

Kotappakonda Road, Yellamanda (P.O), Narasaraopet-522601, Guntur District, AP.

Subject Code: R16MDE101

M.Tech - I Semester Regular and Supplementary Examinations, Dec-2018. DIGITAL SYSTEM DESIGN (DECS)

Time: 3 hours

Max Marks: 60

6M

Answer any FIVE questions.
All questions carry EQUAL marks of 12.

1	(a) (b)	Explain the advantages and disadvantages of QM algorithm Determine the minimal sum-of-product form for the expression and give the tabular method for $f(w,x,y,z) = \sum m(0,2,4,9,11,13,15,15) + \sum \Phi(1,5,7,10)$	6M 6M
2	(a) (b)	Summarize the cube based operations that can be used in cube based minimization algorithm and analyze them with an example.	6M
	(0)	Apply CAMP algorithm to minimize the given 4 variable Boolean function $f(A,B,C,D) = \Sigma m (1, 3, 5, 7, 9, 10, 13, 14, 15)$	6M
3	(a) (b)	Memorize the steps to be considered for PLA folding algorithm. Realize F_1 and F_2 using PLA. Give the PLA table and internal connection diagram for the PLA $F_1(a,b,c,d)=\Sigma m(1,2,4,5,6,8,10,12,14)$ $F_2(a,b,c,d)=\Sigma m(2,4,6,10,11,12,14,15)$	6M 6M
4	(a) (b)	Design a combinational circuit using a ROM. The circuit accepts a 3 bit number and generates an output binary number equal to the square of the input number. Summarize how a sequential circuit can be designed using FPGA.	6M
5	(a)	Analyze various faults present in digital combinational circuits and explain how a	6M
	(b)	fault can be characterized by its parameters.	

6 (a) Explain the scan-path technique for testable sequential circuit de sign.

(b) Perform design checking experiment to find Homing tree and Distinguishing tree for the following state table:

6M

6M

	Inp	out
Present state	x = 0	x = 1
Α	C,1	D,0
В	D,0	<i>B</i> , 1
C	<i>B</i> ,0	C, 1
D	C,0	A,0
	Next	state, output

- (a) Define the terms Controllability and Observability in the view of Fault detection

6M

- (b) Memorize the Bridging and Delay faults in digital circuits
- Explain how to test a PLA circuits? (a)
 - (b) Minimize the following function by the IISC algorithm f = 001210 + 001121 + 00100 + 001011 + 011122 + 011221 + 101000 + 101010

Kotappakonda Road, Yellamanda (P.O), Narasaraopet-522601, Guntur District, AP.

Subject Code: R16MEC102

M.Tech - I Semester Regular and Supplementary Examinations, Dec-2018.

VLSI TECHNOLOGY AND DESIGN

(Common to DECS and DSCE)

Time: 3 hours

Max Marks: 60

Answer any FIVE questions. All questions carry EQUAL marks

1	(a) (b)	Discuss in detail about VLSI design rules and process parameters. Briefly discuss about top-down design and bottom-up design.	6M 6M
2	(a) (b)	Explain the fabrication process of CMOS technology. Compare BiCMOS technology with other techniques.	6M 6M
3	(a) (b)	Briefly discuss about cell based design and array based design. What is testing and fault coverage?	6M 6M
4	(a) (b)	Derive basic electrical parameters of MOS transistor. Determine the pull up to pull down ratio of nmos inverter driven by another nmos	6M 6M
		inverter.	
5	(a) (b)	Draw and explain CMOS NAND gate with functional table. With a neat sketch explain four line gray code to binary code converter.	6M 6M
6	(a) (b)	Define floor planning and explain floor planning methods in VLSI design. Define synthesis and explain high level synthesis in VLSI.	6M 6M
7	(a) (b)	With neat sketches describe various design layout methods. Explain in detail about IC production process.	6M
8	(a) (b)	Draw the basic building block of VLSI and explain its operation. Discuss about communication interface and mixed signal interface.	6M 6M

Narasaraopeta Engineering College (Autonomous) Kotappakonda Road, Yellamanda (P.O), Narasaraopet- 522601, Guntur District, AP.

Subject Code: R16MEC103

M.Tech - I Semester Regular Examinations, Dec - 2018 **DIGITAL DATA COMMUNICATIONS**

(Common to DECS and DSCE)

Time: 3 hours

Max Marks: 60

Answer any FIVE questions. All questions carry EQUAL marks

1	(a)	Discuss coherent QPSK transmission and reception with truth table and constellation	[6]
	(b)	diagram. Analyze the DPSK modulation and demodulation with an example.	[6]
2	(a)	Draw and explain the TCP/IP model.	[6]
	(b)	Differentiate the parallel and serial digital data transmissions.	[6]
3	(a)	Write a short note on various types of errors observed in data communication.	[6]
	(b)	Determine the Single-Precision checksum for the following five character ASII	[6]
4	(a)	message "HELLO" Illustrate the following line discipline mechanisms-ENQ/ACK, poll/select.	[6]
	(b)	Summarize the character oriented protocol and bit-oriented protocol.	[6]
5	(a)	Describe the token bus networking.	[6]
	(b)	Compare the circuit switching and packet switching.	[6]
6	(a)	With a neat illustration explain CDMA.	[6]
	(b)	Elaborate the concept of OFDM in detail.	[6]
7	(a)	Write a short note on "IEEE 802.6".	[6]
	(b)	Explain the "Slotted ALOHA".	[6]
8	(a)	Explain various network topologies in data communication.	[6]
	(b)	Summarize the importance of routers in data communication.	[6]

Kotappakonda Road, Yellamanda (P.O), Narasaraopet- 522601, Guntur District, AP.

