou S T .'
i . |
~HeUsworid | £T=44)

\ '
] [£41 ¢
: /

— Read ' Realay-—y print "’"im«):-u:d.

| l PI[”” hol.\)(q".

fou

T

a4 Time..

[

INTERNAL MARKS

NARASARAOPETA ENGINEERING COLLEGE: :NARASARAOPET

17 BATCH IV B.TECH II SEMESTER (R16) FINAL INTERNAL MARKS-2021

(AUTONOMOUS)

BRANCH/SEC - ECE/A

SUBJECT NAME & CODE :EMBEDDED SYSTEM DESIGN (R16EC4211)

SL.NO.| H.T.NO. STUDENT NAME Al A2 D1 01 |CYCLE-1| A3 A4 D2 02 |CYCLE-2| TOTAL
1 16471A0405 [NeLAUDITT VENKATA SIVA SAT PRUDHVI KUMAR 1@ 9 20 10 40 1@ 1@ 11 7 28 37
2 17471A0401 |KOLLA CHAKRI SAI VIJAYACHANDRA 18 9 17 %] 27 1@ A 5 1@ 25 27
3 17471A0403 [MANAM YASWANTH CHOWDARY 8 9 18 1@ 37 10 A 6 8 24 34
4 17471A84084 |CHINTAGUNTLA KALYAN KUMAR 8 7 15 1@ 33 8 7 6 9 23 31
5 17471A0485 |YERUVA SUDHEER KUMAR REDDY 9 A 16 10 35 8 7 A A 8 29
6 17471A0406 |KOLISETTY BABA SRI RAM KUMAR A 9 14 10 33 16 A (%] - 14 29
7 17471A04087 |BATTULA CHANDAN 7 7 14 9 30 A 10 2 8 20 28
8 17471A0408 |KOTABHATTAR V V S PRATHYUSHA| 1@ 6 18 9 37 10 A] 8 18 33

M 9 17471A8409 |CHERUKULA KASI MAITHRI| 18 8 18 10 38 1@ i@ 20 7 37 38
10 17471A0410 |KANCHETI VINAY 8 A 16 10 34 L) 9 4 4 17 30
11 17471AB411 |YAKKALA NAGA MADAN DATHA KUMAR 18 9 14 10 34 10 10 10 9 29 33
12 | 17471A@412 |sAnaMPUDI VENKATA NARASIMHA REDOY [18 1@ 16 1e 36 9 A 2} 8 17 32
13 | 17471A8413 |GADAM RAM BHUPAL REDDY| 8 9 14 9 32 1@ A 6 6 22 30
14 | 17471A8414 |YANDAPALLI SAI VAMSIKRISHNA 7 10 14 9 33 9 A 15 6 30 33
15 17471A8415 |MAMILLAPALLI SAI RAM 9 9 15 8 32 9 A 14 9 32 32
16 17471A0416 |NEMALIDINNE VENKATAJAHNAVI 7 6 16 10 33 10 A 6 8 24 31
17 17471A0417 |NEMALIDINNE VENKATA YASHASWINI 10 9 19 1@ 39 10 10 6 9 25 36
18 17471A0418 [MANDALA SAI BHARGAV REDDY 9 9 14 10 33 10 A 0 8 18 30
19 17471A0419 |[MAMIDIPAKA SAI SRIDHAR 9 8 14 9 32 9 A 10 9 28 31

N 20 | 17471A0420 |[POTHURI YASWANTH GUPTHA | 1@ 10 14 10 34 10 A 8 8 26 32
21 17471A8421 |POPURI VENU 8 10 12 10 32 9 A 8 5 22 30
22 17471A0422 |KALANGI KRISHNA AKHIL 9 7 16 1@ 35 10 A 1@ 9 29 34
23 17471A0423 |DESABOINA PRUDHVISAI 18 9 A A 10 8 A 7 9 24 21
24 | 17471A0424 [CHINNI ESWAR RAO 7 7 16 10 33 9 A 10 8 27 32
25 17471A0425 |YAKKALA PRATHAP 8 10 14 9 33 9 A 6 4 19 30
26 17471A0426 |PATHURI SAIPAVAN 7] 16 1e 36 1e 6 6 7 23 33
27 17471A@427 |KOPPURAVURI JEEVAN JITHENDRA 8 9 17 10 36 10 A 6 7 23 33
28 17471A0428 |SANKARAPU SEKHAR BABU A 9 15 1@ 34 A 1e 2 8 20 31
29 17471A0429 |[NUTHALAPATI DURGA PRASAD A 9 16 1e 35 9 A 2 8 19 31
30 17471A0430 |BOGGAVARAPU YASWANTH AMARESH 9 8 14 10 33 1e 8 5 8 23 31
31 17471A0432 |CHANDRAGIRI SAI PRAGNA| A 9 16 8 33 i@ A 15 3 28 32
32 | 17471A0433 |SYED MANISHA A 10 A A 1@ 10 A A A 1@ 1@
33 17471A0434 |GADDAM VAMSI 9 A 7 6 22 A 9 3 8 20 22

34 17471A8435 |MINDYALA NAGASAI A 7 15 8 30 A 10 12 6 28 30
35 17471AR436 [IRUVANTI SATYA SITA RAMA SASTRY 8 9 12 8 29 10 A 10 5 25 28
36 | 17471A8437 [PANGA SRINIVASA RAO A 9 8 10 27 1@ A 7 7 24 27
37 17471A0438 [POTHRALA RAMANJI 7 A 6 9 22 8 A 14 10 32 30
38 17471A8439 |PASUPULATI SURESH 9 9 6 8 23 9 A 12 9 30 29
39 17471A8440 |GUDIPATI CHARITHA 7 9 12 10 31 18 A 8 8 26 30
40 17471A0441 |SHAIK SALMAN 8 10 11 3 24 10 9 8 - 22 24
41 17471A8442 |MANDALAPU AKHIL SURYA 8 S 12 6 27 10 9 8 5 23 26
42 17471A0443 |PABBA VENKATESH NAIDU 9 9 10 10 29 9 A 16 2 34 33
43 17471A8444 (NANDHYALA LINGA REDDY 10 8 12 10 32 10 A 12 8 30 32
44 17471AB445 |GANGAVARAPU TEJESWAR REDDY 7 9 7 8 24 9 9 6 8 23 24
45 17471A0446 |TALLAPANENI VYSHNAVI 1@ 18 14 8 32 1e A 12 4 26 31
a6 | 1747140448 |YELURT NAVYA 10 10 14 6 30 1@ A 12 18 32 32
47 17471A9449 |DORAGACHARLA PAVAN KUMAR REDDY 16 9 20 10 40 10 10 15 10 35 39
48 17471A0456 |GOPALAM NAVYASRI A 9 6 8 23 18 A 8 6 24 24
49 17471A8451 [SHAIK ABTHAB 10 1e 20 9 39 9 A 16 6 31 37
50 17471A0452 |TADIKAMALLA SURESH BABU A 1e 7 6 23 9 A 4 6 19 22
51 17471A0453 |THUMATI MUKESH CHOWDARY 9 9 20 10 39 10 10 17 9 36 39
52 17471A0454 |ANEKALLA LAKSHMAN REDDY 8 9 16 7 32 10 9 4 9 23 30
53 | 17471A0455 [RacHuvu VENKAT SIVA RAMA NAGENORA| § 10 15 6 31 10 10 8 6 24 30
54 17471A8456 |NANDIKONDA ANJI REDDY 10 9 10 10 3e 9 A 9 9 27 30
55 17471A0457 |KAKUMANU GANESH KRISHNA SAI| 1@ 9 3 10 23 9 A 11 10 30 29
56 17471A8459 |RAMIDEVI SUMANTH 8 10 10 4 24 9 A 4 B 17 23

LT

NARASARAOPETA ENGINEERING COLLEGE: :NARASARAOPET

17 BATCH IV B.

(AUTONOMOUS)
TECH II SEMESTER (R16) FINAL INTERNAL MARKS-2021

BRANCH/SEC - ECE/B SUBJECT NAME & CODE :EMBEDDED SYSTEM DESIGN (R16EC4211)

SL.NO. H.T.NO. STUDENT NAME Al A2 D1 01 |[CYCLE-1| A3 A4 D2 02 |[CYCLE-2| TOTAL
1 17471A@461 |PONUGOTI RAMESH 16 9 10 8 28 10 - 4 7 21 27
2 17471A@462 [MATTRAM VISHNU BABU 10 A 18 7 27 A 7 6 6 19 25
3 17471A0463 [RAMISETTY RAMCHARAN 10 9 14 8 32 10 A 12 8 30 A2
4 17471A0464 [ANANTHA DURGA A 9 12 7 28 9 10 9 9 28 28
5 17471A@465 |[KAMMA NAGA SAI RITHVIK A 9 6 18 25 10 8 8 9 27 27
6 17471A8467 |DANDE NAGALAKSHMI 10 9 14 8 32 16 10 14 9 33 33
7 17471AB468 |anaraTr vasaswint 3ava suaraTHr swirtvz | 19) 9 18 10 38 18 10 15 9 34 37
8 17471AB469 |JANAPATI SAILAKSHMI SRAVANI| 1@ 7 16 10 36 18 A 17 9 36 36

| 9 17471A0470 |KUNISETTY GOPINADH A A 16 9 25 A 9 16 4 29 28

- 10 17471A@471 |SHAIK MD YASIN 10 9 16 9 35 9 9 11 8 28 34
11 17471AB472 |[RAMISETTI LAKSHMISAITEJA A 9 14 9 32 8 9 12 9 30 32
12 17471A8473 [B. MANI DEEPAK A A 7 7 14 A A 16 8 18 17
13 17471A0474 |[BOKKA JOHN VICTOR A 7 19 9 35 9 A 11 2 23 32
14 17471A0475 [conUGUMAI VIlava SAT DILEEP KMAR Revov| 1Q) 7 10 9 29 10 A 17 8 35 34
15 17471AR476 |GANAPATHI JYOTHI PRAKASH| 1@ 1e 18 9 37 10 A 17 8 35 37
16 17471A0477 [MUNAGAPATI MANOJKUMAR A 9 20 10 39 10 10 15 6 31 37
17 17471A0478 [SYED MD GOUSE 10 9 16 9 35 10 A 13 9 32 35
18 17471A8479 |GOLI SRINIVASARAQ 10 A 20 9 39 10 A 16 9 35 38
19 17471A0480 |[PATHI VENKATESWARI 18 A 19 8 37 9 10 14 9 33 36

N 20 17471A@481 [VANUKURI HARIVARDHAN VEERA REDDY 18 A 16 9 35 8 10 13 9 32 35
21 17471A8482 |PANCHUMARTHI DILEEP KUMAR 7 9 19 9 37 18 10 16 8 34 37
22 | 17471A@483 |KOLLURU KRISHNA MOHAN 9 9 19 9 37 9 10 14 6 30 36
23 17471A0484 [RACHUMALLU SASIDHAR A 9 16 10 35 8 10 17 8 35 35
24 17471A0485 [KARNATI HEMANTH SAI 9 9 18 9 36 9 8 16 18 35 36
25 17471A8486 |THUMATI VENKATA SUNIL 8 A 9 8 25 1e A 1e 10 30 29
26 17471A0487 |KOPPURAVURI AKHILA 10 9 16 10 36 10 A 16 9 35 36
27 17471A0488 [NAIDU RACHANA 18 9 17 10 37 10 10 13 9 32 36
28 | 17471A0489 |TELAPROLU PAVAN KALYAN| 10 1e 20 10 40 10 A 10 7 27 37
29 | 17471A0490@ |BODEMPUDI SRI HARSHA 1e 9 20 1@ 40 10 A 16 9 35 39
3e 17471A84591 |SHAIK RUKSANA 7 9 19 10 38 10 A 11 9 3e 36
31 17471A8492 [KATTAMURI SATYANARAYANA 10 9 20 18 40 10 18 12 8 38 38
32 17471A0493 |[KOPPULA GANESH REDDY 10 9 15 10 35 9 10 14 7 31 34
33 17471A0494 |SYED MAHABOOB JANI BASHA| 18 9 20 9 39 10 10 12 8 30 37

LY b

34 | 17471A0495 |PERUMALLA PREETHI KOUMIKA | 10 9 20 9 39 19 10 14 8 32 38
35 17471A0496 [SHAIK JANI BASHA A 10 5 8 23 18 A 10 9 29 28
36 17471A0497 [SHAIK MOHAMMED ALTHAF A 9 14 8 31 1e A 12 1e 32 32
37 17471A0498 |JANGALA KIRAN BABU 7 8 13 10 31 A 1e 18 6 26 30
38 17471A0499 |RAMA CHANDRULA KAVYASRI 16 18 18 8 36 1@ A 15 7 32 35
39 | 17471A04A0 |MUVVA MANOJ KUMAR 1e 9 19 10 39 1@ 9 14 7 31 37
48 17471A04A1 (KAKUMANU SUMANTH 9 9 18 8 35 10 A 1@ 9 29 34
41 | 17471AB4A2 |vw0MPaLlT N v S L MALLIKA BRAMARAMBIXA 10 9 18 6 34 10 A 18 5 33 34
42 17471AR4A3 |TUMMALACHERUVU SAITEJA 7 18 18 18 38 18 10 12 9 31 37
43 17471AR4A4 |JAKKIREDDY KEERTHI 10 A 14 6 30 18 A 9 10 29 30
44 17471A@4A5 |SHAIK AFRID 16 8 19 7 36 10 A 16 8 34 36
45 17471A04A6 |YERRAMSETTY SAI PAVAN 7 § 10 13 1e 33 10 9 11 6 27 32
P 46 17471AB4A7 |DESABOYINA HEMARAMACHANDRA VASU 7 9 16 8 33 10 10 17 4 31 33
47 17471A04A8 |SHAIK TANGEDA CHINA BAJI 7 A 18 4 29 1e A 12 5 27 29
48 17471AB4A9 |[KOLLA SIVA HEMANTH 10 8 20 10 40 10 A 15 18 35 39
49 17471A84B0 [AKULA ASHOK KUMAR 10 10 18 10 38 18 A 15 10 35 38
50 17471AR4B1 [MOHAMMED ZAKIR HUSSAIN KHAN| 1@ 9 18 7 35 10 A 17 6 33 35
51 17471ABAB2 [sALUPLNUAT KASU VASU DEVA VENKATA REDOY A A 14 1e 24 A 8 5 9 22 24
52 17471A04B3 |GORANTLA SRAVAN KRISHNA 10 9 16 8 34 9 A 6 9 24 32
53 17471A04B4 |JAMMULA CHANDRIKA 18 9 16 18 36 10 A 16 9 35 36
54 17471A04B5 |BONDE RAJENDRA 18 A 15 8 33 A 9 6 4 19 38
55 17471A04B6 (NANNEM VEENA VATSALYA 10 9 16 5 31 A 10 8 8 26 30
56 17471A04B7 |GOGULA NAVEEN KUMAR A 9 15 4 28 10 A A A 10 24
o 57 17471A84B8 |[KURANGI MUKUNDA SAT 10 8 15 10 35 A 9 8 8 25 33
58 17471A04B9 |GOUSE MOMITH BAIG 10 9 20 8 38 18 18 12 5 27 36
59 17471AR4CO (BUSSI JOSEPH BALA YASWANTH BABU| 1@ 9 19 10 39 108 A 19 9 38 39

34 17471A04F4 |CHEVALA PRITHVI RAJ 1e 18 24 6 7 14 6 27 27
35 | 17471A04F5 [DEVARAPALLT NAGA POOJA SAI SRI 20 10 38 10 A 16 10 36 38
36 17471AR4F6 [MEKAPOTHULA GOPI KRISHNA A A 9 7 8 17 9 34 28
37 17471AB4F7 |REPALLE PRATHYUSHA 17 10 35 18 A 16 6 32 35
38 17471AB4F8 |KOMMANABOYINA NAGA ANIL e 7 13 5 6 13 9 28 25
39 17471A84F9 [BATCHU DURGA BHAVANI 19 10 36 9 9 15 10 34 36
48 17471A84GO |DIRISALA SRAVANI 14 6 27 9 A 19 4 32 31
41 17471AR4G1 |KOMIREDDY MANJU BHARGAVI 14 10 28 7 A 14 8 29 29
42 17471ABA4G2 [POLA VENKATA MALLIKHARIUNA RAD 20 10 36 6 7 16 9 32 35
43 17471AB4G3 |KOLIPAKULA DEVI CHAMUNDESWART 20 10 37 8 A 9 9 26 35
44 17471A84G4 |BOBBA PRASANTH 7 9 24 6 A 8 9 23 24
45 17471AR4G5 |G JAGADEESH CHANDRA BOSE 15 1e 33 7 6 11 9 27 32
] 46 17471A04G6 |GUNTU NAVEEN CHOWDARY 12 10 28 8 A 11 9 28 28
47 17471A84G8 |YELLANURU JAHNAVI 7 6 19 7 A 7 6 20 20
48 17471A04G9 |MAMIDIPAKA NAGASUSHMA 20 18 37 18 A 16 10 36 37
49 17471A04H0 |DUGGARAIU GOWTHAMY 20 9 37 10 7 14 7 31 36
50 | 17471A04H1 [P RAMA KRISHNA 18 8 33 6 6 12 9 27 32
51 | 17471A@4H2 [NALAGANGULA KOTIREDDY 11 1e 27 7 A 8 7 22 26
52 17471ABAH3 |GUNTUPALLT THIRUMALA PRASANNA SANKAR 13 8 21 6 7 Y 8 22 22
53 17471AB4HA |RAIARAPU SRILAKSHMI TIRUMALESWART 20 i@ 36 7 1@ 18 4 32 35
54 17471A@4H5 |PAMURU DIVYA 10 18 27 7 A 11 9 27 27
55 17471A84H6 [SHAIK SAMEER 18 10 36 10 A 1e 8 28 34
56 17471A@4H7 |[KUNCHALA GOPI KRISHNA 16 9 31 6 7 12 10 29 31
- 57 17471A04H8 [PUSALA MADHU KUMAR 14 8 29 8 A 13 8 29 29
58 17471ABAHY [GA13ALA MARUTHI VENKATA KRISHWA REDOY 16 10 32 8 A 8 6 22 30
59 17471A8410 [MEDA RAVI TEJA 12 9 25 6 7 14 18 31 30
60 18475A0401 [MARELLA VAMSI 20 4 30 A 7 14 5 26 29
61 18475AP402 [RACHAKONDA SHYAM PREMKUMAR 12 10 27 9 9 20 9 38 36
62 18475A8403 |SURISETTI ARCHANA 12 9 28 6 6 11 6 23 27
63 | 18475A04084 |PALADUGU GANESH 20 10 36 5 9 20 9 38 38
64 18475A0405 |VUYYURU SRILAKSHMI 10 10 28 8 8 11 6 25 28
65 18475A0406 |NUNNA VENKATA SIVASAI 20 18 38 9 18 20 8 38 38
66 18475A0407 |PARITALA HARITHA 20 10 38 18 8 20 7 37 38
67 18475A0408 [MADDINA VENKATA SANDEEP 16 6 27 7 A 16 5 28 28
68 18475AB409 |CHERUKURT BRAHMA VENKATESWARLU 15 1e 32 5 8 6 5 19 29

N T T T A B S

questions

C 2 g
BT T T T T TR RS SR P RS R g S P P G R P S B G A

Unit wise important

0 1 T T T T T O G T L T T T T T T TR T T T T e

{

UNIT - |

What is an embedded system? What are the components of embedded system?
What are the various classifications of embedded systems?

Classify the processors in embedded system?

Draw the simple view of organization of processor and memory in a system.

ral i U =

UNIT-II

Draw and compare von-Neumann and Harvard architecture.
Define interrupt latency? How to avoid it

What are the design metrics?

What are the challenges of embedded systems?

Give the steps in embedded system design?

10. Explain about the custom single-purpose processor design

© o N o Wv

UNIT-IIl

11. How to select the processor based upon its architecture and applications?
12, Explain about the general purpose processor design
13. Explain about the Application specific Instruction set processors

UNIT-IV

14. What is the difference between SRAM and DRAM
15. What are the functions of memory?
16. Explain in brief about various memories used in embedded systems

UNIT-V

17. What is the difference between Model and languages?

18. Define State Machine Model, sequential Programming Model and concurrent process
Model?

19. What are the steps involved in describing a system’s behaviour as a state Machine?

20. What is FSMD?

21. How the processes communicate through message passing?

22. Explain the shared memory concept in inter process communication

23, State the difference between FSM and FSMD models.

24, Explain the design concept of an Elevator control mechanism using a sequential model.

25. Explain in brief about the HCFSM and state charts?

UNIT-VI

26. Explain about ASICs and PLDs.
27. Explain about the Hardware/Software co-simulation

——

END EXAM QUESTION PAPER
WITH KEY

Narasaraopeta IEngineering College (Autononious)
Kotappakonda Road, Yellamanda (P.O), Narasaraopel- 522601, Guntur District, AP.

Subject Code: R1I6EC4211

IV B.Tech Il Semester Regular & Supple Examinations, July-2021
EMBEDDED SYSTEM DESIGN
(ECE)
Time: 3 hours Max Marks: 60
Question Paper Consists of Part-A and Part-B.
Answering the question in Part-A is Compulsory & Four Questions should be answered from Part-B
All questions carry equal marks of 12.

PART-A

1. (@) Give few examples of embedded systems
(b) List out the different combinational components used in embedded system design
(c) Differentiate between general purpose processor and application specific instruction processor.
(d) Define Flash Memory and explain its importance
(e) Explain the Basic state machine model in detail
(f) writs short notes on Full custom 1C technology
[242+2+2+2+42]

T-B

[4X12=48

2. (a) Explain the classification of embedded systems based on different criteria in detail and give
an example for each
(b) Explain the following terms (i) ASIC (ii)PLD

3. (a) Explain the concept of single-purpose processor Design along with one example
(b) write short notes on Optimizing the FSM in detail

4. (a) Draw the architecture of VLIW processor and explain its operation
(b) Explain the concept of Testing and Debugging

5. List out different Cache mapping Techniques and explain each one in detail

6. (a) Explain the concept of concurrent process model along with one example
(b) Write short notes on program state machine model

7. (a) Explain the concept of Standard Cell Semi-Custom IC Technology along with one example
(b) Write short notes on Hardware/Software co-simulation in detail

e e e

Page 1 of 1

EMBEDDED SYSTEM DESIGN
PART-A

(a). Examples of Embedded systems are microwave ovens, answering machines, thermostat,

Home security, Washing machines, and Automatic lighting systems, printers, and scanners

and etc.

(b). Combinational components used in embedded system design are Transistors and Logic

Gates, N-bit Multiplexers, decoders, adders, Comparators, ALU (arithmetic-logic

unit),Registers, Shift registers, Counters.

(¢). Differences between general purpose processor and application specific instruction

processor

General purpose processor Application specific instruction processor

General purpose processor is a | Application specific processor have

Programmable device. Programmable memory

Low NRE cost. High NRE Cost
Less Flexibility Good Flexibility
Performance is not high good performance, size, and power

Design cost and time of general-purpose | low cost and low power consumption.
processor is low.

(d).
Flash Memory

Flash memory is an extension of EEPROM that was d i ;
: : ion eveloped in the late 1980s. While als
using the floating-gate principle of EEPROM, flash memory is designed such that larog

bl.ocks: of memory can be erased all at once, rather than just one word at a time as in

traditional EEPROM. A block is typically several thousand bytes large. This fast erase ability
can vastly improve the performance of embedded systems where large data items must be
stored in nonvolatile memory, systems like digital cameras, TV set-top boxes, cell phones,
and medical monitoring equipment. It ‘can also speed manufacturing throughput, since
programming the complete contents of flash may be faster than programming a similar-sized
EEPROM.

Like EEPROM, cach block in a flash memory can typically be erased and reprogrammed
tens of thousands of times before the block loses its ability to store data, and can store its data
for 10 years or more.

A drawback of flash memory is that writing to a single word in flash may be slower than
writing to a single word in EEPROM, since an entire block wxll need to be read, the word
within it updated. and than the block written back

(e). Basic State machine model: In a state machine model, we describe system behaviour as

a set of possible states; the system can only be in one of these states at a given time. We also
describe the possible transitions from one state to another depending on input values. Finally,

we describe the actions that occur when in a state or when transitioning between states.

Figure 8.2: The elevator's UnitControl process described using a state machine.

u,d,0,1=1,0,0,0 I(reg> floor)
req>floor -, timer < 10
u,dot=00,10
— .m .4,0t=0011

f{req>floor)

uisup, disdown, 0 isopen
Feq<Tioor tistimer_start

(f). Full custom IC technology: In a full-custom IC technology, we optimize all layers for

our particular embedded system’s digital implementation. Such optimization includes placing
the transistors to minimize interconnection lengths, sizing the transistors to optimize signal
transmissions and routing wires among the transistors. Once we complete all the masks, we
send the mask specifications to a fabrication plant that builds the actual ICs. Full-custom IC
design, often referred to as VLSI (Very Large-Scale Integration) design, has very high NRE
cost and long turnaround times (typically months) before the IC becomes available, but can
yield excellent performance with small size and power. It is usually used only in high-volume

or extremely performance-critical applications.

PART-B
2. (a). Classification of Embedded Systems:

Embedded systems are classified based on the applications they used. They are

(a) Consumer electronics --cell phones, pagers, digital cameras, camcorders, videocassette

recorders, portable video games, calculators, and personal digital assistants

(b) Home appliances -- microwave ovens, answering machines, thermostat, home security,

washing machines, and lighting systems
(c) Office automation -- fax machines, copiers, printers, and scanners

(d) Business equipment -- cash registers, curb side check-in, alarm systems, card readers,

product scanners, and automated teller machines

(e) Automobiles — transmission control, cruise control, fuel injection, anti-lock brakes, and

active suspension.

(f) Embedded Systems in Smart Cards, Missiles and Satellites-- Security systems, Telephone

and banking, Defence and aerospace, Communication.

(g) Embedded Systems in Peripherals & Computer Networking-- Displays and Monitors,

Networking Systems, Image Processing, Network cards and printers.

(h) Embedded Systems in Consumer Electronics--Digital Cameras, Set top Boxes, High-
Definition TVs, DVDs.

(1) Environment &agriculture: smart water management, smart irrigation etc.

(j) Military: Intelligence Gathering Operations. Military commanders need correct
information to make the best decisions, Surveillance and Reconnaissance UAVs,
Communication, Computing, Cyber Security, Vehicle Electronics

(b). i. ASIC: In an ASIC (Application-Specific IC) technology, the lower layers are fully

or partially built, leaving us to finish the upper layers. In a gate array technology, the masks

for the transistor and gate levels are already built (i.e., the IC already consists of arrays of
gates). The remaining task is to connect these gates to achieve our particular implementation.
In a standard cell technology, logic-level cells (such as an AND gate or an AND-OR-
INVERT combination) have their mask portions pre-designed, usually by hand. Thus, the
remaining task is to arrange these portions into complete masks for the gate level, and then to
connect the cells. ASICs are by far the most popular IC technology, as they provide for good

performance and size, with much less NRE cost than full-custom IC’s.

ii. PLD: In a PLD (Programmable Logic Device) technology, all layers already exist, so we
can purchase the actual IC. The layers implement a programmable circuit, where
programming has a lower-level meaning than a software program. The programming that
takes place may consist of creating or destroying connections between wires that connect
gates, either by blowing a fuse, or setting a bit in a programmable switch. Small devices,
called programmers, connected to a desktop computer can typically perform such
programming. We can divide PLD's into two types, simple and complex. One type of simple
PLD is a PLA (Programmable Logic Array), which consists of a programmable array of
AND gates and a programmable array of OR gates. Another type is a PAL (Programmable
Array Logic), which uses just one programmable array to reduce the number of expensive
programmable components. One type of complex PLD, growing very rapidly in popularity
over the past decade, is the FPGA (Field Programmable Gate Array), which offers more
general connectivity among blocks of logic, rather than just arrays of logic as with PLAs and
PALs, and are thus able to implement far more complex designs. PLDs offer very low NRE

cost and almost instant IC availability.

3.

(a). We now have the knowledge needed to build basic processor. A basic processor
consists of a controller and data path shown in below figure. The data path stores and
manipulates a

/
/
external external ‘ g ‘ ' &
control data
A ontroll
Sl inpuls controller datapath
datapath e next-state -
§ control ‘ * and - registers
controller | inputs | datapath control | g x T]
/' ' / logic
~Hatapa 4 {
state functional
y T‘ register units
external ;
data /
outputs . & * T
* (a) + (b)
Figure 2.8: A basic processor: (a) controller and datapath, (b) 2 view inside the controller and datapath.

; . T resentin
system’s data. Examples of data in an embedded system include binary numbers rep g

gxternal conditions like temperaturc or speed, characters (0 be displayed on a screen. or @
digitized photographic image to be stored and compressed. The d_alapalh contains rcglstcr
units. functional units. and connection units like wires and multiplexors. The datapalh can pc
m read data from particular registers, feed that data through functlgnal units
configured to carry out particular operations like add or shift. and store the operation results
back into particular registers. A controller carries out such configuration of 1h.e datapath. It
sets the datapath control inputs. like register load and multiplexor select &gnuls.i of the
register units. functional units. and conncction units to obtain the desired configuration at a
ﬁa;licular time. It monitors external control inputs as well as datapath control outputs. known_
“as status signals. coming from funciional units. and it sets external control outputs as well.

Example: GCD

Figure 4.3 provides a example based on computing a greatest common divisor (GCD). Figure
4.3(a) shows a black-box diagram of the desired system, having x_i and y_i data inputs and a
data output d_i. The system’s functionality is straightforward: the output should represent the
GCD of the inputs. Thus, if the inputs are 12 and 8, the output should be 4. If the inputs are
13 and 5, the output should be 1. Figure 4.3(b) provides a simple program with this
functionality. The reader might trace this program’s execution on the above examples to
verify that the program does indeed compute the GCD.