Subject Code: R16MEC104

M.Tech - I Semester Regular and Supplementary Examinations, Dec-2018. WIRELESS COMMUNICATIONS AND NETWORKS

(Common to DECS and DSCE)

Time: 3 hours

Max Marks: 60

Answer any FIVE questions. All questions carry EQUAL marks

1. (a) Explain about Frequency Reuse Concept.	[6M]
(b) Explain cell splitting in detail and mention the various advantages of cell spli	tting concept?
	[6M]
2. Define diffraction & explain briefly about different diffraction models.	[12M]
3. (a) Discuss any one outdoor propagation models with case study?	[6M]
(b) Discuss any one indoor propagation models with case study?	[6M]
4. (a) Describe the factors that influence small scale fading.	
(b) Write short notes on Fading effects due to Doppler spread?	[6M]
5. (a) a) Explain briefly about RAKE Receiver.	[6M]
(b) Explain about Scanning Diversity.	[7M]
6. (a) Explain the architecture of 802.11 and also list out the services of 802.11?	[5 M]
(b) Explain briefly about Wireless Local Loop (WLL).	[6M]
7. (a) Write short notes on Reflection from Dielectrics.	[6M] [6M]
(b) Explain briefly about Hata Model.	
8. Write short notes on the following	[6M]
(a) Trunking and Grade of Service.	[4M]
(b) Brewster Angle.(c) Frequency Diversity.	[4M]
(-) requestly.	[4M]

Kotappakonda Road, Yellamanda (P.O), Narasaraopet- 522601, Guntur District, AP.

Subject Code: R16MDE105

M.Tech - I Semester Regular and Supplementary Examinations, Dec-2018. EMBEDDED REAL TIME OPERATING SYSTEMS (DECS)

Time: 3 hours Max Marks: 60

Answer any FIVE questions. All questions carry EQUAL marks of 12.

Explain the memory management in RTOS. 1 (a) [6] (b) Discuss various interrupt routine rules for RTOS. [6] 2 Elaborate the concept of Round Robin Time Slicing Scheduling algorithm. (a) [6] (b) Summarize the numerous OS security functions and their issues in RTOS. [6] 3 List and explain the various time delay and memory allocation related functions of (a) [6] mCOS-II in RTOS. (b) Describe the windows CE features in RTOS. [6] 4 (a) Explain all the specifications of software architecture of ACVM. [6] (b) Tabulate the features needed in the OS for a smart card. [6] 5 (a) Discuss the Off-the-shelf operating system. [6] (b) Difference between the RT Linux and RT Linux API? [6] 6 Give the overview of RT Linux. (a) [6] Write a program to display a message periodically in RT Linux? (b) [6] 7 (a) Explain the goals and services of OS. [6] (b) How do you create, remove, open, close, read, write and IO control a device using [6] RTOS functions? Take an example of a pipe delivering an IO stream from a network device? 8 Describe the hardware architecture and software layers in software architecture of a [12] camera system with neat schematics.

Kotappakonda Road, Yellamanda (P.O), Narasaraopet-522601, Guntur District, AP.

Subject Code: R16MDE107

M.Tech - I Semester Regular and Supplementary Examinations, Dec - 2018. OPTICAL COMMUNICATION TECHNOLOGY (DECS)

Time: 3 hours

Max Marks: 60

Answer any FIVE questions. All questions carry EQUAL marks of 12.

1. (a) Discuss various approaches related to propagation of light in OFC?(b) Write about nonlinear effects in OFC?	[6M] [6M]	
(a) Write about principle of operation of Fabry-Perot Filters?(b) Explain optical sources with their structures?	[6M] [6M]	
3. Discuss in detail about optical modulation schemes?	[12M]	
4. Derive the expression for Bit Error Rate (BER) in Ideal receivers and also calculate the BER in		
Practical receiver with different noise impairments.	[12M]	
 5. Discuss the following related to Dispersions: i. Chromatic Dispersion ii. Polarization mode Dispersion iii. Compensation Techniques 6. Discuss and explain various Scattering techniques in OFC? 	[3*4M] [12M]	
7. (a) Explain the principle of solitons(b) Discuss subcarrier modulation and multiplexing?	[6M]	
8. (a) Explain the principle of operation of a Circulator.(b) Explain Reed-Solomon Codes for Error Detection and Correction	[6M] [6M]	