To begin building our single-purpose processor implementing the GCD program, we first
convert our program into a complex state diagram, in which states and arcs may include
arithmetics expressions, and these expressions may use external inputs and outputs or
variables. In contrast, our earlier state diagrams only included boolean expressions, and these
expressions could only use external inputs and outputs, not variables. Thus, these more
complex state diagram looks like a sequential program in which statements have been
scheduled into states.

We are now well on our way to designing a custom single-purpose processor that executes
the GCD program. Our next step is to divide the functionality into a data path part and a
controller part, as shown in Figure 4.4. The data path part should consist of an

interconnection of combinational and sequential components. The controller part should
consist of a basic state diagram

Figure 4.3: Example program -- Greatest Common Divisor (GCD): (a) black-box view,
(b) desired functionality. (c) state diagram

A

GCD

(a)

:vectorN X, y:
: while (1) {
while (!go_1);
X=%1
y=y_i;
while (x!=y) {
if (x<y)
Y=Y-=X%
else
X=X-Y;

il i B ol

%

12

)
d o=x;

}

(b)

(b).
Optimizing the FSM

Designing a sequential circuit to implement an FSM also provides some opportunities for
optimization, namely, state encoding and state minimization.

State encoding 1s the task of assigning a unique bit pattern to each state in an FSM. Any
assignment in which the encodings are umique will work properly, but the size of the state
register as well as the size of the combinational logic may differ for different encodings. For
example, four states A, B, C, and D can be encoded as 00, 01, 10, and 11, respectively.
Alternatively, those states can be encoded as 11, 10, 00, and 01, respectively. In fact, for an
FSM with # states where # is a power of 2, there are n! possible encodings. We can see this

casily if we treat encoding as an ordering problem — we order the states and assign 2
straightforward binary encoding, starting with 00.. 00 for the first state, 00...01 for the second
state, and so on. There are n! possible orderings of n items, and thus »! possible encodings. n!
is a very large number for large n, and thus checking cach encoding to determine which yields
the most efficient controller is a hard problem. Even more encodings are possible, since we
can usc more than log:(n) bits to encode n states, up to n bits to achieve a one-hot encoding.
CAD tools arc therefore a great aid in scarching for the best encoding,

Stateminimization is the task of merging equivalent states into a single state. Two stales
are cquivalent if, for all possible input combinations, those two states generate the same
outputs and transition (o the same next state. Such states are clearly equivalent, since merging

" them will yield exactly the same output behavior.

The state merging that we did when optimizing our FSMD was not the same as state
minimization as defined here. The reason is that our state merging in the FSMD actually
changed the output behavior, in particular the output timing. of the FSMD. Typically. by the
time we arrive at an FSM. we assume output timing cannot be changed. State minimization

does not change the output behavior in any way.

4

(a). VLIW ARCHITECHTURE:

The limitations of the Superscalar processor are prominent as the difficulty of scheduling
instruction becomes complex. The intrinsic parallelism in the instruction stream,
complexity, cost, and the branch instruction issue get resolved by a higher instruction set
architecture called the Very Long Instruction Word (VLIW) or VLIW Machines. VLIW
uses Instruction Level Parallelism, i.e. it has programs to control the parallel execution of
the instructions. In other architectures, the performance of the processor is improved by
using either of the following methods: pipelining (break the instruction into subparts),

superscalar processor (independently execute the instructions in different parts of the

https://www.geeksforgeeks.org/instruction-level-parallelism/

processor), out-of-order-execution (execute orders differently to the program) but each of
these methods add to the complexity of the hardware very much. VLIW Architecture deals
with it by depending on the compiler. The programs decide the parallel flow of the
instructions and to resolve conflicts. This increases compiler complexity but decreases
hardware complexity by a lot.
Features of VLIW: The processors in this architecture have multiple functional units, fetch
from the Instruction cache that have the Very Long Instruction Word.
e Multiple independent operations are grouped together in a single VLIW
Instruction. They are initialized in the same clock cycle.
e Each operation is assigned an independent functional unit.
e All the functional units share a common register file.
o Instruction words are typically of the length 64-1024 bits depending on the
number of execution unit and the code length required to control each unit.
e Instruction scheduling and parallel dispatch of the word is done statically by the
compiler.
o The compiler checks for dependencies before scheduling parallel execution of

the instructions.

Op1 Reg1, Reg2, Reg3 Op2 Reg4, Reg5, Regb Op3 Reg7, Reg8, Reg9
FU1 FU2 FU3
Register File

I

Cache, Memory, Execution Units

Fig. Block Diagram of VLIW Architecture

(b).

Testing and debugging: Test/Verification involves ensuring that functionality is correct.
Such assurance can prevent time-consuming debugging at low abstraction levels and iterating

back to high abstraction levels.

Debuggers help programmers evaluate and correct their programs. They run on the
development processor and support stepwise program execution, executing one instruction
and then stopping, proceeding to the next instruction when instructed by the user. They
permit execution up to user-specified breakpoints, which are instructions that when
encountered cause the program to stop executing. Whenever the program stops, the user can
examine values of various memory and register locations. A source-level debugger enables
step-by-step execution in the source program language, whether assembly language or a
structured language. A good debugging capability is crucial, as today’s programs can be quite
complex and hard to write correctly. Device programmers download a binary machine

program from the development processor’s memory into the target processor’s memory.

Emulator’s support debugging of the program while it executes on the target processor. An
emulator typically consists of a debugger coupled with a board connected to the desktop
processor via a cable. The board consists of the target processor plus some support circuitry
(often another processor). The board may have another cable with a device having the same
pin configuration as the target processor, allowing one to plug this device into a real
embedded system. Such an in-circuit emulator enables one to control and monitor the
program’s execution in the actual embedded system circuit. Incircuit emulators are available
for nearly any processor intended for embedded use, though they can be quite expensive if
they are to run at real speeds. The availability of low-cost or high-quality development

environments for a processor often heavily influences the choice of a processor.
5. Cache mapping Techniques:

Cache is usually designed using static RAM rather than dynamic RAM, which is one reason
that cache is more expensive but faster than main memory. Because cache usually appears on
the same chip as a processor, where space is very limited, cache size is typically only a
fraction of the size main memory. Cache access time may be as low as just one clock cycle,

whereas main memory access time is typically several cycles.

A cache operates as follows. When we want the processor to access (read or write) a main

memory address, we first check for a copy of that location in cache. If the copy is in the

cache, called a cache hit, then we can access it quickly. If the copy is not there, called a cache
miss, then we must first read the address (and perhaps some of its neighbors) into the cache.
This description of cache operation leads to several cache design choices: cache mapping,
cache replacement policy, and cache write techniques. These design choices can have
significant impact on system cost, performance, as well as power, and thus should be

evaluated carefully for a given application.

Cache mapping techniques: Cache mapping is the method for assigning main memory
addresses to the far fewer number of available cache addresses, and for determining whether
a particular main memory address’ contents are in the cache. Cache mapping can be

accomplished using one of three basic techniques:

1. Direct mapping: In this technique, the main memory address is divided into two fields, the
index and the tag. The index represents the cache address, and thus the number of index bits
is determined by the cache size, i.e., index size = log2(cache size). Note that many different
main memory addresses will map to the same cache address. When we store a main memory
address’ content in the cache, we also store the tag. To determine if a desired main memory
address is in the cache, we go to the cache address indicated by the index, and we then

compare the tag there with the desired tag.

2. Fully-associative mapping: In this technique, each cache address contains not only a main
memory address’ content, but also the complete main memory address. To determine if a
desired main memory address is in the cache, we simultaneously (associatively) compare all

the addresses stored in the cache with the desired address.

3. Set-associative mapping: This technique is a compromise between direct and
fullyassociative mapping. As in direct-mapping, an index maps each main memory address to
a cache address, but now each cache address contains the content and tags of two or more
memory locations, called a set or a line. To determine if a desired main memory address is in
the cache, we go to the cache address indicated by the index, and we then simultaneously
(associatively) compare all the tags at that location (i.e., of that set) with the desired tag. A
cache with a set of size N is called an N-way set-associative cache. 2-way, 4- way and 8-way

set associative caches are common.

‘Tﬂg Ind;xl Offset . ?
VIT|[D
(@) T e : o =
v§
Data g \{_é
e
Vaild

Jag " Offsct

vitlp [vt vltlo i
X 7
(b) 2 2 Vali
elag index gf Offset
vitlo |[[v[t]o] |
/
(<) N
. T vll

—

// g

'y
y associative, () two-way set associative.

Figure $.12: Cache mapping techniques: (a) direct-ma pped, (b)
Direct-mannsd rarkhon aca ane. o -

6.

(a). Concurrent process model:

In a concurrent process model, we describe system behaviour as a set of processes, which
communicate with one another. A process refers to a repeating sequential program. While
many embedded systems are most easily thought of as one process, other systems are more
easily thought of as having multiple processes running concurrently.

For example, consider the following made-up system. The system allows a user to provide
two numbers X and Y. We then want to write "Hello World" to a display every X seconds,

and "How are you" to the display every Y seconds. A very simple way to describe this system
using concurrent processes is shown in Figure 8.9(a). After reading in X and Y, we call two
subroutines concurrently. One subroutine print’s "Hello World" every X seconds, the other
prints "How are you" every Y seconds. (Note that you can’t call two subroutines concurrently
in a pure sequential program model, such as the model supported by the basic version of the
C language). As shown in Figure 8.9(b), these two subroutines execute simultaneously.
Sample output for X=1 and Y=2 is shown in Figure 8.9(c).

To see why concurrent processes were helpful, try describing the same system using a
sequential program model (i.e., one process). You’ll find yourself exerting effort figuring out
how to schedule the two subroutines into one sequential program. Since this example is a
trivial one, this extra effort is not a serious problem, but for a complex system, this extra
effort can be significant and can detract from the time you have to focus on the desired
system behaviour. Recall that we described our elevator controller using two "blocks." Each
block is really a process. The controller was simply easier to comprehend if we thought of the
two blocks independently.

Figure 8.9: A simple concurrent process example: (a) pseudo-code, (b) subroutine
execution over time, (c) sample input and output.

ConcurrentProcesst xample() PrintHelloW orld
X = ReadX()
y = ReadY () —p-ReadX —p ReadY
Call concurrently: PrintHowA reY ou
PrintHelloW orld(x) and
PrintHowA reY ou(y) time'
PrintHelloW orld(x) (B)
while (1) { Enter X: 1
print "Hello world.” Enter Y: 2
delay(x); Hello world. (Time=15)
} Hello world. (Time = 2 s)
How areyou? (Time= 25)
PrintHowA reY ou(x) Hello world. (Time= 3s)
while (1) { How areyou? (Time= 45)
p(mt "How are YOU?" Hello world. (Time = 4 S)
delay(y).
(a) (c)

(b). Program state machine model: The program-state machine (PSM) model extends
state machines to allow use of sequential program code to define a state’s actions (including
extensions for complex data types and variables), as well as including the hierarchy and
concurrency extensions of HCFSM. Thus, PSM is a merger of the HCFSM and sequential
program models, subsuming both models. A PSM having only one state (called a program-
state in PSM terminology), where that state’s actions are defined using a sequential program,
is the same as a sequential program. A PSM having many states, whose actions are all just

assignment statements, is the same as an HCFSM. Lying between these two extremes are
various combinations of the two models. For example, Figure 8.8 shows a PSM description
of the Elevator Controller behaviour, which we AND-decompose into two concurrent
program-states Unit Control and Request Resolver, as in the earlier HCFSM example. PSM
enforces a stricter hierarchy than the HCFSM model used in State charts. In State charts,
transitions may point to or from a substate within a state, such as the transition pointing from
the substate of the state to the Normal Mode state. As in the sequential programming model,
but unlike the HCFSM model, PSM includes the notion of a program-state completing. If the
program-state is a sequential program, then reaching the end of the code means the program-
state is complete. If the program-state is OR-decomposed into substates, then a special
complete substate may be added. Transitions may occur from a substate to the complete
substate (but no transitions may leave the complete substate), which when entered means that
the program-state is complete. Consequently, PSM introduces two types of transitions. A
transitionimmediately (TI) transition is taken immediately if its condition becomes true,
regardless of the status of the source program-state -- this is the same as the transition type in
an HCFSM. A second, new type of transition, transition-on-completion (TOC), is taken only
if the condition is true AND the source program-state is complete.

Figure 8.8: Using PSM to describe the ElevatorController.

E levatorController
int req;

/ UnitControl \ RequestResolver
/ NormalM ode \

up = down = 0; open = 1;
while (1) {
while (req == floor);
open = 0,
if (req> floor) { up= 1;}
else {down = 1;}
while (req != floor);

reg = ...

open = T1;
delay(10);
}

LY

!fireT ifire

B FireMode
up =0; down=1; open=0

while (floor > 1);
up = 0; down-O open-1/

7.

(a).

ard Cell Semi-Custom IC Technology
Isntas::hrd cell IC technology, common logic functions, or cells, have already been

compactly layed out Examples of cells include 2 NAND gate, a NOR gate, a 2x}
multiplexor, and a combination of AND-OR-INVERT gates. The transistors within a celf are
already layed out, but lheplaoammofcdlshsno(beendetenmmd A designer thus must
decide which cells to use, where to place them, and how 10 route among them. A standard cell
layout is shown in Figure 10.6(b).

than in gate arrays, leading to more compact designs.

A compromise between gale array and standard cell semi-custom ICs is known as a cell
array, or cell-based array. A cell army is preity much what we'd expect it to be based on its
name. Cells, which you’ll remember can be more complex than gates, have alrcady been

layedout,andluvcalsoalreadybeenphcdmmcdesimnoedonlyoomcc(ﬂwodb
together.

Py

B

FF

OR 3

2

Fig. Standard cell

(b).

Hardware-Software Co-Simula.ti.on

More generally. a variety of

i simulation ;
and precision/accuracy. For PpEacies o4

: St, varying i i x ;
a given processor, whethe Y8 In their simulation specd

I general-purpose or single-purpose,

simulation can vary from very detailed. like a gate-level model. to very abstract. like an
instruction-level model. An instruction-level model of a general-purpose processor is known
as an instruction-set simulator (1SS). An instruction-level model of a single-purpose processor
is simply know: 2s a ». ;tcm-level model. Lower-level simulations of either type of processor
is usually done by -reaiin: 4 behavior. RT. or gate-level model in a hardware description
language (HDL) e..viromnent. Because of the past separation of software design and hardware
design. the simulation tools for cach domain have evolved quite independently. The emphasis
in software simulation has been on [SSs. The emnphasis of hardwarc simulation has been
models in hardware description languages (HDLs).

The integration of general-purpose and single-purpose processors onto a single IC has
incrcased the need for an integrated method for simultancously simulating these different
tvpes of processors. Thus. there is much interest in merging previously distinct software and
hardware siinulation tools.

One simple but naive form of iniegration is to creatc an HDL model of the
microprocessor that will run the software of a system. and then integrate that model with the
HDL odels of the rcmaining single-purposc processors. While straightforward to
implement. simulating a microprocessor in an HDL has two key disadvantages. First. this
approach will be much slower than an ISS. since the HDL simulator represents an extra laver
of software that must be executed. Second. such an approach ignores the fact that ISSs have
excellent controllability and observability features that designers have become accustomed to.

As it tumms oul. in many ecmbedded systemns. those processors do have frequent
communication. Thereforc. modern hardwarc-softwarc co-simulators do more than just
integrate two simulators. They also seck to minimize the communication between those
simulators. Consider. for example. a systein having one microprocessor. one single-purpose
processor representing a coprocessor. and one memory. all connected using a single shared
bus. Supposc the microprocessor’s program is stored in this memory. and that the coprocessor
uses the memory extensively also. We can simulate the microprocessor using an ISS and the
coprocessor using an HDL. But wherc should the sharcd memory be modeled. in the ISS or
the HDL? If in the HDL. then on cvery instruction. the 1SS will nced to stall in order to
contmunicate with the HDL simulator to fetch the next instruction from memory. I in the
ISS. then the HDL simulator will need to stall in order intcrrupt the 1SS for access to the
memory. However. note that most of these stalls are probably not necessary. For example. the
ISS accesses of its instructions in memory are really irrclevant to the coprocessor. Likewise.
the coprocessor’s manipulation of data in memory is not rclevant to the microprocessor.

- except in cases where that data is being transferred between the processors using the memory.

"+~ Narasaraopeta Engineering College (Autonomous)
[\1[’:[“ Kotappakonda Road, Yellamanda (P.0), Narasaraopet- 522601, Guntur District, AP.

Subject Code: R16EC4211

IV B.Tech II Semester Adv. Supple Examinations, December-2020
EMBEDDED SYSTEM DESIGN
(ECE)
Time: 3 hours Max Marks: 60

Question Paper Consists of Part-A and Part-B.
Answering the question in Part-A is Compulsory & Four Questions should be answered from Part-B
All questions carry equal marks of 12.

PART-A [2+2+2+2+2+2]
1. (a) Define “Time-to-market”, 2M
®) What is single-purpose processor? What are the benefits of choosing a single M
purpose processor over a general purpose processor
(c) How to evaluate a embedded processor’s speed? M
(d) What is the key feature of the PCI bus? 2M
(e) Explain the important aspect of a real time system. 2M
(f) Why Antifuses are implemented in a PLD? M
PART-B
4X12=48
2. (a) Describe the characteristics of an embedded system in detail. 6M
(b) Explain the various purposes of embedded systems in detail with illustrative 6M
examples.
3. (a) Describe the procedure of designing a general-purpose processor. 6M
(b) Design greatest common divisor based on custom single-purpose processor basic 6M
model.
4, (a) Illustrate how program and data memory fetches can be overlapped in a Harvard oM
architecture.
(b) Explain about main software utility tool 6M
& Explain the Dynamic RAM,Pseudo static RAM and Static RAM 12M
6. (a) Briefly describe three computation models commonly used to describe embedded 6M
systems and their peripherals.
(b) Show why, in addition to ordered locking is necessary to avoid deadlocks. 6M
7. (a) Define various IC technologies and discuss the benefits of using them. 6M
(b) What are general-purpose processor design models? And explain briefly any one. 6M

Page 10of 1

i el D E e e e e S G T S R R R IR i e F R R]
!

7
¢
]
:

T T

Missing Topics(Course
gaps) and Topics

.
]
Lo,
#
¢
¢
W
¢
¢
¢
/ .-
: :
? /
¢ ?
’ #
[¢
/ é
: z
; f
4 /
L4
i
¢
4
[/
¢
¢
¢
#
¢ s
¢ f
) ¢
[4]
[
f
¢
¢
’
¢
¢
¢
¢
¢
¢
¢

A A A A AT A AT AT AT T AT AW

DSP used in embedded systems
Watch dog timer

RS232

Bluetooth

12C

Multitasking

RTOS

Priority inversion

Message Queue

Mailbox and Pipe

Kernel

Thread

Semaphore

Internet of Things (loT)
Machine-to-Machine (M2M)

RESULTS

NARASARAOPETA ENGINEERING COLLEGE::NARASARAOPET

17 BATCH IV B.

(AUTONOMOUS)
TECH II SEMESTER (R16) FINAL INTERNAL MARKS-2021

BRANCH/SEC - ECE/D

SUBJECT NAME & CODE :EMBEDDED SYSTEM DESIGN (R16EC4211)

SL.NO. H.T.NO. STUDENT NAME Al A2 D1 01 |CYCLE-1| A3 A4 D2 02 |CYCLE-2| TOTAL
1 16475A0415 |POLLA SIVA A A 12 5 17 7 A 18 8 33 29
2 16471A0424 |GOLLA VENKATESWARI 6 6 2 A 8 9 A 10 6 25 21
3 16471A84D2 |THALLAPALLI SIVANAGARAIU A 7 7 6 20 9 A 15 10 34 31
4 16471A84G1 |SRIRAM NAVEEN KUMAR A 7 4 6 17 A A 15 6 21 20
5 17471A041I1 |CHERUKURI RAVI KUMAR 6 5 12 9 27 8 8 14 6 28 28
6 17471A0412 |KOLA PAVAN KALYAN A 5 12 18 27 , A 16 7 30 30
7 17471A0413 |TEMPALLI PRABHU KUMAR 8 6 19 18 37 7 9 15 9 33 36
8 17471A0414 |SHAIK MASTANVALI 8 6 20 10 38 8 A 15 8 31 37
9 17471A0415 |TANNIRU AVINASH BABU 6 A 17 10 33 A 7 15 10 32 33
10 17471A0416 |TELLAGORLA MANIKANTA GOPALA KRISHNA A 7 20 10 37 8 A 14 9 31 36

nl 17471A0417 |KOLA RAKESH 5 8 14 8 30 5 A 14 7 26 29
12 17471A8418 [KESANUPALLI PRIYANKA 6 8 20 6 34 10 9 14 3 27 33
13 17471A0419 |NARISETTI UMAMAHESWARI 7 8 20 18 38 9 A 19 7 35 38
14 17471A8410 |MANYAM UDAY BHASKAR 6 (%] 12 1@ 28 e U] 14 8 32 31
15 17471A0431 |Y SUPRAJA 7 7 18 1@ 35 8 9 16 9 34 35
16 17471A043]2 |GOSULA THIRUPATHI RAO 6 6 15 108 31 10 A 15 7 32 32
17 | 17471A84]13 |NARE TEJASWI 8 6 20 10 38 7 8 14 9 31 37
18 17471A8434 |VAKA GOPI CHAND A 7 15 8 30 6 8 14 9 31 31
19 17471A0415 |DOPPALAPUDI NELSON RAJU 7 7 14 8 29 8 A 14 6 28 29
20 17471A0416 |SHAIK AFEIN 6 8 14 10 32 1e 74 15 10 35 35
21 17471A8417 [MOLAMANTI SAIKALYAN 5 6 12 1@ 28 6 A 15 10 31 31
22 1747170418 |SHAIK KANDIPATI MOULALI 7 A 20 18 37 7 A 14 7 4 28 35
23 17471A04K0 |PALLEPOGU SHARONU 6 8 20 10 38 9 8 17 8 34 37

":4 17471A04K1 |CHILAKA VAMSI KRISHNA 5 5 16 8 29 7 8 16 8 32 32
25 17471A84K2 |GOCHIPATHALA RAJ KAMAL A 5 15 10 30 5 8 16 9 33 33
26 17471AP4K3 |KESENAPALLI MARIYA BABU 6 7 14 9 30 8 . 15 10 34 33
27 17471A04K4 |ANGALAKURTHI SUMA PRIYA 6 5 16 9 33 10 A 15 - 29 31
28 17471A04K5 |PERUMALLA VINAY KUMAR A 7 10 9 26 8 A 15 8 31 3e
29 17471A84K6 |SHAIK SAJID HASAN A 7 4 10 21 A A %] A] 16
30 17471A04K7 |USAA PAVAN KALYAN 6 A 11 6 23 5 A 14 9 28 27
31 17471A04K8 |GORANTLA ASHOK 7 6 16 18 33 6 7 13 7 27 32
32 17471A04K9 NALLAMOLU KUSUMA 6 5 19 10 35 8 7 15 9 32 35
i3 17471A04L8 |JUPUDI RAJU 5 5 20 9 34 6 A 15 9 3e 33
34 17471A84L1 |MOGAL IRFAN 7 A 16 1@ a3 6 7 14 9 30 33
35 17471A04L2 |VELISALA MANISH PREETHAM| A 7 18 1@ 35 7 A 15 9 31 34
36 17471A84L4 |V PREETHI MANISHA 6 6 2 9 17 8 A 16 4 28 26
37 17471A84L5 |JAMPANI KRISHNAVAMSI A 5 4 a 13 9 A 18 9 36 31
38 17471A04L6 |MEDATATI DIVYA 6 8 20 10 38 8 - 8 18 8 34 37
39 17471A04L8 |SADHU KOTESWA RAO 5 7. 16 5 28 7 8 14 9 31 31

SL.NO. H.T.NO. STUDENT NAME Al A2 D1 01 |CYCLE-1| A3 A4 D2 02 |CYCLE-2| TOTAL
40 17471A04M0 |BAPATLA VIJAYA LAKSHMI 5 8 20 108 38 9 7 20 4 33 37
41 17471A04M1 |PATIBANDLA NARESH A 5 2 9 16 5 A 16 9 3e 27
42 | 17471A84M2 |KANDULA GURU KIRAN A 7 6 9 22 8 A 14 10 32 30
43 17471A04M3 [DARSI ANIL KUMAR A A e A (%] A 8 14 7 29 22
44 17471A04M4 |BATRAJU NAGA UMAMAHESH - 6 2 2 10 7 7§ 16 7 30 25
45 17471A84M5 |PALLEMPATI DURGA PRASAD 5 6 20 10 36 6 A 18 10 34 36
46 17471A@4M6 |PUTTA SREKANTH 6 5 14 10 30 6 7 16 10 33 33
47 17471A84M7 |MEKALA YASHWANTH KUMAR 5 6 16 10 32 8 7 12 10 3e 32
48 | 17471Ae4M8 [SHAIK IMRAN F 6 6 9 22 A A 11 9 20 22
49 17471A84N@ [SHAIK MAHAMOOD SHAREEF A 6 19 10 35 P A 14 8 29 34
50 17471A04N1 |MADHIREDDY ANIL KUMAR REDDY 7 A 20 10 37 8 A 15 10 37 37
51 17471A04N2 |KADIYAM SUDHAKAR A 5 14 6 25 A A 15 4 19 24
52 17471A04N3 |VEMULURI YASASWI 6 6 20 7 33 9 A 18 B 31 33

b\3 18475A0410 |THOTA BHARATH 6 7 15 7 29 7 A 1@ 8 25 28
54 1847540411 |SIDDEALA DILEEP SAGAR 7 7 14 8 29 A 10 18 8 36 35
55 18475A0412 |DOPPALAPUDI SARATH CHANDRA A 7 12 10 29 A 8 10 18 28 29
56 18475A0413 [JANGA MAHENDRA A 6 12 6 24 7 A 7 - 18 23
57 18475A0414 |AINAOLU GOPIKRISHNA A 8 18 8 34 7 7 16 7 3e 33
58 18475A0415 THUNGALA’PRAMOD A 8 12 6 26 8 A 16 8 32 31
59 | 18475A0416 |[SURUBULA LEELA PAVANKUMAR A 6 11 5 22 6 A 10 5 21 22
60 18475A0417 |SARIKONDA RAMA KRISHNAM RAJU 6 5 14 5 25 7 A 10 7 24 25
61 18475A0418 |ATTULURI SYAM PRASAD 4 7 12 6 25 5 A 10 10 25 25
62 18475A0419 |KUNDA JASHUVA 7 7 18 10 35 8 8 16 9 33 35
63 18475A8420 |YALAVARTHI MADHU BABU A 8 11 9 28 74 A 16 9 32 31
64 18475A0421 |M SUBRAHMANYAM A 6 15 18 31 7 1e 14 9 33 33

-\55 18475A0422 |GUDISE VENKATESH 7 6 15 5 27 v 4 8 10 5 23 26

| 66 18475A0423 |VARIKUTI KRISHNANJANEYULU 6 7 16 6 29 7 A 15 8 30 30

NARASARAOPETA ENGINEERING COLLEGE::NARASARAOPET

,17 BATCH 1V B.TECH II SEMESTER (R16) FINAL INTERNAL MARKS-2021

(AUTONOMOUS)

BRANCH/SEC - ECE/B

SUBJECT NAME & CODE :EMBEDDED SYSTEM DESIGN (R16EC4211)

SL.NO.| H.T.NO. STUDENT NAME Al A2 D1 01 |CYCLE-1| A3 A4 D2 02 |CYCLE-2| TOTAL
1 17471A8461 |PONUGOTI RAMESH 1@ 9 1e 8 28 10 A 4 7 21 27
2 17471A0462 |[MATTRAM VISHNU BABU 10 A 1@ 7 27 A 7 6 6 19 25
3 17471A8463 |RAMISETTY RAMCHARAN 10 9 14 8 32 1e A 12 8 30 32
4 1747170464 [ANANTHA DURGA A 9 12 7 28 9 10 9 9 28 28
5 17471A0465 |KAMMA NAGA SAI RITHVIK A 9 6 10 25 1e 8 8 9 27 27
6 17471A0467 |DANDE NAGALAKSHMI 10 9 14 8 32 1e 1e 14 9 33 33
7 17471AOA468 [JANAPATI YASASUINI JAYA BHARATHI SAHITHI | 10 9 18 10 38 10 10 15 9 34 37
8 17471A0469 |JANAPATI SAILAKSHMI SRAVANI| 10 7 16 10 36 1@ A 17 9 36 36

) 17471A0470 KUNISETT; GOPINADH A A 16 9 25 A 9 16 B 29 28
10 17471A0471 |SHAIK MD YASIN 10 9 16 9 35 9 9 11 8 28 34
11 17471A0472 |RAMISETTI LAKSHMISAITEJA| A 9 14 9 32 8 9 12 9 3@ 32
12 17471A0473 |B. MANI DEEPAK A A 7 7 14 A A 10 8 18 17
13 17471A0474 |BOKKA JOHN VICTOR A 7 19 9 35 9 A 11 3 23 32
14 17471AB475 [cooucmurt vIdava sAT pILEer kumar Reoov [18 7 10 9 29 10 A 17 8 35 34
15 17471A0476 |GANAPATHI JYOTHI PRAKASH| 1@ 10 18 2 37 10 A 17 8 35 37
16 17471A0477 |MUNAGAPATI MANOJKUMAR A 9 20 10 39 10 1e 15 6 31 37
17 17471A0478 |SYED MD GOUSE 10 9 16 9 35 1e A 13 9 32 35
18 17471A0479 |GOLI SRINIVASARAO 1e A 20 9 39 10 A 16 9 35 38
19 17471A0480 |PATHI VENKATESWARI 10 A 19 8 37 9 10 14 9 33 36
20 17471A0481 |VANUKURT HARIVARDHAN VEERA REDDY | 1@ A 16 9 35 8 10 13 9 32 35
21 17471A0482 |PANCHUMARTHI DILEEP KUMAR 7 9 19 9 37 1e 10 16 8 34 37
22 17471A0483 |KOLLURU KRISHNA MOHAN 9 9 19 9 37 9 1@ 14 6 30 36
23 17471A0484 |RACHUMALLU SASIDHAR A 9 16 10 35 8 18 17 8 35 35
24 17471A0485 [KARNATI HEMANTH SAI 9 9 18 9 36 9 8 16 1@ 35 36
25 17471A0486 |THUMATI VENKATA SUNIL 8 A 9 8 25 10 A 10 1@ 30 29
26 17471A0487 |KOPPURAVURI AKHILA 10 9 16 10 36 1@ A 16 9 35 36
27 17471A0488 |NAIDU RACHANA 10 9 17 1e 37 10 10 13 9 32 36
28 17471A0489 |TELAPROLU PAVAN KALYAN| 1@ 1e 20 10 40 10 A 10 7 27 37
29 17471A@490 |BODEMPUDI SRI HARSHA 10 9 20 10 40 ie A 16 9 a5 39
30 17471A0491 [SHATK RUKSANA 7 9 19 1@ 38 1e A 11 9 3e 36
31 17471A8492 |KATTAMURI SATYANARAYANA | 10 9 20 1e 40 10 1e 12 8 30 38
32 17471A0493 [KOPPULA GANESH REDDY 1e 9 15 10 35 9 10 14 7 31 34
33 17471A0494 |SYED MAHABOOB JANI BASHA| 1@ 9 20 9 39 1e 1e 12 8 30 37

34 17471A0495 |PERUMALLA PREETHI KOUMIKA 10 9 20 9 39 10 10 14 8 32 38
35 | 17471A0496 |SHAIK JANI BASHA A 10 5 8 23 10 A 1@ 9 29 28
36 17471A0497 |SHAIK MOHAMMED ALTHAF A 9 14 8 31 10 A 12 10 32 32
37 17471A9498 [JANGALA KIRAN BABU 7 8 13 10 31 A 10 1@ 6 26 30
38 17471A9499 |RAMA CHANDRULA KAVYASRI 10 18 18 8 36 10 A 15 7 32 35
39 17471A04A0 |MUVVA MANOJ KUMAR 1e 9 19 10 39 10 9 14 7 31 37
40 17471A04A1 |KAKUMANU SUMANTH 9 9 18 8 35 18 A 10 9 29 34
41 | 17471A04A2 [Yaioaeattt N v s L MALLIKA sRamsnamazxa | 1@ 9 18 6 34 10 A 18 5 33 34
42 17471A04A3 |TUMMALACHERUVU SAITEJA 7 10 18 1@ 38 16 10 12 9 31 37
43 17471A04A4 |JAKKIREDDY KEERTHI 10 A 14 6 3e 10 A 9 10 29 30
44 17471AB4A5 |SHAIK AFRID 10 8 19 7 36 10 A 16 8 34 36
45 | 17471A04A6 |YERRAMSETTY SAI PAVAN 7 10 13 10 33 10 9 11 6 27 32
6 17471A84A7 |DESABOYINA HEMARAMACHANDRA VASU 7 9 16 8 33 10 1@ 17 4 31 33
47 17471AB4A8 |SHAIK TANGEDA CHINA BAJI 7 A i8 4 29 10 A 12 5 27 29
48 17471A04A9 |[KOLLA SIVA HEMANTH 10 8 20 10 40 10 A 15 10 35 39
49 17471A04B0 [AKULA ASHOK KUMAR 10 10 18 10 38 10 A 15 10 35 38
50 17471A04B1 [MOHAMMED ZAKIR HUSSAIN KHAN| 18 2 18 7 35 10 A 17 6 33 35
51 | 17471A04B2 [BALUPUNURT KASU VASU DEVA VENKATA REDOY A A 14] 24 A 8 5 9 22 24
52 17471A84B3 |GORANTLA E»RJWAN KRISHNA 10 9 16 8 34 9 A 6 9 24 32
53 17471A04B4 [JAMMULA CHANDRIKA 1e 9 16 18 36 10 A 16 9 35 36
54 17471A04B5 |BONDE RAJENDRA 18 A 15 8 33 A 9 6 4 19 3e
55 17471A04B6 |NANNEM VEENA VATSALYA 10 9 16 5 31 A 10 8 8 26 30
56 | 17471A04B7 |GOGULA NAVEEN KUMAR A 9 15 4 28 1@ A A A 10 24
W=
57 17471A04B8 |KURANGI MUKUNDA SAI 10 8 15 10 35 A 9 8 8 25 33
58 17471A84B9 |[GOUSE MOMITH BAIG 1@ 9 20 8 38 1e 18 12 5 27 36
59 17471AP4CPH (BUSSI JOSEPH BALA YASWANTH BABU 18 9 19 1e 39 10 A 19 9 38 39

NARASARAOPETA ENGINEERING COLLEGE::NARASARAOPET
(AUTONOMOUS)
17 BATCH IV B.TECH II SEMESTER (R16) FINAL INTERNAL MARKS-2021

BRANCH/SEC - ECE/C SUBJECT NAME & CODE :EMBEDDED SYSTEM DESIGN (R16EC4211)

SL.NO. H.T.NO. STUDENT NAME Al A2 D1 01 |CYCLE-1| A3 A4 D2 02 |CYCLE-2| TOTAL
1 17471A04C1 vawxxonm‘snm RAMAKRISHNA| A 5 9 10 24 7 8 4 5 21 24
2 17471A84C2 |GUNDA PRATHYUSHA 7 6 18 10 35 8 A 18 9 35 35
3 17471A04C3 |ALLA SARATH SAI e 6 19 8 33 5 A 16 7 28 32
4 17471A04C4 |GARIKAPATI PAVAN KALYAN 6 6 19 10 35 5 7 18 9 34 35
5 17471A04C5 |GUTHA VENKAT RAO e 6 10 8 24 6 8 7 8 23 24
6 17471A04C6 |PULUKURT SRI PRASANNA A 5 18 10 33 7 ¥ B 10 10 27 32
7 17471A84C7 |BANDI CHINNAPA REDDY 6 6 20 10 36 9 A 10 18 29 35
8 17471A04C8 |PINNIKA SRIVANI 8 6 20 10 38 10 A 13 10 33 37

P 17471A84C9 (MADDI KOTI KIRAN KUMAR 4 7 16 10 33 10 A 16 5 31 33
10 17471A04D0 |DODDAKULA PRASANTH 1 6 14 8 28 5 A 7 10 22 27
11 17471A@4D1 |SHAIK ARSHAD 2 5 14 10 29 6 8 14 8 30 36
12 17471Ae4D2 |PALADUGU SRINIVASULU 2 7 11 9 27 9 A 12 8 29 29
13 17471A@4D3 |KONETI SUNEEL 5 6 16 1e 32 5 8 14 18 32 32
14 17471A84D4 |VUTUKURI TULASIRAM 7 7 16 10 33 18 A 16 9 35 35
15 17471A04D5 |KOMMI VENKATA SUBRAMANYAM e 6 13 1e 29 7 A 8 9 24 28
16 17471A04D6 |SHAIK SHAMEEM A 6 20 18 36 8 . 1e 15 10 35 36
17 17471A84D7 |BANDARU MAHESH A 6] 10 16 6 6 7 10 23 22
18 17471A84D8 |GANGASANI ASHOK REDDY A 6 9 9 24 6 A 13 18 29 28
19 17471A84DS |KOSANA PRATAP 3 5 6 10 21 7 8 14 9 31 29

;R:a 17471A04E0 |G RAGA VENKATA DEEPTHI A 7 10 16 27 8 A 10 8 26 27
21 17471A04E1 |POTHURI MANIKANTA A 5 14 9 28 6 7 13 8 28 28

.

22 17471A04E2 [SHAIK NANNU SHAIDA 6 8 20 10 38 9 A 18 g 34 37
23 17471AQ4E3 |POLU DIVYA A 8 20 10 38 8 A 15 8 31 37
24 | 17471A04E4 [VIBHARAMPATTAPU MAMATHA | A 7 20 10 37 9 10 14 10 34 37
25 17471A04E5 |MANDAVA SRI BHARATHI 7 9 20 9 38 10 10 18 9 37 38
26 17471A04E6 |BHOJANAPALLI TEJASWINI 1 8 20 10 38 10 A 20 10 40 40
27 17471AB4E7 |SHAIK JAVEED 6 7 5 10 22 9 A 13 8 30 28
28 17471AP4E8 (KOLLIKONDA GANGABHAVANI 6 9 20 10 39 9 7 18 8 35 38
29 | 17471A@4E9 |GUNTA ROHITHA REDDY A 8 13 10 31 5 8 16 1e 34 34
3e 17471AP4AFD |LAKSHMISETTY VENKATA SAT VYSHNAVI A 8 17 9 34 9 A 14 5 28 33
31 17471A04F1 |RAVULAPALLI SRINU] 5 8 10 23 6 7 16 9 32 30
32 17471A@4F2 |SADINENI "SOWJANYA 3 6 18 10 34 7 8 15 5 28 33
33 17471A04F3 |GANJI KRANTHI 5 8 A A 8 8 A %] 9 17 15

&~

34 17471A04F4 |CHEVALA PRITHVI RAJ A 10 10 24 6 5 14 6 27 27
35 17471A0AF5 |DEVARAPALLT NAGA POOJA SAI SRI A 20 10 38 10 A 16 10 36 38
36 17471A04F6 [MEKAPOTHULA GOPI KRISHNA| @ A A 9 7 8 17 9 34 28
37 17471A04F7 |REPALLE PRATHYUSHA A 17 10 35 10 A 16 6 32 35
38 17471A04F8 |[KOMMANABOYINA NAGA ANIL] 0 7 13 5 6 13 9 28 25
39 17471A04F9 |BATCHU DURGA BHAVANI e 19 10 36 9 9 15 10 34 36
49 17471A04G0 |DIRISALA SRAVANI e 14 6 27 9 A 19 4 32 31
41 17471A04G1 |KOMIREDDY MANJU BHARGAVI] 14 10 28 7 A 14 8 29 29
42 17471A04G2 |POLA VENKATA MALLIKHARJUNA RAO 6 20 10 36 6 7 16 9 32 35
43 17471A04G3 |KOLIPAKULA DEVI CHAMUNDESWARI A 20 10 37 8) 9 9 26 35
44 17471A04G4 |[BOBBA PRASANTH A 7 9 24 6 A 8 9 23 24
45 17471A04GS5 |G JAGADEESH CHANDRA BOSE e 15 10 33 7 6 11 9 27 32
"_\LG 17471A04G6 |GUNTU NAVEEN CHOWDARY 1 12 16 28 8 A 11 9 28 28
47 17471A04G8 |YELLANURU JAHNAVI A 7 6 19 7 A 7 6 20 20
48 17471A04G9 |MAMIDIPAKA NAGASUSHMA A 20 10 37 168 A 16 10 36 37
49 17471A04H0 |DUGGARAIU GOWTHAMY 6 20 9 37 10 7 14 7 31 36
50 | 17471A04H1 [P RAMA KRISHNA 7 18 8 33 6 6 12 9 27 32
51 17471A04H2 |NALAGANGULA KOTIREDDY 2 11 10 27 7 A 8 7 22 26
52 17471AB4H3 [GUNTUPALLT THIRUMALA PRASANNA SANKAR A 13 8 21 6 7 7 8 22 22
53 17471A04H4 |RAJARAPU SRILAKSHMI TIRUMALESWARI A 20 10 36 7 10 18 A 32 35
54 17471A84H5 |PAMURU DEWA A 10 10 27 7 A 11 9 27 27
55 17471A04H6 |SHAIK SAMEER 2 18 10 36 10 A 10 8 28 34
"56 17471A04H7 |KUNCHALA GOPI KRISHNA e 16 9 31 6 7 12 10 29 31
;? 17471A04H8 |PUSALA MADHU KUMAR e 14 8 29 8 A 13 8 29 29
58 17471AB4H9 |GAIIALA MARUTHI VENKATA KRISHNA REDDY 6 16 10 32 8 A 8 6 22 30
59 17471A@410 |[MEDA RAVI TEJA 4 12 9 25 6 7 14 10 31 30
60 18475A8401 |[MARELLA VAMSI %] 20 4 30 A 7 14 5 26 29
61 18475A0402 |RACHAKONDA SHYAM PREMKUMAR 2} 12 10 27 9 9 20 9 38 36
62 18475A0403 [SURISETTI ARCHANA A 12 9 28 6 6 11 6 23 27
63 18475A0404 |PALADUGU GANESH A 20 108 36 5 9 20 9 38 38
64 18475A0405 |VUYYURU SRILAKSHMI e 10 10 28 8 8 11 6 25 28
65 18475A0406 |NUNNA VENKATA SIVASAI 8 20 10 38 9 10 20 8 38 38
66 | 18475A0407 [PARITALA HARITHA 8 20 10 38 10 8 20 7 37 38
67 18475A0408 |[MADDINA VENKATA SANDEEP 4 16 6 27 7 A 16 5 28 28
68 18475A0409 |CHERUKURI BRAHMA VENKATESWARLU 2} 15 10 32 5 8 6 5 19 29

NARASARAOPETA ENGINEERING COLLEGE::NARASARAOPET
(AUTONOMOUS) -
17 BATCH IV B.TECH II SEMESTER (R16) FINAL INTERNAL MARKS-2021

BRANCH/SEC - ECE/D SUBJECT NAME & CODE :EMBEDDED SYSTEM DESIGN (R16EC4211)

SL.NO.| H.T.NO. STUDENT NAME Al | A2 D1 01 |cvcLe-1| A3 | a4 D2 | 02 |[cvcLe-2|TOTAL
1 16475A8415 |POLLA SIVA A A 12 5 17 7 A 18 8 33 29
2 | 16471A0424 |GOLLA VENKATESWART 6 6 2 A 8 9 A 10 6 25 21
3 | 16471A04D2 |THALLAPALLI SIVANAGARAIU| A 7 7 6 20 9 A 15 10 34 31
4 16471A04G1 |SRIRAM NAVEEN KUMAR A 7 4 6 17 A A 15 6 21 20
5 | 17471A04I1 |CHERUKURI RAVI KUMAR 6 5 12 9 27 8 8 14 6 28 28
6 | 17471A04I2 |KOLA PAVAN KALYAN A 5 12 10 27 7 A 16 7 30 30
7 | 17471A0413 [TEMPALLI PRABHU KUMAR | 8 6 19 10 37 7 9 15 9 33 36
8 17471A8414 |SHAIK MASTANVALI 8 6 20 10 38 8 A 15 8 31 37
9 | 17471A0415 [TANNIRU AVINASH BABU 6 A 17 10 33 A 7 15 10 32 33
10 | 17471AB4T6 [TELLAGORLA MWANIKANTA GoPALA KRISHMA| A 7 20 | 10 37 8 A 14 9 31 36

™1 | 1747180417 [KoLA RAKESH 5 8 14 8 30 5 A 14 7 26 29
12 | 17471A@418 |KESANUPALLI PRIVANKA 6 8 20 6 34 10 9 14 3 27 33
13 | 17471A6419 [NARISETTI UMAMAHESWARI| 7 8 20 10 38 9 A 19 7 35 38
14 17471A84310 |MANYAM UDAY BHASKAR 6 e 12 1@ 28 e 16 14 8 32 31
15 | 17471A8471 |V SUPRAJA 7 7 18 10 35 8 9 16 9 34 35
16 | 17471A0412 |GOSULA THIRUPATHI RAO | 6 6 15 10 31 10 A 15 7 32 32
17 | 17471A0433 |NARE TEJASWI 8 6 20 | 10 38 7 8 14 9 31 37
18 | 174710434 |VAKA GOPI CHAND A 7 15 8 30 6 8 14 9 31 31
19 17471A8415 |DOPPALAPUDI NELSON RAJU 7 7 14 8 29 8 A 14 6 28 29
20 17471A8416 |SHAIK AFRIN 6 8 14 18 32 18 7 15 10 35 35
21 | 17471A84317 |[MOLAMANTI SAIKALYAN - 6 12 10 28 6 A 15 10 31 31
22 17471A84]8 [SHAIK KANDIPATI MOULALI 7 A 20 10 37 7 i A 14 7 28 35

| 223 | 174714040 |PALLEPOGU SHARONU 6 8 20 10 38 9 8 17 8 34 37
24 | 17471A04K1 |CHILAKA VAMST KRISHNA | 5 5 16 8 29 7 8 16 8 32 32
25 | 17471A04K2 [GOCHIPATHALA RAJ KAMAL| A 5 15 10 30 5 8 16 9 33 33
26 | 17471A04K3 |KESENAPALLI MARIYA BABU| 6 7 14 9 30 8 9 15 | 10 34 33
27 17471A84K4 |ANGALAKURTHI SUMA PRIYA 6 5 16 9 31] A 15 4 29 31
28 | 17471A04KS5 |PERUMALLA VINAY KUMAR | A 7 10 9 26 8 A 15 8 31 30
29 | 17471A64K6 |SHAIK SAJID HASAN A 7 4 10 21 A A 0 A) 16
30 | 17471A64K7 |USAA PAVAN KALYAN 6 A 11 6 23 5 A 14 9 28 27
31 | 17471A04K8 |GORANTLA ASHOK 7 6 16 10 33 5 7 13 ;. 27 32
32 | 17471A04K9 |NALLAMOLU KUSUMA 6 5 19 10 35 8 7 15 9 32 35
33 17471A84L86 (JUPUDI RAJU 5 5 20 9 34 6 A 15 9 3e 33
34 17471A@4L1 |[MOGAL IRFAN 7 A i6 16 33 6 i 14 9 38 33
35 | 17471A04L2 |VELISALA MANISH PREETHAM| A 7 18 10 35 7 A 15 9 31 34
36 | 17471A04L4 |V PREETHI MANISHA 6 6 2 9 17 8 A 16 4 28 26
37 | 17471A@4L5 |JAMPANI KRISHNAVAMSI A 5 4 4 13 9 A 18 9 36 31
38 | 17471A04L6 [MEDATATI DIVYA 6 i 20 10 38 8 8 18 8 34 37
39 | 17471A04L8 |SADHU KOTESWA RAO 5 7 16 5 28 7 3 14 9 31 31

T

SL.NO.[H.T.NO. STUDENT NAME Al A2 D1 01 (CYCLE-1| A3 A4 D2 02 |CYCLE-2| TOTAL
40 17471A04M0 [BAPATLA VIJAYA LAKSHMI 5 8 20 10 38 9 7 20 4 33 37
41 17471A04M1 [PATIBANDEA NARESH A 5 2 9 16 5 A 16 9 3e 27
42 17471A04M2 [KANDULA GURU KIRAN A 7 6 9 22 8 A 14 10 32 30
43 17471A84M3 |DARSI ANIL KUMAR A A %] A 2} A 8 14 7 29 22
44 17471A04M4 [BATRAJU NAGA UMAMAHESH| 4 6 2 2 10 7 7 16 7 30 25
45 17471A@4M5 |PALLEMPATI DURGA PRASAD 5 6 20 1e 36 6 A 18 10 34 36
46 17471A04M6 [PUTTA SRIKANTH 6 5 14 10 3e 6 7 16 1@ 33 33
47 17471A04M7 |MEKALA YASHWANTH KUMAR 5 6 16 10 32 8 7 12 10 30 32
48 17471A84M8 |SHAIK IMRAN 7 6 6 9 22 A A 11 9 20 22
49 17471A84N0@ |SHAIK MAHAMOOD SHAREEF A 6 19 10 35 75 A 14 8 29 34
5e 17471AB4N1 |MADHIREDDY ANIL KUMAR REDDY 7 A 20 1e 37 8 A 19 10 37 37
51 17471A04N2 |KADIYAM SUDHAKAR A 5 14 6 25 A A 15 4 19 24
52 17471A84N3 |VEMULURI YASASWI 6 6 20 7 33 9 A 18 4 31 33

™ 18475A0410 |THOTA BHARATH 6 7 15 Z 29 7 A 1@ 8 25 28

’ 54 18475A0411 |SIDDEALA DILEEP SAGAR 7 7 14 8 29 A 10 18 8 36 35
55 18475A0412 |DOPPALAPUDI SARATH CHANDRA A 7 12 1@ 29 A 8 10 10 28 29
56 18475A0413 |JANGA MAHENDRA A 6 12 6 24 7 A 7 4 18 23
57 18475A0414 |AINAOLU GOPIKRISHNA A 8 18 8 34 7 7 16 7 30 33
58 18475A0415 [THUNGALA PRAMOD A 8 12 6 26 8 A 16 8 32 31
59 18475A0416 |SURUBULA LEELA PAVANKUMAR A 6 11 5 22 6 A 1e 5 21 22
60 18475A@417 |SARIKONDA RAMA KRISHNAM RAJU[6 5 14 5 25 7 A 1e 7 24 25
61 18475A8418 [ATTULURI SYAM PRASAD 4 7 12 6 25 5 A 18 10 25 25
62 18475A8419 |[KUNDA JASHUVA 7 7 18 1@ 35 8 8 16 9 33 35
63 18475A0420 |YALAVARTHI MADHU BABU A 8 11 9 28 7 A 16 9 32 31
64 18475A8421 |M SUBRAHMANYAM A 6 15 10 31 7 1e 14 9 33 33

:5 18475A8422 |GUDISE VENKATESH 7 6 15 5 27 7 8 1@ 5 23 26

’ ?6 18475A8423 [VARIKUTI KRISHNANJANEYULU 6 7 16 6 29 7 A 15 8 30 30

e

NARASARAOPETA

NEC ENGINEERING COLLEGE

(AUTONOMOUS)

(R16) 2017 BATCH IV B.TECH. II SEMESTER RESULT AFTER REVALUATION JULY - 2021

BRANCH : ECE 20.09.2021
R16EC4201 R1GEC4203 R16EC4211 R1GEC42PTI R1GEC42PW
SN0 | HT.NO NAME e ey B -+t iy dereic| Pecancrome | Sk
COMMUNICATIONS P
G C R G c R G c R G [R G C R
1 |16471AP485 |mecunorrr vescrs si sar suows s B 3 PASS E 3 PASS A 3 PASS 0 3 PASS 0 18 PASS | 9.18
2 |16471A8424 |GOLLA VENKATESWARI F @ FAIL F -] FAIL F 8 FAIL A 3 PASS A le PASS NA
3 16471A84D2 |THALLAPALIT SIVA NAGA RAJU P 3 PASS P 3 PASS [3 PASS A 3 PASS A 18 PASS | 6.91
4 |16471A84G1 [SRIRAM NAVEENKUMAR F [:] FAIL P 3 PASS P 3 PASS A 3 PASS A 18 PASS NA
5 |16475A0415 |POLLA SIVA P 3 PASS P 3 PASS P 3 PASS A 3 PASS A 18 PASS | 6.77
6 [17471A8481 rotLA CHAKRI SAT VIJAYACHANDRA c 3 PASS B 3 PASS C 3 PASS E 3 PASS E ie PASS | 7.91
7 1747148483 |MANAM YASWANTH CHOWDARY C 3 PASS A 3 PASS C 3 PASS E 3 PASS E 10 PASS | 8.85
8 117471A8484 |CHINTAGUNTLA KALYAN KUMAR C 3 PASS B 3 PASS C 3 PASS (1] 3 PASS (1] 18 PASS | 8.5
9 |17471A8B485 |YERUVA SUDHEER KUMAR REDDY C 3 PASS c 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.77
18 |17471AB486 |KOLISETTY BABA SRI RAM KUMAR| P 3 PASS c 3 PASS C 3 PASS E 3 PASS E 18 | PASS | 7.64
11 |17471A8487 |BATTULA CHANDAN P 3 PASS C 3 PASS P 3 PASS E 3 PASS E 18 PASS | 7.5
12 |17471AB488 |KOTABHATTAR V V S PRATHYUSHA B 3 PASS A 3 PASS [3 PASS 0 3 PASS L] b] PASS | B.77
13 117471A0409 |CHERUKULA KASI MAITHRI B 3 PASS E 3 PASS E 3 PASS 2] 3 PASS 1] L] PASS | 9.32
14 |17471A8410 [KANCHETI VINAY C 3 PASS C 3 PASS [3 PASS E 3 PASS E 18 PASS | 7.77
15 1747148411 |YAKKALA MAGA MADAN DATHA KUMAR B 3 PASS A 3 PASS c 3 PASS E 3 PASS E 18 PASS | 8.18
| 16 [|17471AB412 |sanaMPuDI VENKATA NARASIMHA REDOY C 3 PASS B 3 PASS C 3 PASS E 3 PASS E le PASS | 7.91
17 [17471AB413 |GADAM RAM BHUPAL REDDY B 3 PASS B 3 PASS C 3 PASS E 3 PASS E 18 PASS | 8.85
18 |17471A8414 |YANDAPALLI SAT VAMSIKRISHNA A 3 PASS A 3 PASS B 3 PASS 0 3 PASS 0 (] PASS | 9.85 |
19 |17471AB415 |MAMILLAPALLI SAI RAM B 3 PASS A 3 PASS A 3 PASS 0 3 PASS 1]] PASS | 9.85
20 |17471A8416 |NEMALIDINNE VENKATAJAHNAVI C 3 PASS B 3 PASS A 3 PASS E 3 PASS E 18 PASS | 8.18
21 [17471AB417 |NEMALIDINNE VENKATA YASHASWINI B 3 PASS E 3 PASS A 3 PASS 4] 3 PASS 0 18 | PASS | 9.18
22 |17471AB418 |MANDALA SAI BHARGAV REDDY F (-] FAIL C 3 PASS € 3 PASS E 3 PASS E le PASS NA
23 |17471A8419 [MAMIDIPAKA SAI SRIDHAR (% 3 PASS A 3 PASS A 3 PASS 1] 3 PASS (1] ie PASS | 8.91
24 |17471A8428 |POTHURI YASH'ANTH GUPTHA B 3 PASS A 3 PASS B 3 PASS [e] 3 PASS 0 p{:] PASS | 8.91
25 1747140421 |POPURI VENU C 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.18
26 11747148422 |KALANGI KRISHNA AKHIL B 3 PASS E 3 PASS A k] PASS] 3 PASS] 18 PASS | 9.18
27 |17471A8423 |DESABOINA PRUDHVISAI F 8 FAIL F @ FAIL F a FAIL E 3 PASS E pl:] PASS NA
28 |17471A8424 |CHINNI ESWAR RAO B 3 PASS E 3 PASS A 3 PASS 0 3 PASS 0 18 PASS | 9.18 |
29 [17471AB425 |YAKKALA PRATHAP B 3 PASS A 3 PASS A 3 PASS E 3 PASS E 18 PASS | 8.45
38 [17471AB426 |POTHURI SAIPAVAN C 3 PASS A 3 PASS A 3 PASS E 3 PASS E 18 PASS | 8.32
31 [17471A8427 |KOPPURAVURI JEEVAN JITHENDRA| B E] PASS E 3 PASS A 3 PASS 0 3 PASS 0 1@ | PASS | 9.18 |
32 |17471A8428 |SANKARAPU SEKHAR BABU [3 PASS E 3 PASS E 3 PASS (1] 3 PASS 0 1@ PASS | 9.18
33 |17471A8429 |NUTHALAPATI DURGA PRASAD| C 3 PASS C 3 PASS B 3 PASS E 3 PASS E 18 PASS | 7.91
34 |17471A0430 |BOGGAVARAPU YASWANTH AMARESH [3 PASS C 3 PASS [:] 3 PASS E " 3 PASS E 18 PASS | 7.91
35 |17471AB432 |CHANDRAGIRI SAI PRAGNA B 3 PASS B 3 PASS A 3 PASS 1] 3 PASS o pi:] PASS | 8.91
36 j17471AB434 |GADDAM VAMSI F -] FAIL P 3 PASS P 3 PASS E 3 PASS E 1@ PASS NA
37 |17471A8435 |MINDYALA NAGASAI B 3 PASS B 3 PASS A 3 PASS E 3 PASS E 18 PASS | 8.32
38 |17471AB436 |IRUVANTI SATYA SITA RAMA SASTRY B 3 PASS c 3 PASS B 3 PASS E 3 PASS E 18 | PASS | B.85
39 [17471A8437 |PANGA SRINIVASA RAD C 3 PASS B 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.91
48 |17471A8438 |POTHRALA RAMANII C 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.85
41 |17471A8439 |PASUPULETI SURESH C 3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.77
42 |17471A8440 |GUDIPATI CHARITHA B 3 PASS C 3 PASS B 3 PASS o 3 PASS o 18 PASS | B.64
43 [17471AB441 |SHAIK SALMAN [3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.77
44 117471A8442 |MANDALAPU AKHIL SURYA C 3 PASS C 3 PASS C 3 PASS E 3 PASS E p1:] PASS | 7.77
45 11747148443 |PABBA VENKATESH NAIDU B 3 PASS A 3 PASS A 3 PASS E 3 PASS E 18 PASS | 8.45
| 46 |17471AB444 |NANDHYALA LINGA REDDY B 3 PASS B 3 PASS A 3 PASS 2] 3 PASS 2] i@ PASS | 8.91
47 |17471A8445 |GANGAVARAPU TEJESWAR REDDY 5 3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.77
48 |17471A8446 |TALLAPANENI VYSHNAVI B 3 PASS A 3 PASS A 3 PASS 0 3 PASS 4] le PASS | 9.85
49 |17471A8448 |YELURI NAVYA C 3 PASS B 3 PASS B 3 PASS 0 3 PASS [*] 18 PASS | B.64
| 58 [17471AB449 ‘Mmu PAVAN KUMAR REDDY A 3 PASS E 3 PASS E 3 PASS 0 3 PASS 0 18 | PASS | 9.45
51 |17471A@458 |GOPALAM NAVYASRI 3 -] FAIL F 2] FAIL F [:] FAIL E 3 PASS E i@ PASS NA
52 11747148451 |SHAIK ABTHAB B 3 PASS E 3 PASS E 3 PASS] 3 PASS 0 L] PASS | 9.32
53]17471A8452 |TADIKAMALLA SURESH BABU P 3 PASS P | PASS P 3 PASS A 3 PASS A 1@ PASS | 6.77
54 |17471A@453 |THUMATI MUKESH CHOWDARY A 3 PASS A 3 PASS o 3 PASS 0 3 PASS] 18 PASS | 9.45
55 [17471AB454 |ANEKALLA LAKSHMAN REDDY C 3 PASS B 3 PASS B 3 PASS E 3 PASS E i@ PASS | B.85
56 |17471A8455 [aasvy VENKAT SIVA RAMA MAGENDRA C 3 PASS B 3 PASS B 3 PASS 0 3 PASS o] 1@ PASS | 8.64

57 |17471A8456 |NANDIKONDA ANJI REDDY B 3 PASS C 3 PASS B 3 PASS E 3 PASS E 10 | Pass | 8.85
58 |17471A0457 |KAKUMANU GANESH KRISHMA sal| C 3 PASS B 3 PASS C 3 PASS E 3 PASS E 10 | Pass | 7.91
59 |17471AB459 |RAMIDEVI SUMANTH F -] FAIL F e FAIL F e FAIL E 3 PASS E 12 | PASS | NA |
60 11747148461 |PONUGOTI RAMESH P 3 PASS C 3 PASS C 3 PASS E 3 PASS E 1@ PASS | 7.64
61 |17471AB462 |MATTRAM VISHNU BABU C 3 PASS B 3 PASS C 3 PASS E 3 PASS E U] PASS | 7.91
62 |17471AB463 |RAMISETTY RAMCHARAN C 3 PASS B 3 PASS B 3 PASS E 3 PASS E 1@ PASS | 8.85
63 C 3 PASS B 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.91
64 |17471A0465 [KAMMA NAGA SAT RITHVIK B 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.18
|65 |17471AB467 |DANDE NAGALAKSHMI B 3 PASS B 3 PASS A 3 PASS E 3 PASS E 1@ PASS | 8.32
66 |17471AB468 |jawwrats vasasuINE 1avA MAARATME SAHTTHI B 3 PASS E 3 PASS E 3 PASS (o] 3 PASS (o] ie PASS | 9.32
67 |17471A8469 |JANAPATI SATLAKSHMI SRAVANI B 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 10 | PASS | 9.85
68 |17471A8470 |KUNISETTY GOPINADH C 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.18
69 [17471AB471 |SHAIK MOHAMMAD YASEEN C 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 8.5 |
7@ 11747140472 |RAMISETTI LAKSHMISAITEJA P 3 PASS B 3 PASS B - PASS E 3 PASS E 18 PASS | 7.91
71 |17471A8473 [BANDARU MANI DEEPAK F] FAIL P 3 PASS P 3 PASS A 3 PASS A 1@ PASS NA
72 1747148474 |BOKKA JOHN VICTOR B 3 PASS B 3 PASS B 3 PASS E] 3 PASS E 18 | PASS | 8.18
73 |17471A8475 imn(VIMAYA SA1 DILEEP XUMAR REDOY C 3 PASS A 3 PASS A 3 PASS] 3 PASS 0 18 PASS | 8.91
74 117471A8476 |GANAPATHI IYOTHI PRAKASH C 3 PASS 2] 3 PASS A 3 PASS o 3 PASS o 18 PASS | 8.77
75 |17471A8477 [MUNAGAPATI MANDJIKUMAR B 3 PASS B 3 PASS A 3 PASS E 3 PASS E 18 PASS | 8.32
76 [17471A8478 |SYED MOHAMMAD GOUSE C 3 PASS C 3 PASS B 3 PASS A 3 PASS E 10 PASS | 7.77
77 _|17471A8479 |GOLI SRINIVASARAQ B 3 PASS B 3 PASS B 3 PASS 0 3 PASS 0 10 | PASS | 8.77
78 |17471A8488 |PATHI VENKATESWARI B 3 PASS E 3 PASS A 3 PASS E 3 PASS E 18 PASS | B.59
79 |17471AB481 |VANUKURI HARIVARDHAN VEERA REDDY| B 3 PASS A 3 PAasS B 3 PASS 0 3 PASS] 10 | PASS | 8.91
88 |17471A8482 |PANCHUMARTHI DILEEP KUMAR B 3 PASS B 3 PASS A 3 PASS 0 3 PASS 0 1@ PASS | 8.91
81 117471A8483 |KOLLURU KRISHNA MOHAN B 3 PASS B 3 PASS A 3 PASS E 3 PASS E 1@ PASS | 8.32
82 |17471A0484 |RACHUMALLU SASIDHAR A 3 PASS B 3 PASS A 3 PASS E 3 PASS E 18 PASS | 8.45
83 [17471A8485 |KARNATI HEMANTH SAT B 3 PASS A 3 PASS E 3 PASS [¢] 3 PASS o 18 PASS | 9.18
B84 |17471A0486 |THUMATI VENKATA SUNIL F a FAIL F 2] FAIL F -] FAIL E 3 PASS E 18 PASS NA
| 85 |17471A8487 |KOPPUM\|'URI AKHILA E 3 PASS A 3 PASS E 3 PASS 0 3 PASS 0 ie PASS | 9.45
BE |17471A0488 |[NAIDU RACHANA E 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 180 | PASS | 9.32
87 |17471A0489 |[TELAPROLU PAVAN KALYAN A 3 PASS B 3 PASS A 3 PASS E 3 PASS E 18 PASS | B.45
B8 |17471A049@ |BODEMPUDI SRI HARSHA A 3 PASS B 3 PASS E 3 PASS E 3 PASS E 19 | PASS | 8.59
89 |17471A8491 |SHATIK RUKSANA A 3 PASS A 3 PASS A 3 PASS [¢] 3 PASS E 18 PASS | B.73
98 [17471A8492 [KATTAMURI SATYANARAYANA A 3 PASS A 3 PASS A 3 PASS E 3 PASS 0 1@ PASS | 9.85
91 [17471A8493 lKQPP‘ULA GANESH REDDY C 3 PASS B 3 PASS B 3 PASS E 3 PASS E 1@ PASS | 8.85 |
52 |17471A8494 |SYED MAHABOOB JANI BASHA B 3 PASS E 3 PASS A 3 PASS E] 3 PASS E 1@ PASS | 8.59
93 |17471A8495 |PERUMALLA PREETHI KOUMIKA E 3 PASS A 3 PASS E 3 PASS o] 3 PASS o 1e PASS '&‘
94 |17471AB496 |SHAIK JANIBASHA F -] FAIL F -] FAIL F] FAIL E 3 PASS E ie PASS NA
95 |17471AB497 |SHATK MOHAMMED ALTHAF C 3 PASS C 3 PASS A 3 PASS E 3 PASS E 10 PASS | 8.85
96 |17471A8498 |JANGALA KIRAN BABU B 3 PASS E 3 PASS B 3 PASS E 3 PASS E 19 | PASS | 8.85
97 [17471A8499 |RAMA CHANDRULA KAVYASRI A 3 PASS A 3 PASS E 3 PASS o 3 PASS 0 18 PASS | 9.32
98 |17471A0448 [MUVVA MANO] KUMAR :] 3 PASS B 3 PASS A 3 PASS 0 3 PASS 0 18 PASS | B.91
99 |17471A84A1 |KAKUMANU SUMANTH C 3 PASS -] 3 PASS E 3 PASS E 3 PASS E 1@ PASS | 8.32
188 |17471AB4A2 |vemwssiis u v s L LI BRauANSIKE A 3 PASS A 3 PASS o 3 PASS o] 3 PASS o 18 PASS | 9.45
181 [17471A84A3 |TUMMALACHERUWMU SAITEJA A 3 PASS E 3 PASS E 3 PASS Q 3 PASS 0 18 PASS | 9.45
182 [17471A84A4 |JAKKIREDDY KEERTHI B 3 PASS B 3 PASS A 3 PASS E 3 PASS E 1@ PASS | 8.32
183 |17471A84A5 [SHAIK AFRID B 3 PASS B 3 PASS E 3 PASS o] 3 PASS 8] ie PASS | 9.85
184 [17471A84A6 |YERRAMSETTY SAI PAVAN B 3 PASS B 3 PASS A 3 PASS E 3 PASS E 1e PASS | B.32
| 185 |17471AB4AT |DESABOYINA HEMARAMACHANDAA VASU B 3 PASS C 3 PASS E 3 PASS E 3 PASS E 1@ PASS | 8.32
186 |17471A84A8 |SHAIK TANGEDA CHINA BAJI B 3 PASS A 3 PASS A 3 PASS E 3 PASS E 18 PASS | B.45
187 |17471A84A9 |KOLLA SIVA HEMANTH A 3 PASS A 3 PASS E 3 PASS E 3 PASS E 18 PASS | 8.73
188 |17471AB4B8 |AKULA ASHOK KUMAR A 3 PASS B 3 PASS E 3 PASS 0 3 PASS 0 18 PASS | 9.18
109 |17471A84B1 |MOHAMMED ZAKIR HUSSAIN KHAN E 3 PASS E 3 PASS B 3 PASS [+] 3 PASS 0 10 | PASS | 9.32
1180 [17471AB4B2 |muwpwmmi wasy wsi oevs vewsats REnoy C 3 PASS F -] FAIL P 3 PASS E 3 PASS E 18 PASS NA
111 |17471A8483 |GORANTLA SRAVAN KRISHNA C 3 PASS B 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.91
112 1747148484 |JAMMULA CHANDRIKA B 3 PASS B 3 PASS € 3 PASS 0 3 PASS 0 18 PASS | 8.64
113 |17471A84B5 |BONDE RAJENDRA C 3 PASS B 3 PASS B 3 PASS 0 3 PASS o] 18 PASS | 8.64
114 |17471A84B6 |NANNEM VEENA VATSALYA A 3 PASS E K ; PASS B 3 PASS 4] 3 PASS o] 18 PASS | 9.18
115 |17471A84B7 |GOGULA NAVEEN KUMAR B 3 PASS B 3 PASS C 3 PASS E 3 PASS E 1@ PASS | B.85
116 |17471A84B8 |KURANGI MUKUNDA SAI C 3 PASS A 3 PASS B 3 PASS E 3 PASS E 1@ PASS | B.18
117 |17471A84B9 |GOUSE MOMITH BAIG A 3 PASS B 3 PASS A 3 PASS 0 3 PASS 8] 1@ PASS | 9.85
| 118 |17471AB4C8 russt JOSEPH BALA YASHANTH BABU B 3 PASS B 2 PASS A 3 PASS 0 3 PASS 0 18 | PASS | 8.91
119 |17471A84C1 |VATTIKONDA SIVA RAMAKRISHNA C 3 PASS C 3 PASS P 3 PASS E 3 PASS E 18 PASS | 7.64
120 |17471AB4C2 |GUNDA PRATHYUSHA B 3 PASS E 3 PASS A 3 PASS 0 3 PASS 0 18 PASS | 9.18
121 |17471A84C3 |ALLA SARATH SAT A 3 PASS E 3 PASS B 3 PASS] 3 PASS (] 19 | PASS | 9.18
122 [17471A84C4 |GARIKAPATI PAVAN KALYAN A £] PASS A 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.45

123 [17471A84C5 |GUTHA VENKAT RAO F 8 FAIL F -] FAIL E -] FAIL E 3 PASS E 18 PASS NA
124 [17471A84C6 [PULUKURI SRI PRASANNA B 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 PASS | B.18
125 |17471A84C7 |BANDI CHINNAPA REDDY A 3 PASS B 3 PASS B 3 PASS] 3 PASS 9] 18 PASS | 8.91
| 126 [17471AB4CE |PINNIKA SRIVANI E 3 PASS E 3 PASS A 3 PASS o 3 PASS 0 1@ PASS | 9.45
127 |17471A84C9 [MADDI KOTI KIRAN KUMAR A 3 PASS C 3 PASS B 3 PASS E 3 PASS 0 18 PASS | 8.64
128 |17471A84D0 |DODDAKULA PRASANTH A 3 PASS B 3 PASS B 3 PASS E 3 PASS A 18 | PASS | 7.86
129 117471A84D1 |SHAIK ARSHAD E 3 PASS A 3 PASS B 3 PASS o] 3 PASS 0 18 PASS | 9.18
138 |17471A84D2 |PALADUGU SRINIVASULU A 3 PASS C 3 PASS C 3 PASS E 3 PASS E 10 PASS | 8.85
131 |17471A84D3 |KONETI SUNEEL A 3 PASS B 3 PASS C 3 PASS E 3 PASS E 1@ PASS | 8.18
132 [17471A84D4 |VUTUKURI TULASIRAM E 3 PASS B 3 PASS B 3 PASS 0 3 PASS 4] 18 PASS | 9.85
133 [17471A84D5 [KOMMI VENKATA SUBRAMANYAM B 3 PASS C 3 PASS P 3 PASS E 3 PASS E le PASS | 7.77
134 [17471A04D6 [SHAIK SHAMEEM E 3 PASS B 3 PASS B 3 PASS 0 3 PASS 0 ie PASS | 9.85
135 |17471A84D7 |BANDARU MAHESH A 3 PASS B 3 PASS C 3 PASS E 3 PASS E 18 | Pass | 8.18
136 |17471AB4D8 |GANGASANI ASHOK REDDY E 3 PASS B 3 PASS B 3 PASS E 3 PASS A 10 PASS 8
137 |17471A84D9 [KOSANA PRATAP B 3 PASS C 3 PASS C 3 PASS E 3 PASS E 19 | PASS | 7.91
138 [17471A84E8 ETTY RAGA VENKATA DEEPTHI A 3 PASS C 3 PASS P 3 PASS E 3 PASS E 10 | PASS | 7.91
139 [17471A84E1 [POTHURI MANIKANTA A 3 PASS C 3 PASS B 3 PASS E 3 PASS E 1e PASS | 8.18
148 [17471AB4E2 [SHAIK NMANNU 'sm:m A 3 PASS A 3 PASS B 3 PASS E 3 PASS 0 1e PASS | 8.91
141 |17471A84E3 |POLU DIVYA A 3 PASS c 3 PASS A 3 PASS E 3 PASS E 1@ PASS | 8.32
142 |17471A84E4 |VIBHARAMPATTAPU MAMATHA B 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 18 PASS | 9.85
143 |17471AB4ES |MANDAVA SRI BHARATHI A 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 PASS | B.45
144 |17471AB4E6 |BHOJANAPALLI TEJASWINI E 3 PASS A 3 PASS A 3 PASS 2] 3 PASS 0 10 PASS | 8.32
145 [17471AB4E7 |SHAIK JAVEED E 3 PASS B 3 PASS C 3 PASS E 3 PASS E 18 PASS | B.32
146 |17471AR4ES |KOLLIKONDA GANGABHAVANI A 3 PASS E 3 PASS A 3 PASS 0 3 PASS 0 19 | PASS | 9.32
147 |17471A84E9 |GUNTA ROHITHA REDDY A 3 PASS B 3 PASS B 3 PASS E 3 PASS E 10 | PASS | 8.32
148 |17471APAFO |LAKSHMISETTY VENKATA SAI VYSHNAVI A 3 PASS C 3 PASS A 3 PASS o 3 PASS 0 18 | PASS | 8.91
149 [17471A84F1 [RAVULAPALLI SRINU B 3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.91
158 |17471A84F2 |SADINENI SOWJANYA A 3 PASS B 3 PASS B 3 PASS Q 3 PASS 0 18 PASS | 8.91
151 |17471A84F3 |GANJI KRANTHI B 3 PASS B 3 PASS P 3 PASS] 3 PASS 0 18 PASS | 8.5
152 |17471A84F4 |CHEVALA PRITHVI RAJ E 3 PASS A 3 PASS B 3 PASS] 3 PASS 0 pl:] PASS | 9.18
153 [17471AB4F5 |DEVARAPALLI NAGA POOJA SAI SRI E 3 PASS E 3 PASS B 3 PASS o 3 PASS 0] PASS | 9.32
154 [17471AB4F6 [MEKAPOTHULA GOPI KRISHNA| A 3 PASS A 3 PASS B 3 PASS o] 3 PASS 0 18 PASS | 9.85
155 |17471AR4F7 |REPALLE PRATHYUSHA E 3 PASS E 3 PASS A 3 PASS E 3 PASS E 18 PASS | B.86
156 |17471A84F8 |KOMMANABOYINA NAGA ANIL F -] FAIL B 3 PASS C 3 PASS 0 3 PASS E 18 PASS | NA |
157 |17471AR4F9 |BATCHU DURGA BHAVANI E 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 8.59
158 [17471A84G8 |DIRISALA SRAVANI E 3 PASS A 3 PASS B 3 PASS E 3 PASS E 10 PASS | 8.59
159 |17471A04G1 |KOMIREDDY MANJU BHARGAVI E 3 PASS A 3 PASS B 3 PASS 0 3 PASS 0 18 PASS | 9.18
168 [17471A84G2 |POLA VENKATA MALLIKHARIUNA RAQ E 3 PASS A 3 PASS B 3 PASS 0 3 PASS 0 18 | PASS | 9.18
161 |17471A84G3 |KOLIPAKULA DEVI CHAMUNDESWART B 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.32
162 |17471A84G4 |BOBBA PRASANTH B k) PASS B 3 PASS C 3 PASS A 3 PASS A 18 PASS | 7.45
163 [17471AB4G5 |GANGISETTY JAGADEESH CHANDRA BOSE E 3 PASS E 3 PASS B 3 PASS 0 3 PASS 0 18 PASS | 9.32
164 [17471A84G6 |GUNTU NAVEEN CHOWDARY B 3 PASS B 3 PASS C 3 PASS E 3 PASS E 10 PASS | 8.85
165 [17471A84GB [YELLANURU JAHNAVI F -] FAIL C 3 PASS P 3 PASS E 3 PASS E 10 PASS NA
166 |17471A84G9 |MAMIDIPAKA NAGASUSHMA E 3 PASS E 3 PASS B 3 PASS 0 3 PASS 0 10 PASS | 9.32
167 |17471A84H0 |DUGGARAIU GOWTHAMY A 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 8.45
168 [17471A84H1 [PASUPULETI RAMA KRISHNA B 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.32
169 |17471A84H2 |NALAGANGULA KOTIREDDY B 3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 PASS | 7.91
178 |17471AB4H3 |uwmusnii] THIRUMALA PRASANNA SANKAR A 3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 PASS | B.@5
171 |17471AB4H4 [RAJaRAPU SRILAKSHMI TIRUMALESWART B 3 PASS B 3 PASS E 3 PASS o 3 PASS o] 18 PASS | 9.85
172 |17471A84H5 |PAMURU DIVYA C 3 PASS P 3 PASS C 3 PASS E 3 PASS E 10 PASS | 7.64
173 [17471A84H6 |SHAIK SAMEER A 3 PASS E 3 PASS A 3 PASS [¢] 3 PASS o] 1@ PASS | 9.32
174 |17471A84H7 |KUNCHALA GOPI KRISHNA B 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.32
175 |17471A84HB |PUSALA MADHU KUMAR A 3 PASS A 3 PASS B 3 PASS o] 3 PASS 4] 18 PASS | 9.85 |
176 [17471AB4HI |caiaLa MARUTHI VENKATA KRISHNA REDOY C 3 PASS C 3 PASS B 3 PASS E 3 PASS E 18 PASS | 7.91
177 |17471A841I0 |MEDA RAVI TEJA B 3 PASS C 3 PASS B 3 PASS E 3 PASS E 18 PASS | 8.85
178 [17471A84I1 [CHERUKURI RAVI KUMAR B 3 PASS c 3 PASS C 3 PASS E 3 PASS E 1@ | PASS | 7.91
179 1747148412 |KOLA PAVAN KALYAN A 3 PASS C 3 PASS B 3 PASS E 3 PASS E 18 PASS | B8.18
188 |17471A84I3 |TEMPALLI PRABHU KUMAR B 3 PASS B 3 PASS B 3 PASS 0 3 PASS] 10 PASS | B.77
181 |17471A84I4 |SHAIK MASTANVALI A 3 PASS A 3 PASS A 3 PASS [*] 3 PASS] 18 PASS | 9.18
182 |17471A841I5 |TANNIRU AVINASH BABU A 3 PASS A : ; PASS B 3 PASS E 3 PASS E 18 PASS | B.45
183 |17471A041I6 |TELLAGORLA MANIKANTA GOPALA KRISHNA A 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 PASS | B8.32
184 |17471A841I7 |KOLA RAKESH F a FATL C 3 PASS C 3 PASS E 3 PASS E 18 PASS NA
185 |17471A841I8 |KESANUPALLI PRIYANKA A 3 PASS E 3 PASS A 3 PASS] 3 PASS o] 10 PASS | 9.32
186 |17471A841I9 |NARISETTI UMAMAHESWARI A 3 PASS A 3 PASS A 3 PASS [*] 3 PASS 0 10 PASS | 9.18
187 |17471A8418 |MANYAM UDAY BHASKAR A 3 PASS A 3 PASS B 3 PASS 0 3 PASS 0 18 | PASS | 9.85
188 |17471A84]1 |YERRAVEDA SUPRAJA A 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 18 PASS | 9.18

| 189 |17471A84]2 |GOSULA THIRUPATHI RAO B 3 PASS B 3 PASS B £ PASS E 3 PASS E 18 | PASS | 8.18
198 |17471484)3 |NARE TEJASWI A 3 PASS E 3 PASS A 3 PASS 0 3 PASS 0 18 | PASS | 9.32
191 [17471A8434 |VAKA GOPI CHAND A 3 PASS B 3 PASS A 3 PASS E 3 PASS E 18 | PASS | B8.45
192 |17471A8435 |DOPPALAPUDI NELSON RAJU A 3 PASS B 3 PASS C 3 PASS E 3 PASS E 10 | PASS | 8.18
193 |17471A8416 |SHAIK AFRIN A 3 PASS B 3 PASS A 3 PASS 0 3 PASS 0 18 | PASS | 9.85
194 117471A8417 |MOLAMANTI SAIKALYAN B 3 PASS A 3 PASS C 3 PASS E 3 PASS E 18 | PASS | 8.18
195 1747148418 |SHAIK KANDIPATI MOULALI E 3 PASS B 3 PASS A 3 PASS 0 3 PASS 0 10 | PASS | 9.18
196 |17471A84K@ |PALLEPOGU SHARONU A 3 PASS E 3 PASS A 3 PASS 4] 3 PASS] 10 | PASS | 9.32
197 |17471A84K1 |CHILAKA VAMSI KRISHNA E 3 PASS :] 3 PASS B 3 PASS 0 3 PASS 0 18 | PASS | 9.85
198 |17471A84K2 |GOCHIPATHALA RAJ KAMAL C 3 PASS C 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 7.91
199 [17471404K3 |KESENAPALLI MARIVA BABU E 3 PASS B 3 PASS B 3 PASS o 3 PASS 0 19 | PASS | 9.85
209 |17471AB4K4 |ANGALAKURTHI SUMA PRIYA B 3 PASS C 3 PASS C 3 PASS E 3 PASS E 19 | PASS | 7.91
281 |17471A04K5 |PERUMALLA VINAY KUMAR A 3 PASS C 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 8.18

| 282 |17471AB4K6 |SHAIK SAJID HASAN F 2] FAIL F (-] FAIL F e FAIL E 3 PASS E 18 | PASS | NA
283 |17471A84K7 |USAA PAVAN KALYAN B 3 PASS B 3 PASS B 3 PASS 0 3 PASS 0 10 | PAss | 8.77
284 |17471A84KB |GORANTLA ASHOK A 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 | PASS | B.32
285 [17471A84K9 |NALLAMOLU KUSUMA A 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 10 | PASS | 9.18
286 1747148418 |JUPUDI RAJU B 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 18 | PASS | 9.85
207 |17471A04L1 |MOGAL IRFAN A 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 18 | PAS5 | 5.18
288 [17471AB4L2 |VELISALA MANISH PREETHAM| B 3 PASS C 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 8.85
289 [17471A414 |VEMPATI PREETHI MANISHA B 3 PASS B 3 PASS B 3 PASS 0 3 PASS 0 10 | PASS | 8.77
218 |17471A84L5 |JAMPANI KRISHNAVAMSI B 3 PASS B 3 PASS 8 3 PASS E 3 PASS E 19 | PASS | 8.18
211 |17471A84L6 |MEDATATI DIVYA A 3 PASS B 3 PASS A 3 PASS 0 3 PASS 0 18 | PASS | 9.85
212 |17471A84L8 |SADHU KOTESWA RAO B 3 PASS B 3 PASS B 3 PASS E 3 PASS E 19 | PASS | 8.18
213 |17471A84M0 |BAPATLA VIJAYA LAKSHMI E 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 19 | PASS | 9.32
214 |17471A84M1 |PATIBANDLA NARESH B 3 PASS A 3 PASS B 3 PASS E 3 PASS A 18 | PASS | 7.86
215 [17471AB4M2 |KANDULA GURU KIRAN B 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 | PAS5 | B.18
216 |17471A84M3 [DARSI ANIL KUMAR F] FAIL F 8 FAIL F 8 FAIL A 3 PASS A 18 | PASS | NA
217 |17471A84M4 |BATRAJU NAGA UMAMAHESH A 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 | PASS | B.45
218 |17471A84M5 |PALLEMPATI DURGA PRASAD A 3 PASS E 3 PASS B 3 PASS 0 3 PASS] 10 | PASS | 9.18
219 |17471A84M6 |PUTTA SRIKANTH A 3 PASS A 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 8.45 |
220 |17471A84M7 |MEKALA YASHWANTH KUMAR B 3 PASS A 3 PASS B 3 PASS 0 3 PASS 0 18 | PASS | 8.91
221 [17471A84MB |SHATK IMRAN C 3 PASS B 3 PASS P 3 PASS E 3 PASS E 180 | PASS | 7.77
222 |17471A@4N@ |SHAIK MOHAMMADSHARIF B 3 PASS] 3 PASS C 3 PASS E 3 PASS E 18 | PASS | 8.85
223 |17471A84N1 |MADHIREDDY ANIL KUMAR REDDY A 3 PASS E E PASS B 3 PASS 0 3 PASS 0 19 | PASS | 9.18
224 |17471A84N3 |VEMULURI YASASWI B 3 PASS A 3 PASS B 3 PASS 0 3 PASS o 1@ | PASS | 8.91

| 225 |18475A8481 |MARELLA VAMSI C 3 PASS A 3 PASS C 3 PASS E 3 PASS E 18 | PASS | B.85
226 |18475A8482 |RACHAKONDA SHYAM PREMKUMAR B 3 PASS A 3 PASS A 3 PASS E 3 PASS E 18 | PASS | 8.45
227 |18475A8483 |SURISETTI ARCHANA C 3 PASS A 3 PASS c 3 PASS E 3 PASS E 10 | PAsS | 8.85
228 [18475A8484 |PALADUGL GANESH E 3 PASS E 3 PASS A 3 PASS 0 3 PASS (] 19 | PASS | 9.45 |
229 11847548485 |VUYYURLU SRILAKSHMI C 3 PASS C 3 PASS L= 3 PASS E 3 PASS E 10 | PASS | 7.77
238 [18475A8486 |NUNNA VENKATA SIVASAL A 3 PASS B 3 PASS A 3 PASS] 3 PASS 0 18 | PASS | 9.85
231 |18475A0487 |PARITALA HARITHA B 3 PASS A 3 PASS A 3 PASS 0 3 PASS 0 18 | PASS | 9.85
232 |18475A8488 |MADDINA VENKATA SANDEEP A 3 PASS c 3 PASS C 3 PASS E 3 PASS E 18 | PASS | B.@5
233 11847548489 |ct 1 BRAHMA VENKATESWARLU c 3 PASS F 2] FAIL C 3 PASS E 3 PASS A 10 | PASS [NA
234 |18475A8418 |THOTA BHARATH B 3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 | Pass | 7.91
235 [18475A8411 |SIDDEALA DILEEP SAGAR A 3 PASS B 3 PASS A 3 PASS 0 3 PASS 0 19 | PASS | 9.85
236 |18475A8412 |DOPPALAPUDI SARATH CHANDRA C 3 PASS £ 3 PASS P 3 PASS E 3 PASS E 18 | PASS | 7.64
237 |18475A8413 |JANGA MAHENDRA F 8 FAIL P 3 PASS P 3 PASS E 3 PASS E 18 | PASS | NA
238 |18475A0414 |AINAOLU GOPIKRISHNA A 3 PASS A 3 PASS B 3 PASS 0 3 PASS 0 18 | PASS | 9.85
239 |18475A8415 |THUNGALA PRAMOD B 3 PASS C 3 PASS C 3 PASS E 3 PASS E 18 | PASS | 7.91
248 |18475A8416 |SURUBULA LEELA PAVANKUMAR B 3 PASS £ 3 PASS c 3 PASS E 3 PASS E 10 | Pass | 7.91
241 11847548417 |SARIKONDA RAMA KRISHNAM RAJU| C 3 PASS C 3 PASS & 3 PASS E 3 PASS E 18 | PASS | 7.77
242 |18475A8418 [ATTULURI SYAM PRASAD B 3 PASS c 3 PASS C 3 PASS E 3 PASS E 18 | PASS | 7.91
243 |18475A8419 |KUNDA JASHUVA A 3 PASS B 3 PASS C 3 PASS E 3 PASS E 18 | PASS | 8.18 |
244 |18475A8420 |YALAVARTHI MADHU BABU B 3 PASS C 3 PASS B 3 PASS E 3 PASS E 10 | PASS | 8.85
245 [18475A8421 |M SUBRAHMANYAM A 3 PASS B 3 PASS B 3 PASS E 3 PASS E 18 | PASS | 8.32
246 |18475A8422 |GUDISE VENKATESH B 3 PASS C 3 PASS C 3 PASS E 3 PASS E 10 | PASS | 7.91
247 |18475A8423 |VARIKUTI KRISHNANJANEYULU B 3 PASS 5 3 PASS c 3 PASS E 3 PASS E 19 | PASS | 7.91

Rectangle

Rectangle

Rectangle

